
DANCE: Enhancing saliency maps using decoys

S1 Implementation details

S1.1 Aggregating multiple decoy patches into single decoy mask

For example, given an input image x ∈ R
√
d×
√
d and a swappable patch with size P , we obtain

(
√
d− P + stride)2 unique masks by sliding the swappable patch across the input. For an input with

high dimensionality and relatively small patch size, this n will be relatively large. In our implementation,
to reduce the computational cost, we aggregate m (m < n) masks into one combined mask, which
contains m swappable patches at different locations. Then, we generate a decoy by taking this combined
mask as the input. The optimization process will perturb all the features within these m swappable
patches. With this aggregation, the decoy mask number reduces to n =

⌊
(
√
d− P + stride)2/m

⌋
.

S1.2 Optimization details
The optimization function proposed to generate decoys is non-differentiable and very difficult to solve;
hence, we instead solve an alternate formulation with the help of the following tricks. First, we
introduce a Lagrange multiplier λ > 0 and augment the first constraint in the optimization function
as a penalty in the objective function. This will rule out the hyper-parameter ε in the Eqn.(2) of
Section 3.3. Second, we use projected gradient descent during the optimization to eliminate the mask
constraint (i.e., (x̃ − x) ◦ (1 −M) = 0). Specifically, after each standard gradient descent step, we
enforce x̃ = x̃ ◦M+ x ◦ (1−M). Third, we use the change-of-variable trick (Carlini & Wagner, 2017)
to eliminate the feature value constraint (i.e., x̃ ∈ [xmin,xmax]d). Instead of directly optimizing x̃,
we first normalize it to [0, 1] and introduce x̂ satisfying x̃i = 1

2 (tanh(x̂i) + 1), for all i ∈ {1, 2, · · · , d}.
Because tanh(x̂i) ∈ [−1, 1] implies x̃i ∈ [0, 1], any solution to x̂ is naturally valid. It should be noted
that other transformations for this third step are also possible but were not explored in this paper.
Putting these ideas together, we minimize the following objective function:

minimizex̂ −
∥∥∥∥(

1

2
(tanh(x̂) + 1)− x) · s)+

∥∥∥∥
1

+ λ ·
∥∥∥∥F`(

1

2
(tanh(x̂) + 1))− F`(x)

∥∥∥∥
∞
, (1)

where λ > 0 is initialized small and repeatedly doubled until the optimization succeeds. Because the
L∞ norm is not fully differentiable, we adopt the approximation trick introduced by Carlini & Wagner
(2017) and solve the following formulation:

minimizex̂ −
∥∥∥∥max((

1

2
(tanh(x̂) + 1)− x) · s, 0)

∥∥∥∥
1

+ λ ·
∥∥∥∥(|F`(

1

2
(tanh(x̂) + 1))− F`(x)| − τ)+

∥∥∥∥2
2

, (2)

where τ > 0. In this paper, we follow the selection strategy proposed in Carlini & Wagner (2017) and
initialize τ = 1. After each iteration, if the second term is zero, then we reduce τ by a factor of 0.95
and repeat; otherwise, we terminate the optimization. After obtaining x̂, we compute x̃ and map it
back to the original feature value range [xmin,xmax]. Note that Eqn. (2) can be efficiently solved by any
first-order optimization method without introducing too much computational overhead. In practice,
the average run time of solving it is 62.3% shorter than the fastest, vanilla gradient method. Note that,
when solving decoys, before applying the gradient descent, we add a small perturbation to the input
via random initialization by following the insight of SmoothGrad. This helps avoid the zero gradients
of saturated inputs and obtain meaningful decoy perturbations.
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S2 Proof of Theorem 1
Before proving Theorem 1, we first state and prove the following lemma.

Lemma 1. Consider an input x and its decoy x̃, generated by replacing the original features with
swappable features in K, |K| = K. The partial derivative of F c(x̃) w.r.t. to x̃i for i ∈ K is∣∣∣∣∣(Ox̃F

c(x̃))i −
1

2

∑
k∈K

(x̃k − xk)(Hx̃)i,k

∣∣∣∣∣ ≤ C . (3)

Proof. The second-order Taylor expansion of the predicted F c(x) for target class c around x is as
follows:

F c(x) ≈ F c(x̃) + Ox̃F
c(x̃)T ∆ +

1

2
∆THx̃∆ , (4)

where ∆ = x − x̃. By definition of the decoys in Section 3.2 (i.e., F c(x) = F c(x̃)), the following
equation holds:

Ox̃F
c(x̃)T ∆ ≈ −1

2
∆THx̃∆ . (5)

From the above equation, we can see that, for a linear model, the linearity zeroes out the gradient of
the decoys, causing our method to output zero saliency scores for all input features. We clarified in
Section 5 that our method is mainly defined for non-linear complicated models.

Given a swappable patch of size K × 1 starting from position i1, then ∆ = [0, ...,xi1 − x̃i1 , ...,xiK −
x̃iK , 0, ..., 0]. As such, we have

Ox̃F
c(x̃)T ∆ =

∑
i∈K

(Ox̃F
c(x̃))i(xi − x̃i) ,

∆THx̃∆ =
∑
i∈K

(xi − x̃i)
∑
k∈K

(Hx̃)i,k(xk − x̃k) .
(6)

Plugging Eqn. (6) into Eqn. (5), we have∑
i∈K

[(Ox̃F
c(x̃))i +

1

2

∑
k∈K

(Hx̃)i,k(xk − x̃k)](xi − x̃i) = 0 . (7)

Then we can derive ∣∣∣∣∣(Ox̃F
c(x̃))i +

1

2

∑
k∈K

(xk − x̃k)(Hx̃)i,k

∣∣∣∣∣ ≤ C ,∣∣∣∣∣(Ox̃F
c(x̃))i −

1

2

∑
k∈K

(x̃k − xk)(Hx̃)i,k

∣∣∣∣∣ ≤ C .
(8)

First, we can derive |x̃i−xi| is bounded by 2max(xmax, |xmin|). We also have |x̃i+k−xi+k|0 in that we can
always find a small perturbation to each feature in x such that ‖F`(x̃)−F`(x)‖∞ ≤ ε. In addition, both
gradient and Hessian are bounded by some Lipschitz constant (Szegedy et al., 2013). 1 As a result, we

can always find a constant C, such that C ≥
∣∣∣∣−∑

k1∈K\i
[(Ox̃F

c(x̃))k1
+ 1

2

∑
k2∈K

(Hx̃)k1,k2
(xk2

−x̃k2
)](xk1

−x̃k1
)

(xi−x̃i)

∣∣∣∣.
For the case K = 1, we have (Ox̃F

c(x̃))i = 1
2 (Hx̃)i,i(x̃i − xi).

�
Now we prove Theorem 1 from Section 3.5.
Consider a CNN with L hidden blocks, with each layer ` containing a convolutional layer with a

filter of size
√
s` ×

√
s` and a max pooling layer with pooling size

√
s` ×

√
s`. The input to this CNN

is x ∈ Rd, unrolled from a
√
d ×
√
d matrix. Similarly, we also unroll each convolutional filter into

g` ∈ Rs` , where g` is indexed as (g`)j for j ∈ J`. Here, J` corresponds to the index shift in matrix
1Following other works that also utilized Lipschitz continuity to analyze DNNs (Szegedy et al., 2013; Ghorbani et al.,

2017), we assume that F` is locally continuous around x, for ` = 1, 2, ..., L.
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form from the top-left to bottom-right element. The output of the network is the probability vector
p ∈ RC generated by the softmax function, where C is the total number of classes. Such a network can
be represented as

m` = pool(relu(g` ∗m`−1)) for ` = 1, 2, 3, ..., L ,

o = WT
L+1mL + bL+1,

p = softmax(o) ,

(9)

where relu(·) and pool(·) indicate the ReLU and pooling operators, m` ∈ Rd` is the output of the block
` (m0 = x), and (g` ∗m`−1) ∈ Rd`−1 represents a convolutional operation on that block.

Consider an input x and its decoy x̃, generated by swapping features in K. For each feature i ∈ K,
we have the following theorem for the decoy-enhanced saliency score Zi:

Theorem 1. In the aforementioned setting, Zi is bounded by∣∣∣∣∣Zi −
1

2

∣∣∣∣∣∑
k∈K

(x̃+
k − x̃−k )(Hx)k,i

∣∣∣∣∣
∣∣∣∣∣ ≤ C1 . (10)

Proof. The gradient of pc with respect to x can be written as follows, using the denominator layout
notation of the derivative of a vector:

Oxpc =

L∏
`=1

∂m`

∂m`−1

∂o

∂mL

∂pc

∂o
, (11)

where
∂o

∂mL
= WL+1 , (12)

and {
∂pc

∂oc′
= (pc − p2

c) if c′ = c ,
∂pc

∂oc′
= −pcpc′ otherwise .

(13)

Then we can write ∂pc

∂o as follows:
∂pc

∂o
= P̂·c , (14)

where P̂·c corresponds to the c-th column of P̂ and P̂ = diag(p)− ppT . We then define B` = ∂m`

∂m`−1

as B` ∈ Rd`−1×d` . In the following, we compute B`.
First, we can have{

∂(m`)j
∂(relu(g`∗m`−1))n

= 1 if ĵ − n ∈ J`, and n = argmaxn′∈ĵ+J`
(g` ∗m`−1)n′ ,

∂(m`)j
∂(relu(g`∗m`−1))n

= 0 otherwise ,
(15)

where ĵ represents the center of the pooling patch in relu(g` ∗m`−1), which results in (m`)j . Then we
can compute {

∂(relu(g`∗m`−1))n
∂(m`−1)i

= (a`)n(g`)n−i if n− i ∈ J` ,
∂(relu(g`∗m`−1))n

∂(m`−1)i
= 0 otherwise ,

(16)

where (a`)n = 1 {(relu(g` ∗m`−1)n) ≥ 0}. If we change the activation function to either sigmoid or
tanh, then (a`)n in Eqn. (16) will be replaced with the derivative of either function. For the sigmoid
activation function σ(x), the derivative is σ(x)(1− σ(x)), with a range of [0, 14 ]. For the tanh activation
function tanh(x), the derivative is 1− tanh(x)2, with a range of [0, 1]. We conclude that the derivative
of both sigmoid and tanh are bounded by a value no larger than 1.

Combining Eqn. (15) with (16), we have{
(B`)ij =

∂(m`)j
∂(m`−1)i

= (a`)n(g`)n−i if n− i ∈ J`, ĵ − n ∈ J`, and n = argmaxn′∈ĵ+J`
(g` ∗m`−1)n′ ,

(B`)ij =
∂(m`)j

∂(m`−1)i
= 0 otherwise .

(17)

3



For simplicity, we rewrite the non-zero condition as n ∈ Ĵ`. Plugging B`, ` = 1, ..., L, into Eqn. 11, we
can obtain the partial derivative Oxpc.

Further, we compute each element in the Hessian matrix Hij as follows:

Hij = Oxi
(Oxj

pc) =
∂(
∏L

`=1 B`)j·WL+1P̂·c
∂xi

= (

L∏
`=1

B`)j·WL+1
∂P̂·c
∂xi

=

(
dL∑

nL=1

(

L∏
`=1

B`)jnL
(WL+1)nL·

)
∂P̂·c
∂xi

,

(18)

and
∂P̂c′c

∂xi
=

{
(1− 2pc)Oxipc if c′ = c ,

pcOxipc′ + pc′Oxi
pc otherwise .

(19)

Now we compute (
∏L

`=1 B`)jnL
as

(
L∏

`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
, (20)

where
(B1)j·B2 = [0, ..., Cn2(a2)n2

∑
n1∈Ĵ1

(a1)ngn−1, ..., 0] , (21)

and where Cn2
= (g2)n2−2

∑
n1∈Ĵ1

gn−1. Here, we redefine Ĵ1 as the set of indices such that (B1)jn1
6= 0

for n1 ∈ Ĵ1. As such, we can compute (B1)j·
∏L−1

`=2 B` as

(B1)j·

L−1∏
`=2

B` = [0, .., CnL−1
(aL−1)nL−1

L−2∑
`=1

∑
n`∈Ĵ`

(a`)n`
, ..., 0] . (22)

Plugging Eqn. (22) into Eqn. (20), we have

(

L∏
`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
= (CL)nL

(aL)nL

L−1∑
`=1

∑
n`∈Ĵ`

(a`)n`
. (23)

Plugging Eqn. (23) into Eqn. (18), we have

Hij =

Cj

L∑
`=1

∑
n`∈Ĵ`

(a`)n`

 ∂P̂·c
∂xi

, (24)

where Cj is a linear combination of g1, ..., gL, WL+1, which is bounded. Hij equals the multiplication
of two components—the summation of neurons activated by x and a gradient ∂P̂·c

∂xi
. The first part shows

that the Hessian includes the neighborhood features that are jointly activated, indicating inter-feature
interaction.

Given the total number of neurons in a CNN is a constant (denoted by CT ), we have 0 ≤(∑L
`=1

∑
n`∈Ĵ`

(a`)n`

)
≤ CT . Then, we have |(Hx)ij | ≤ CT |Cj

∂P̂·c
∂xi
|. Since the derivatives of both

sigmoid and tanh are no larger than 1, this inequality also applies to the network with these two
functions as the activation function. Similarly, for the Hessian (Hx̃)ij of a decoy x̃, we also have
|(Hx̃)ij ≤ CT |Cj

∂P̂·c
∂x̃i
|. Given the inequality of (Hx̃)ij and (Hx̃)ij , we can obtain that |(Hx̃)ij −

(Hx)ij | ≤ 2CTmax(|C̃j
∂P̂·c
∂x̃i
|, |Cj

∂P̂·c
∂xi

)|, where ∂P̂·c
∂xi

is given by Eqn. (19). Recalling that Pc is within
[0, 1], the gradient ∂Pc

∂xi
is bounded by some Lipschitz constant (Szegedy et al., 2013), we can obtain
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that ∂P̂·c
∂xi

is bounded by some constant. Finally, we can derive that |(Hx̃)ij − (Hx)ij | ≤ CC , where CC

represents the upper bound.2
Now, we derive the decoy-enhanced saliency score Zi for xi, given a population of saliency scores

Ẽi =
{
E(x̃1;F )i, E(x̃2;F )i, · · · , E(x̃2n;F )i

}
. Let x̃+, x̃− ∈

{
x̃1, x̃2, · · · , x̃2n

}
denotes the decoy which

maximizes and minimize E(x̃;F )i, respectively. According to Lemma 1, the partial derivative Ox̃i
pc

has the following relationship∣∣∣∣∣(Ox̃F
c(x̃))i −

1

2

∑
k∈K

(x̃k − xk)(Hx̃)i,k

∣∣∣∣∣ ≤ C , (25)

Then, we can derive

1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k − C ≤ (Ox̃+F c(x̃+))i ≤

1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k + C , (26)

− 1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k − C ≤ −(Ox̃−F
c(x̃−))i ≤ −

1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k + C , (27)

Then, we have

Zi = (Ox̃+F c(x̃+))i − (Ox̃−F
c(x̃−))i

≤1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k −

1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k + 2C

≤1

2

∑
k∈K

(x̃+
k − xk)((Hx)i,k + CC)− 1

2

∑
k∈K

(x̃−k − xk)((Hx̃−)i,k − CC) + 2C

≤1

2

∑
k∈K

(x̃+
k − x̃−k )(Hx)i,k +

1

2
CC

∑
k∈K

(x̃+
k − x̃−k ) + 2C ,

(28)

And
Zi = (Ox̃+F c(x̃+))i − (Ox̃−F

c(x̃−))i

≥1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k −

1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k − 2C

≥1

2

∑
k∈K

(x̃+
k − xk)((Hx)i,k − CC)− 1

2

∑
k∈K

(x̃−k − xk)((Hx̃−)i,k + CC) + 2C

≥1

2

∑
k∈K

(x̃+
k − x̃−k )(Hx)i,k −

1

2
CC

∑
k∈K

(x̃+
k − x̃−k )− 2C ,

(29)

Combining Eqn. (28) with Eqn. (29), we have∣∣∣∣∣Zi −
1

2

∣∣∣∣∣∑
k∈K

(x̃+
k − x̃−k )(Hx)k,i

∣∣∣∣∣
∣∣∣∣∣ ≤ C1 . (30)

Recall that (x̃+
k − x̃−k ) is bounded by a upper-bound, we can obtain that there exist a constant C1,

such that C1 ≥ 1
2CC

∑
k∈K(x̃+

k − x̃−k ) + 2C. Note that this upper bound is data specific, and we leave
the exploration on its tightness as a part of future works.

�
2Note that this inequality cannot be directly obtained by the Lipschitz inequality, because the gradient may not be

continuous.
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S3 Proof of Proposition 1

Proposition 1. Given an input x and its corresponding adversarial sample x̂, if both |xi − x̃i| ≤ C2δi

and
∣∣∣x̂i − ˜̂xi

∣∣∣ ≤ C2δi can obtain where C2 > 0 is a bounded constant and δi = |E(x̂, F )i − E(x, F )i|,
then the following relation can be guaranteed.

|(Zx̂)i − (Zx)i| ≤ |(E(x̂, F )i − E(x, F ))i| . (31)

Proof. Recall the goal of the attack against saliency maps is to subtly perturb an input sample such
that the added perturbation does not change the output of the classifier (Ghorbani et al., 2017) but
force a saliency method to output a less meaningful saliency map (i.e., highlighting features that are
irrelevant to the classifier prediction). To achieve this goal, when generating an adversarial sample x̂
from the given input x, an attacker needs to impose the following constraint ‖x̂− x‖∞ ≤ ε. Suppose
we have an adversarial sample x̂ satisfies this constraint. Then, we can assume (x̂− x)i = ε̂i, where
|ε̂i| ≤ ε, for i = 1, 2, ..., d. In addition, we can compute saliency maps E(x̂, F ) and E(x, F ) for x̂ and
x by using an existing saliency method. 3 Given both saliency maps, we can further compute the
difference between E(x̂, F ) and E(x, F ) as

(E(x̂, F )− E(x, F ))i = Ox̂F
c(x̂)− OxF

c(x) = (Hx(x̂− x))i =

d∑
j=1

(Hx)ij ε̂j . (32)

Based on the Eqn.(2) in Section 3.3, when generating the decoys x̃, we ensure the classifier’s predictions
for those decoys are as same as that of the x. In this work, we achieve this by bounding the difference
between the hidden representations of x̃ and x. As is discussed in Section S2, to preserve the same
prediction c for x̃ and x, one has to ensure |F c(x̃) − F c(x)| is bounded. This implies the difference
between x̃ and x is bounded within ε. Here, εi represents the maximum difference between x̃i and xi

at the ith dimension. As is mentioned above, the adversarial sample x̂ does not change the classifier’s
prediction. Therefore, we could imply ε̂i ≤ εi, for i = 1, 2, ..., d.

Now, suppose we obtain a set of decoys for x and have their corresponding saliency maps, i.e.,{
E(x̃1;F )i, E(x̃2;F )i, · · · , E(x̃2n;F )i)

}
. Let x̃+ ∈

{
x̃1, x̃2, · · · , x̃n

}
denote the decoys which maximize

E(x̃;F )i and let x̃− denote the decoys which minimize E(x̃;F )i. Similarly, we can also have the
corresponding decoys ˜̂x− and ˜̂x− for the adversarial sample x̂ as well as their corresponding saliency
maps. With both the decoys and saliency maps for the input sample x and its adversarial sample x̂,
we can compute the difference between (Zx̂)i and (Zx)i as

(Zx̂)i − (Zx)i

=
(
E(˜̂x+, F )i − E(˜̂x−, F )i

)
−
(
E(x̃+, F )i − E(x̃−, F )i)

)
=
(

(Hx(˜̂x+ − x))i − (Hx(˜̂x− − x))i

)
−
(
(Hx(x̃+ − x))i − (Hx(x̃− − x))i

)
=

d∑
j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j )− (x̃+
j − x̃−j )

)
.

(33)

To guarantee an improvement in robustness against the adversarial perturbation, we have to ensure
that |(Zx̂)i − (Zx)i| − |(E(x̂, F )− E(x, F ))i| ≤ 0, for i = 1, 2..., d. That is,∣∣∣∣∣∣

d∑
j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j )− (x̃+
j − x̃−j )

)∣∣∣∣∣∣−
∣∣∣∣∣∣

d∑
j=1

(Hx)ij ε̂j

∣∣∣∣∣∣ ≤ 0,

∣∣∣∣∣∣
d∑

j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j )− (x̃+
j − x̃−j )

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

d∑
j=1

(Hx)ij ε̂j

∣∣∣∣∣∣ ,
(34)

3For simplicity, we use the vanilla gradient method. The conclusion can be generalized to the other saliency methods
considered in this paper
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As is discussed in Section S2, |(Hx)ij | ≤ CC . With this, we can have∣∣∣∣∣∣
d∑

j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j )− (x̃+
j − x̃−j )

)∣∣∣∣∣∣
≤

d∑
j=1

|(Hx)ij |
∣∣∣(˜̂x+

j − ˜̂x−j )− (x̃+
j − x̃−j )

∣∣∣
≤

d∑
j=1

Cc

∣∣∣(˜̂x+
j − ˜̂x−j )− (x̃+

j − x̃−j )
∣∣∣

(35)

By plugging Eqn. (35) into Eqn. (34), we conclude that as long as
∣∣∣(˜̂x+

j − ˜̂x−j )− (x̃+
j − x̃−j )

∣∣∣ ≤
1

Ccd

∣∣∣∑d
j=1(Hx)ij ε̂j

∣∣∣, our method could guarantee to improve the robustness against the adversarial

perturbations. Let δi = |E(x̂, F )i − E(x, F )i|. If we can ensure that |xi − x̃i| ≤ 1
4Ccd

δi and
∣∣∣x̂i − ˜̂xi

∣∣∣ ≤
1

4Ccd
δi, we can have

∣∣x̃+
j − x̃−j

∣∣ ≤ 1
2Ccd

δi and
∣∣∣˜̂x+

j − ˜̂x−j

∣∣∣ ≤ 1
2Ccd

δi. Thus, the aforementioned condition

can be satisfied, i.e.,
∣∣∣(˜̂x+

j − ˜̂x−j )− (x̃+
j − x̃−j )

∣∣∣ ≤ 1
Ccd

δi. By setting C2 = 1
4Ccd

, we could obtain the
robustness conditions in Proposition 1.

�

S4 Corollary 1
Consider a multilayer perceptron with L fully-connected hidden layers and a decoy swappable size K×1.
The input of this MLP is x ∈ Rd. For each hidden layer, we use the ReLU activation function. Similar
to the CNN mentioned above, the output of this CNN is p ∈ RC . The network can be represented as:

m` = relu(WT
` m`−1 + b`), For ` = 1, 3, ..., L ,

o = WT
L+1mL + bL+1,

p = softmax(o) .

(36)

where W` ∈ Rd`−1×d` , for ` ∈ {1, · · · , L+1} represents the weights of the neural network, and b` ∈ Rd`

represents the biases, where d0 = d and dL+1 = C. m` ∈ Rd` is the output of each hidden layer, with
m0 = x and o ∈ RC is the logits. The entry-wise softmax operator for target class c is defined as
pc = eoc∑C

c′=1
eoc′

, for c ∈ {1, 2, · · · , C}.

Corollary 1. For the above MLP, Zi is also bounded by:

Zi ≤

∣∣∣∣∣12 ∑
k∈K

(x̃i+k − xi+k)(Hx)i+k,i

∣∣∣∣∣+ C2 . (37)

Proof. Based on the proof of Theorem 1, the gradient of pc with respect to x can be written as follows

Oxpc =

L∏
l=1

B`WL+1P̂·c . (38)

where B` = ∂m`

∂m`−1
, B` ∈ Rd`−1×d` . P̂·c is also defined as P̂ = diag(p) − ppT . In the following, we

compute Bl. First, we can compute (B1)ij , in which

(B1)ij =
∂(m1)j
∂xi

=
∂(WT

1 x + b1)j
∂xi

∂(m1)j
∂(WT

1 x + b1)j
= (W1)ij(a1)j , (39)
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where (a1)j = 1{(WT
1 x + b1)j ≥ 0}. Similar, we can also compute (B`)ij , for ` = 2, 3, ..., L

(B`)ij = (W`)ij(a`)j , (40)

where (a`)j = 1{(WT
` x + b`)j ≥ 0}.

Then, we compute the each element in the Hessian matrix Hij . Specifically, based on Eqn. (18), we
have

Hij =

(
dL∑

nL=1

(

L∏
`=1

B`)jnL
(WL+1)nL·

)
∂P̂·c
∂xi

, (41)

where ∂P̂·c
∂xi

is the same with Eqn. (19).
Now, we compute (

∏L
`=1 Bl)jnL

as

(

L∏
`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
, (42)

where (B1)j· = [(W1)j1(a1)1, (W1)j2(a1)2, ..., (W1)jd1
(a1)d1

] and

(B1)j·B2 = [(a2)1

d1∑
n1=1

(C2)1n1
(a1)n1

, ..., (a2)d2

d1∑
n1=1

(C2)d2,n1
(a1)n1

] , (43)

where (C2)n2,n1 = (W2)n1,n2(W1)j,n1 . For simplicity, we can rewrite
∑d1

n1=1(C2)n2,n1(a1)n1 =

(C2)n2

∑d1

n1=1(a1)n1
. Then, we have

(B1)j·B2 = [(C2)1(a2)1

d1∑
n1=1

(a1)n1
, ..., (C2)d2

(a2)d2

d1∑
n1=1

(a1)n1
] . (44)

As such, we can compute (B1)j·
∏L−1

`=2 B` as

(B1)j·

L−1∏
`=2

B` = [(CL−1)1(aL−1)1

L−2∑
`=1

d∑̀
n`=1

(a`)n`
, ..., (CL−1)dL−1

(aL−1)dL−1

L−2∑
`=1

d∑̀
n`=1

(a`)n`
] . (45)

Plugging Eqn. (45) into Eqn. (14), we have

(

L∏
`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
= (CL)nL

(aL)nL

L−1∑
`=1

d∑̀
n`=1

(a`)n`
. (46)

Finally, we can obtain that

Hij =

(
dL∑

nL=1

(CL)nL
(aL)nL

L−1∑
`=1

d∑̀
n`=1

(a`)n`
(WL+1)nL·

)
∂P̂·c
∂xi

=

(
Cj

L∑
`=1

d∑̀
n`=1

(a`)n`

)
∂P̂·c
∂xi

,

(47)

where Cj is a linear combination of the elements in (W1)j·, W2, ..., WL+1.
Note that the Hessian derived from the MLP has a similar form with the Hessian derived from the

CNN in Eqn. 24, i.e., the summation of neurons activated by x multiplying the gradient. Here, the
summation of neurons activated by x is again bounded by the total number of neurons in the network.
The gradient ∂P̂·c

∂xi
is bounded by a Lipschitz constant. Similarly, we also have the following inequality

for (Hx̃)ij and (Hx)ij , i.e., |(Hx̃)ij − (Hx)ij | ≤ CM .
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Similar to Theorem 1,let x̃+, x̃− ∈
{
x̃1, x̃2, · · · , x̃2n

}
denotes the decoy which maximizes and

minimize E(x̃;F )i, respectively. Based on Eqn. (25) to Eqn. (30), we have∣∣∣∣∣Zi −
1

2

∣∣∣∣∣∑
k∈K

(x̃+
k − x̃−k )(Hx)k,i

∣∣∣∣∣
∣∣∣∣∣ ≤ C2 . (48)

C2 ≥ 1
2CM

∑
k∈K(x̃+

k − x̃−k ) + 2C. Slightly different for CNN, MLP sometimes is used to process the
input that does not have a strong local dependency. In this case, we can set the swappable path size
K = 1. Then, Eqn. (48) can reformulated as

∣∣Zi − 1
2

∣∣(x̃+
i − x̃−i )(Hx)i,i

∣∣∣∣ ≤ C2. As we can observe
from this equation, our proposed saliency score is still able to compensate for the gradient saturation
problem. �

Table S1: The hyper-parameter choices of the proposed method on different target models.

` λ patch_size (P ) stride τ m
ImageNet AlexNet 6 10000 3 1 1 100
ImageNet VGG16 3 10000 3 1 1 100
ImageNet ResNet 2 10000 3 1 1 100

SST CNN 2 10000 1 1 1 1
IDS MLP 2 10000 1 1 1 1

S5 Datasets and experiment setup
In this section, we introduce the datasets used in our experiments and the neural network trained on
each dataset, followed by our choices of hyper-parameters when explaining each model.

ImageNet. We randomly select a subset of samples from the ImageNet validation set, which can be
downloaded from the following link: http://www.image-net.org/. We adopt the most widely used
preprocessing method for the selected images. Specifically, for each image, we resized it to 227× 227,
converted it to BGR format, and subtract the mean value of each channel [103.939, 116.779, 123.68] from
the image. Rather than training our own networks, we downloaded a pretrained VGG16 model, AlexNet
model, and ResNet_v1_50 model from the following link: https://github.com/tensorflow/models/
tree/master/research/slim and http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/. We ap-
plied our proposed method to explain the predictions of these networks on the selected samples.

SST. We downloaded the Stanford Sentiment Treebank (SST1) from the following link: https:
//github.com/harvardnlp/sent-conv-torch/tree/master/data. The data is spited into a training
set of 76, 961 samples and a testing set of 1, 821 samples. We used a pretrained glove embedding
to represent each word in the sentences (sample). The embedding of each word is a vector of 100
dimensions. The pretrained embedding matrix can be downloaded from the following link: http://nlp.
stanford.edu/data/wordvecs/glove.6B.zip. We trained a two-layer CNN with the embeddings as
inputs. The model achieves about 80% accuracy on the testing set. The preprocessed testing data and
the pretrained model can be downloaded from the following link: https://tinyurl.com/y9noqj6l.
We run our explanation method on the pretrained model with the testing samples.

Network intrusion detection (IDS). We use a subset of CSE-CIC-IDS2018 dataset (Sharafaldin
et al., 2018; for Cybersecurity, 2018), a network intrusion dataset contains the benign network traffic
traces and malicious traces generated by three types of attacks: Denial of Service (DoS)-Hulk, SSH-
BruteForce, and Infiltration. The training set contains 88, 661 samples and the testing set has 22, 165
samples. Each sample is represented as a vector of 83 dimensions, where each feature represents the
statistics of network traffic flows (e.g., Number of packets, Number of bytes, Length of packets, etc).
The features are normalized within [0, 1] by using the scikit-learn MinMaxScaler function. We
trained a two-layer MLP to classify whether an input is a benign traffic or an attack (intrusion). The
model reaches 99% accuracy on the testing set. After training the model, we randomly sampled a
subset of 2, 000 testing samples and used our method to derive explanations from the model predictions
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Figure S1: Cascading randomization on VGG16 network. The figure shows the original saliency map
(first column) for the terrier. Progression from left to right corresponds to complete randomization
of the pretrained VGG16 network weights from the top layer to the bottom layer. Note that, here,
we followed the visualization method in Adebayo et al. (2018) to show the saliency maps, i.e., 0-1
normalization.
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Figure S2: Structural similarity index (SSIM) for Cascading Randomization on VGG16 network.

of samples in this subset. The dataset, model, and the descriptions of each feature can be found
in https://tinyurl.com/y9noqj6l.

Hyper-parameter choices. The hyper-parameter choices of the proposed method on three datasets
are shown in Table S1. In the table, ` is the index of the layer within the target model that is selected
to generate the decoy images. The Lagrange multiplier λ controls the weight of ‖F`(x̃)− F`(x)‖∞.
The patch_size and stride control the size and the stride step of each decoy patch. τ is introduced
by Eqn. (2) in Section S1. Note that we set the swappable patch size of SST and IDS data as 1,
because their features may not have a strong local correlation. It should also be noted that we selected
the swappable patch size of ImageNet data as the widely used convolutional kernel size 3 and stride
size 1. We set the number of patches (masks) in each decoy m as 100 for ImageNet, 1 for SST and
IDS. When generating adversarial attack images, we applied the code released by the corresponding
work (Ghorbani et al., 2017) and followed their default setup in our implementation. A preliminary
version of our software system is attached to the supplementary material.

S6 Sanity check for decoy-enhanced saliency maps
As suggested by Adebayo et al. (2018), any valid saliency methods should pass the sanity check in the
sense that the saliency method should be dependent on the learned parameters of the predictive model,
instead of edge or other generic feature detectors. We performed the model parameter randomization
test (Adebayo et al., 2018) on the ImageNet dataset by comparing the output of the proposed saliency
method on a pretrained VGG16 network with the output of the proposed saliency method on a
weight-randomized VGG16 network. If the proposed saliency method indeed depends on the learned
parameters of the model, it is expected that the outputs between the two cases differ substantially.

Following the cascading randomization strategy (Adebayo et al., 2018), the weights of pretrained
VGG16 network are randomized from the top to bottom layers in a cascading fashion. This cascading
randomization procedure is designed to destroy the learned weights successively. As illustrated in
Fig. S1, the cascading randomization destroys the decoy-enhanced saliency maps combined with three
existing saliency methods, qualitatively. The conclusion is also supported by quantitative comparison
measured by the structural similarity index (SSIM), shown in Fig. S2.
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(b) Saliency maps generated on ResNet.

Figure S3: Visualization of saliency maps under different CNN architectures. Here, the column labels
are as same as those in Fig. 2. The difference figures share the same colorbar as those in Fig. 2.

Table S2: Quantitative comparison of our method and baselines on the network intrusion dataset. We
report the means and standard errors of the fidelity scores.

Salinecy method Fidelity (SF )
Without deocy Decoys with range Constant with range Noise with range Decoys with mean

Gradient 1.80 ± 0.39 1.64 ± 0.40 1.68 ± 0.40 1.78 ± 0.43 2.04 ± 0.40
IntegratedGrad 1.68 ± 0.39 1.57 ± 0.40 1.68 ± 0.44 1.79 ± 0.43 2.19 ± 0.39
SmoothGrad 1.59 ± 0.39 1.57 ± 0.40 1.74 ± 0.44 1.73 ± 0.44 1.87 ± 0.45

S7 Applicability to other CNN architectures
In addition to the VGG16 model, we generated saliency maps for AlexNet (Krizhevsky et al., 2012) and
ResNet (He et al., 2016) trained from the ImageNet dataset. We visualize their saliency maps in Fig. S3.
We observe that our method consistently outperforms the baseline methods, both quantitatively and
qualitatively. Together with the results in Section 4, these results suggest that we can apply our
decoy-enhanced saliency methods to various feed-forward network architectures and expect consistent
performance.

S8 Performances on the network intrusion dataset.
Rather than visualizing the saliency scores through heatmaps, we apply the following to compare the
saliency scores obtained by different methods qualitatively. We ranked the features based on their
saliency scores and compared the ranking obtained by the existing methods with that obtained by
our decoy-enhanced method. “Minimum size of packet in forward direction”, “Minimum length of a
packet”, “Minimum time between two packets sent in the forward direction” are ranked higher by
our methods than the baselines. These features could capture the differences between benign and
malicious traffics. This is because attackers usually tend to rapidly send small packages to discover
the backdoors in the victim network system, while the benign users may send much larger packages
with a longer interval between two packages. On the contrary, features that are not that useful for
intrusion detection (e.g., timestamp, Download and upload ratio) are wrongly pinpointed by the existing
method. However, our methods correctly assign lower importance to these features. Table S2 shows the
fidelity comparisons of different saliency methods. We can observe that our decoys-enhanced methods
outperform the original saliency methods. These results show that our method could pinpoint more
accurate features and achieve a higher fidelity than baselines. We also evaluated three alternatives used
in Section 4: constant perturbation with range aggregation, noise perturbation with range aggregation,
decoys generation with mean aggregation. The results in Table S2 are consistant with those in Fig. 2
and Fig. 3, i.e., our method outperforms these baselines. In summary, the results on this dataset align
with those on the other datasets. This confirms our method’s applicability to multilayer perceptrons.
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Figure S4: Visualization of saliency maps obtained by original saliency methods and our decoy-enhanced
versions. “ExpGrad” refers to Expected Gradient, “SGradRage” stands for Smoothgrad with range
aggregation, and “IntUniform” represents integrated gradient with uniform baseline. The difference
figures share the same colorbar as those in Fig. 2.
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Figure S5: Fidelity comparision of saliency maps obtained by original saliency methods and our
decoy-enhanced versions. “ExpGrad” refers to Expected Gradient, “SGradRage” stands for Smoothgrad
with range aggregation, and “IntUniform” represents integrated gradient with uniform baseline (See
Tab. S7 for more statistics about the performance differences).

S9 Decoys on Other Baselines.
In Section 4, we evaluated our methods on three state-of-the-art saliency methods. Recent re-
search (Sturmfels et al., 2020; Hooker et al., 2019) suggests some variants that improve the performance
of these baseline methods. Here, by using ImageNet data, we evaluate whether our decoy method could
further improve these variants and another widely used saliency method. Specifically, we consider two
variants of the integrated gradient: integrated gradient with uniform baseline (Sturmfels et al., 2020) and
Expected Gradient (Sturmfels et al., 2020); two variants of the SmoothGrad: VarGrad (Hooker et al.,
2019) and Smoothgrad with range aggregation; and one existing saliency method: Grad-CAM (Selvaraju
et al., 2016). For the variants of the integrated gradient and SmoothGrad, we kept the number of
samples the same as the original version and used the default number suggested by existing works - 25
(See https://github.com/PAIR-code/saliency). We will investigate whether increasing the sample
numbers improve the existing saliency methods’ fidelity and robustness in future work.

Fig. S4 and Fig. S5 shows the qualitatively and quantitatively comparison of each method
with/without decoys. As is depicted in Fig. S4, our method helps knock off the noises and im-
prove the visual quality of the saliency maps. Fig. S5 further demonstrates the advantage of our method
in explanation fidelity. Together with the results in Section 4, they demonstrate the generalizability of
our technique to different saliency methods. Note that our method only imposes a minor improvement
on Grad-CAM both qualitatively and quantitatively. As part of future work, we will explore how to
customize our method for Grad-CAM and investigate the effectiveness of applying our technique to
more saliency methods.

S10 Runtime of Our Method
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Figure S6: Run time to optimize one decoy and cal-
culate saliency map with the existing methods. The
comparison is conducted in the same CPU/GPU to
ensure fairness. Note that “Grad”, “IntGrad”, and
“SGrad” stands for the vanilla gradient, the inte-
grated gradient, and the SmoothGrad, respectively.

To evaluate the computational cost of our decoy
generations, we carried out the run time com-
parison between optimizing one decoy and calcu-
lating three types of saliency methods, repeated
500 times with respect to different patch masks.
As illustrated in Fig. S6, on average, optimizing
one decoy is 62.3% faster than the fastest vanilla
gradient-based saliency method. For other meth-
ods, the optimization is even less expensive, in a
relative sense.

Recall that, in Section 3.3, we clarify that mul-
tiple decoy masks can be aggregated into a decoy
sample and optimized jointly. This reduces the
runtime significantly. Second, Section S1 clarifies
how we compute the decoy sample size 2n. The
decoy sample size depends on the patch size P
and the number of masks m in one decoy sample.
To ensure a low runtime overhead, we can control
m and P , reduce the decoy size, and thus lower the runtime overhead. Third, Fig. 2(C) shows that a
smaller n (e.g., n=16) can achieve decent interpretation fidelity. The above result further shows that
the time required to generate one decoy is small compared to existing saliency methods. This further
indicates that our method can improve on existing methods without too much computational overhead.

S11 Hyper-parameter sensitivity
We also conduct experiments on the VGG16 to understand the impact of hyper-parameter choices
on the performance of our optimization-based decoy generation method. Specifically, we focus on the
choice of three hyper-parameters: network layer `, initial Lagrange multiplier λ, and patch size.

Accordingly, we first varied the value of ` for VGG16 and compared the differences of the generated
decoy saliencies from the three aforementioned saliency methods. In particular, we set it to range from
the first convolutional layer to the last pooling layer and demonstrate the generated decoy saliencies in
Fig. S15. Note that according to our design, only the convolutional layers and the pooling layers can
be used to generate decoy images. For each saliency method, Fig. S15 demonstrates that the decoy
saliencies generated from different layers for the same image are of similar qualities. Fig. S15 also shows
the mean and standard derivation of the SF scores for each saliency method. These quantitative results
also support the conclusion that our approach is not sensitive to the layer. This is likely because, as
previous research has shown (Chan et al., 2015; Saxe et al., 2011), the final classification results of a
DNN are not highly related to the hidden representations. As a result, generating decoy saliencies for
the same sample with the same label from different layers should yield similar results.

We also varied the initial Lagrange multiplier λ to be
{

101, 102, 103, 104, 105
}
and compared the

differences of the generated decoy saliencies. Fig. S7 depicts the quantitative and qualitative comparison
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Figure S9: Fidelity comparison of our methods and baselines under different choices of K (See Tab. S8
and S9 for more statistics about the performance differences).
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Figure S10: Sensitivity comparison when selecting top 10% features on ImageNet (See Tab. S10 for
more statistics about the performance differences).

results. As shown in the figure, the different choices of initial λ all produce similar saliency maps,
indicating a negligible influence upon our method.

Then, we fixed m and increased the patch size to be {3, 5, 7, 9, 11} and showed the generated decoy
saliencies in Fig. S8. The results show that varying the patch size within a certain range only imposes
a negligible influence upon our method.

Recall that in Section 3.4, we mention that decoy masks are generated by sliding the swappable
patch across a given input. With a given constant stride 1, the number of sliding windows is equal to
(
√
d − P + 1)2. In our implementation, to enable batch computing, we introduce m, which controls

the number of sliding windows in each decoy. Then, the number of decoys is 2
⌊
(
√
d− P + 1)2/m

⌋
.

Fig. S8 shows the results of fixing m as 100 and varying P . In Fig. 2(C), we substantially varied both
P and m and showed that our method is insensitive to the variations in the number of decoys n. Note
that the box bars with the same color in Fig. 2(C) are drawn by fixing P and varying m. Their slight
difference indicates the robustness of our method in the variations of m.

The results in Fig. 2(C), S15, S7, and S8 indicate we can expect to obtain stable decoy saliencies
when the hyper-parameters are subtly varied. This is a critical characteristic because users do not need
to overly worry about setting very precise hyper-parameters to obtain a desired saliency map.

In addition to the hyper-parameters introduced by our methods, we also test the sensitivity of
fidelity evaluation results to the choice of K in the topK normalization. Specifically, we varied K to
select top 10% and 40% important features and redrawn the fidelity/sensitivity comparison figures in
Fig. 2(B)/ Fig. 4(B)∼(D). The results in Fig. S9, S10, and S11 are aligned with those in Fig 2 and 4.

S12 Object localization
We compare our method and the vanilla gradient on the object localization task (Dabkowski & Gal,
2017; Fong & Vedaldi, 2017), where the model was trained with the class label only without access
to any localization data. We carried out Imagenet ILSVRC’14 localization task (Russakovsky et al.,

14
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Figure S11: Sensitivity comparison when selecting top 40% features on ImageNet (See Tab. S11 for
more statistics about the performance differences).

Table S3: ImageNet localization accuracy on VGG16 network using different thresholding strategies.

Accuracy Value thresholding (0.25) Energy thresholding (0.25) Mean thresholding (0.25)
Gradient 0.662 0.715 0.662

Gradient w/ decoys 0.722 0.723 0.665

2015) which contains 50K ImageNet validation images with annotated bounding boxes as ground truth.
For each image, we first calculated the gradient-based saliency maps with and without using decoys,
based on the pretrained model. Following the preprocessing steps suggested by Dabkowski & Gal
(2017); Fong & Vedaldi (2017), we then obtained a bounding box from each calculated saliency maps
based on certain thresholds. Specifically, we investigated three thresholding strategies suggested by
Fong & Vedaldi (2017): value thresholding, energy thresholding, and mean thresholding. Following
the evaluation protocol of Dabkowski & Gal (2017); Fong & Vedaldi (2017), we then computed the
Intersect over Union (IoU) of the extracted box and the ground truth. If an IoU is greater than 0.5, the
corresponding box is marked as correct. Table S3 shows that decoy-enhanced saliency maps achieve
higher accuracy than those of the vanilla gradient.

S13 Additional experimental results
Fig. S13, Fig. S12, and Fig. S14 provide more results of the fidelity and robustness evaluation. These
results are consistent with those shown in the Section 4.

S14 Statistics of the Performance differences
In section 4, Section S9, and Section S11, we varied the choice of K in the top-K normalizations,
compared our method with each baseline approach, and showed the fidelity/sensitivity of each approach
in the box-plots. To demonstrate the advantage of our method over the baselines, we further compared
the fidelity/sensitivity difference between our method and the corresponding baseline approach. To be
more specific, given two sets of fidelity/sensitivity scores (sour and sbase) obtained from our method
and a baseline approach respectively, we first computed their difference, i.e., diff = sour − sbase. Then,
we conducted a statistical measure on the values of diff by computing the mean, the standard error,
and the p-value of the paired t-test. For the paired t-test, our null hypothesis is H0 : E[diff ] ≥ 0.
This indicates that, if the value of p is larger than a threshold, we cannot reject this null hypothesis,
and have to conclude that our method cannot outperform the corresponding baseline approach. As
we present in Table S4∼Table S11, the overall experiment results align with those shown in the box
plots, demonstrating the superiority of our method over the baselines. But, it should also be noted
that we observed four cases in the SST experiment (see Table S5), where the p-value is larger than 0.5.
This implies that, while our method outperforms existing baseline methods and alternative designs in
general, for some rare cases, alternative designs (e.g., using constants/noises to replace decoys) may
still demonstrate their effectiveness. As part of our future work, we will take a closer look at these
cases and investigate the reason hidden behind this observation.
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Table S4: Mean, standard error, and p-value of the difference in Fig. 2(B).

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -1.61±3.24 0.014 -1.26±2.29 0.009 -0.51±1.74 0.093 -1.80± 2.15 < 0.001
IntegratedGrad -1.14±3.82 0.087 -0.71±3.41 0.170 -0.06±3.03 0.440 -2.53± 2.25 < 0.001
SmoothGrad -0.41±1.23 0.068 -0.44±1.27 0.058 -0.79±1.22 0.003 -1.80± 2.65 0.002

Table S5: Mean, standard error, and P-value of the difference in Fig. 3(B).

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -0.29±0.57 < 0.001 0.003±0.09 0.921 0.003±0.09 0.912 -0.17±0.51 < 0.001
IntegratedGrad -0.12±0.56 < 0.001 0.001±0.07 0.744 -0.20±0.44 < 0.001 -0.09±0.52 < 0.001
SmoothGrad -0.02±0.52 0.043 -0.02±0.52 0.043 -0.02±0.51 0.029 0.006±0.15 0.959

Table S6: Mean, standard error, and P-value of the difference in Fig. 4(B)∼(D).

Attack Gradient Integrated gradient SmoothGrad
Mean±Std P-value Mean±Std P-value Mean±Std P-value

Top-k -23.52 ± 57.02 0.008 -3.89 ± 2.47 < 0.001 -2.32 ± 21.00 0.349
Mass Center -30.43± 25.48 < 0.001 -6.06 ± 4.56 < 0.001 -2.75 ± 1.85 < 0.001

Target -7.66 ± 3.03 < 0.001 -4.77 ± 1.29 < 0.001 -2.81 ± 2.88 0.002

Table S7: Mean, standard error, and P-value of the difference in Fig. S5.

ExpGrad VarGrad SGradRange IntUniform GradCAM
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value
-2.26 ± 4.11 0.009 -0.95 ± 1.18 0.001 -0.66 ± 1.51 0.026 -2.98 ± 3.18 < 0.001 -0.08 ± 0.25 0.121

Table S8: Mean, standard error, and p-value of the difference in Fig. S9a.

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -0.87±2.13 0.034 -0.30±1.21 0.126 -0.29±1.01 0.100 -0.91± 1.96 0.021
IntegratedGrad -1.39±2.29 0.005 -1.31±1.64 0.001 -0.79±1.50 0.011 -2.02± 1.91 < 0.001
SmoothGrad -0.79±0.97 < 0.001 -1.16±1.17 < 0.001 -0.58±1.01 0.007 -1.76± 1.69 < 0.001

Table S9: Mean, standard error, and P-value of the difference in Fig. S9b.

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -3.26±3.88 < 0.001 -0.37±3.74 0.320 -1.27±2.51 0.014 -3.73± 2.75 < 0.001
IntegratedGrad -2.31±3.70 0.004 -0.21±2.99 0.374 -1.87±3.08 0.005 -4.33± 3.41 < 0.001
SmoothGrad -0.94±1.21 0.001 -0.94±1.09 < 0.001 -0.48±0.70 0.002 -2.67± 2.92 < 0.001

Table S10: Mean, standard error, and P-value of the difference in Fig. S10.

Attack Gradient Integrated gradient SmoothGrad
Mean±Std P-value Mean±Std P-value Mean±Std P-value

Top-k -8.04 ± 49.69 0.285 -1.58 ± 1.75 0.003 -1.34 ± 16.30 0.386
Mass Center -14.48± 15.68 0.003 -2.98 ± 2.41 < 0.001 -1.87 ± 1.26 < 0.001

Target -3.95 ± 2.42 < 0.001 -2.30 ± 1.06 < 0.001 -1.81 ± 1.96 0.003

Table S11: Mean, standard error, and P-value of the difference in Fig. S11.

Attack Gradient Integrated gradient SmoothGrad
Mean±Std P-value Mean±Std P-value Mean±Std P-value

Top-k -42.64 ± 76.08 0.032 -8.37 ± 4.26 < 0.001 -2.81 ± 23.61 0.338
Mass Center -56.54± 38.27 < 0.001 -10.28±31.85 0.133 -2.51 ± 1.49 < 0.001

Target -13.09 ± 3.60 < 0.001 -8.29 ±2.08 < 0.001 -3.12 ± 3.69 0.005
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Figure S12: Visualization of saliency maps on the sentences in SST dataset. The row labels and colorbar
are the same with those in Fig. 3(A).
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Figure S13: Visualization of saliency maps on the images in ImageNet dataset. The column labels and
colorbar are the same with those in Fig. 2(A).
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Figure S14: Visualization of saliency maps on the perturbed images generated by using three attacks in
VGG16. The column labels are the same with those in Fig. 4(A).

19



co
nv

1_
1

co
nv

1_
2

Max
po

ol_
1

co
nv

2_
1

co
nv

2_
2

Max
po

ol_
2

co
nv

3_
1

co
nv

3_
2

Max
po

ol_
3

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

Max
po

ol_
4

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

Max
po

ol_
5

co
nv

5_
3

Bottom layers to top layers

Shield
Gradient
w/ decoys

IntGrad
w/ decoys

SGrad
w/ decoys

(a) The mean and standard derivation of SF score for gradient, integrated gradient and SmoothGrad are:
(10.23, 0.29), (10.37, 0.84), (9.34, 0.51).

co
nv

1_
1

co
nv

1_
2

Max
po

ol_
1

co
nv

2_
1

co
nv

2_
2

Max
po

ol_
2

co
nv

3_
1

co
nv

3_
2

Max
po

ol_
3

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

Max
po

ol_
4

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

Max
po

ol_
5

co
nv

5_
3

Bustard

Bottom layers to top layers

Gradient
w/ decoys

IntGrad
w/ decoys

SGrad
w/ decoys

(b) The mean and standard derivation of SF score for gradient, integrated gradient and SmoothGrad are:
(0.07, 0.02), (0.01, 0.003), (0.06, 0.007).
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(c) The mean and standard derivation of SF score for gradient, integrated gradient and SmoothGrad are:
(2.15, 0.50), (0.97, 0.56), (0.19, 0.06).

Figure S15: Demonstrations of decoy-enhanced saliency maps generated from each convolutional and
pooling layer in VGG16.
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