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Supplementary Material

A. Proofs
In this appendix, we prove all theorems.

A.1. Proof of Theorem 1

On one hand, ∀j ∈ [1, . . . ,m] we have

η̄j(x) =
p(x, ȳ = j)

p̄(x)

=
p(x | ȳ = j) · p(ȳ = j)

p̄(x)

=
ρj · [πj · pp(x) + (1− πj) · pn(x)]∑m
j=1 ρj · [πj · pp(x) + (1− πj) · pn(x)]

. (16)

In the third equality, we substitute p(x | ȳ = j) with ptr that is defined in (3). On the other hand, by Bayes’ rule we have

pp(x) = p(x | y = +1) =
p(y = +1 | x) · p(x)

p(y = +1)
=
η(x) · p(x)

πD
, (17)

pn(x) = p(x | y = −1) =
p(y = −1 | x) · p(x)

p(y = −1)
=

(1− η(x)) · p(x)

1− πD
. (18)

Then, we plug (17) and (18) into (16) and obtain

η̄j(x) =
ρj · [πjη(x) · (1− πD) + (1− πj) · (1− η(x)) · πD]∑m
j=1 ρj · [πjη(x) · (1− πD) + (1− πj) · (1− η(x)) · πD]

=
ρj · (πj − πD) · η(x) + ρj · (1− πj) · πD∑m

j=1 ρj · (πj − πD) · η(x) +
∑m
j=1 ρj · (1− πj) · πD

.

By setting the coefficients aj , bj , c, d accordingly we conclude the proof.

A.2. Proof of Lemma 2

We proceed the proof by firstly showing that the denominator of each function Tj(t), j = 1, . . . ,m, is strictly greater than
zero for all t ∈ [0, 1], and then showing that T (t1) = T (t2) if and only if t1 = t2.

For all j = 1, . . . ,m, the denominators of Tj(t) are the same, i.e., c · t + d, where c =
∑m
j=1 ρj(πj − πD) and

d =
∑m
j=1 ρjπD(1 − πj). We know that d is positive because ρj > 0, πD > 0, and there exists j ∈ 1, . . . ,m such that

πj < 1. Given that t ∈ [0, 1], we discuss the sign of c as follows:

1. if c ≥ 0, the minimum value of c · t+ d is c · 0 + d = d > 0;
2. if c < 0, the minimum value of c·t+d is c·1+d =

∑m
j=1 ρj(πj−πD)+

∑m
j=1 ρjπD(1−πj) =

∑m
j=1 ρjπj(1−πD) > 0,

where the last inequality is due to the existence of j ∈ 1, . . . ,m such that πj > 0.

Hitherto, we have shown that the denominator c·t+d > 0. Next, we prove the one-to-one mapping property by contradiction.
Assume that there exist t1, t2 ∈ [0, 1] such that t1 6= t2 but T (t1) = T (t2), which indicates that Tj(t1) = Tj(t2),∀j =
1, . . . ,m. For all j, we have

Tj(t1)− Tj(t2) =
aj · t1 + bj
c · t1 + d

− aj · t2 + bj
c · t2 + d

=
(aj · t1 + bj)((c · t2 + d))− (aj · t2 + bj)((c · t1 + d))

(c · t1 + d)(c · t2 + d)

=
(t1 − t2)(aj · d− bj · c)
(c · t1 + d)(c · t2 + d)

(19)

= 0,
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where aj = ρj · (πj − πD) and bj = ρj · (1− πj) · πD. As shown previously, the denominator of (19) is non-zero for all j.
Next we show that there exists j ∈ 1, . . . ,m such that aj · d− bjc 6= 0. Since c and d are constants and irrelevant to i, we
have

aj · d− bj · c = (ρj · (πj − πD)) · d− (ρj · (1− πj) · πD) · c
= ρj · (πj · d− πD · d− c+ πj · c)
= ρj · (πj · (c+ d)− πD · d− c).

This equation equals to zero if and only if πj = c+πD·d
c+d . According to our assumption that at least two of the U sets are

different, ∃j′ ∈ 1, . . . ,m such that πj′ 6= c+πD·d
c+d . For such j′, Tj′(t1) = Tj′(t2) if and only if t1 = t2, which leads to a

contradiction since t1 6= t2. So we conclude the proof that T (t1) = T (t2) if and only if t1 = t2.

A.3. Proof of Lemma 3

We provide a proof of the cross-entropy loss and mean squared error, which are commonly used losses because of their
numerical stability and good convergence rate (De Boer et al., 2005; Allen, 1971).

Cross-entropy loss Since the cross-entropy loss is non-negative by its definition, minimizing Rsurr(g) can be obtained by
minimizing the conditional risk Ep(ȳ|x)[`(g(x), ȳ) | x] for every x ∈ X . So we are now optimizing

φ(g) = −
m∑
j=1

p(ȳ = j | x) · log(gj(x)), s.t.

m∑
j=1

gj(x) = 1.

By using the Lagrange multiplier method (Bertsekas, 1997), we have

L = −
m∑
j=1

p(ȳ = j | x) · log(gj(x))− λ · (
m∑
j=1

gj(x)− 1).

The derivative of L with respect to g is

∂L
∂g

= [−p(ȳ = 1 | x)

g1(x)
− λ, · · ·,−p(ȳ = m | x)

gm(x)
− λ]>.

By setting this derivative to 0 we obtain

gj(x) = − 1

λ
· p(ȳ = j | x), ∀j = 1, . . . ,m and ∀x ∈ X .

Since g ∈ ∆m−1 is the m-dimensional simplex, we have
∑m
j=1 g

?
j (x) = 1 and

∑m
j=1 p(ȳ = j | x) = 1. Then

m∑
j=1

g?j (x) = − 1

λ
·
m∑
j=1

p(ȳ = j | x) = 1.

Therefore we obtain λ = −1 and g?j (x) = p(ȳ = j | x) = η̄j(x),∀j = 1, . . . ,m and ∀x ∈ X , which is equivalent to
g? = η̄. Note that when m = 2, the softmax is reduce to sigmoid function and the cross-entropy is reduced to logistic loss
`log(z) = ln(1 + exp(−z)).

Mean squared error Similarly to the cross-entropy loss, we transform the risk minimization problem to the following
constrained optimization problem

φ(g) =

m∑
j=1

(p(ȳ = j | x)− gj(x))2, s.t.

m∑
j=1

gj(x) = 1.

By using the Lagrange multiplier method, we obtain

L =

m∑
j=1

(p(ȳ = j | x)− gj(x))2 − λ · (
m∑
j=1

gj(x)− 1).
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The derivative of L with respect to g is

∂L
∂g

= [2g1(x)− 2p(ȳ = 1 | x)− λ, · · ·, 2gm(x)− 2p(ȳ = m | x)− λ]>.

By setting this derivative to 0 we obtain

gj(x) = p(ȳ = j | x) +
λ

2
.

Since
∑m
j=1 g

?
j (x) = 1 and

∑m
j=1 p(ȳ = j | x) = 1, we have

m∑
j=1

g?j (x) =

m∑
j=1

p(ȳ = j | x) +
λ ·m

2
,

λ ·m
2

= 0.

Since m ≥ 2, we can obtain λ = 0. Consequently, g?j (x) = p(ȳ = j | x) = η̄j(x), which leads to g? = η̄. We conclude
the proof.

A.4. Proof of Theorem 4

According to Lemma 3, when a cross-entropy loss or mean squared error is used for `, the mapping g?(x) = η̄(x) is the
unique minimizer of Rsurr(g; `). Let g(x) = T (f(x)), since g? ∈ G, Rsurr(g(x)) = E(x,ȳ)∼D̄[`(g(x), ȳ)] achieves its
minimum if and only if g(x) = η̄(x) = g?(x). Combining this result with Theorem 1 and Lemma 2, we then obtain that
g(x) = η̄(x) if and only if f(x) = η(x). Since

Rsurr(f) = E(x,ȳ)∼D̄[`(T (f(x)), ȳ)]

= E(x,ȳ)∼D̄[`(g(x), ȳ)] = Rsurr(g),

f?surr is induced by g? = argming Rsurr(g). So we have f?surr(x) = argminf Rsurr(f) = η(x).

On the other hand, when `b is a cross-entropy loss, i.e., the logistic loss in the binary case, or mean squared error, the
mapping f? is the unique minimizer of R(f ; `b). We skip the proof since it is similar to the proof of Lemma 3. So we
obtain that f?(x) = η(x) = f?surr(x), which concludes the proof.

A.5. Proof of Lemma 5

∀j ∈ 1, . . . ,m, by taking derivative of Tj(t) with respect to t, we obtain∣∣∣∣∂Tj∂t
∣∣∣∣ =
|ajd− bjc|
(c · t+ d)2

, (20)

where

aj = ρj(πj − πD), bj = ρjπD(1− πj), c =

m∑
j=1

ρj(πj − πD), d =

m∑
j=1

ρjπD(1− πj).

Since for all class priors we have 0 ≤ πj ≤ 1, 0 < πD < 1, 0 < ρj < 1,
∑m
j=1 ρj = 1, and ∃j, j′ ∈ {1, . . . ,m} such that

j 6= j′ and πj 6= πj′ , obviously we can obtain

−1 ≤ aj ≤ 1, 0 ≤ bj ≤ 1, −1 ≤ c ≤ 1, and 0 < d ≤ 1.

Therefore, the numerator of (20) satisfies
|ajd− bjc| ≤ 2. (21)

On the other hand, since d > 0 and 0 ≤ t ≤ 1 , by substituting t = 0 and t = 1 respectively, we can obtain

c · t+ d ≥ c+ d =

m∑
j=1

ρjπj(1− πD) > 0, if c < 0;

c · t+ d ≥ d > 0, if c ≥ 0.
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Next we lower bound this term by c · t+ d ≥ min(c+ d, d) > 0. As a result, the denominator of (20) satisfies

(c · t+ d)2 ≥ (min(c+ d, d))
2

=

min

 m∑
j=1

ρjπj(1− πD),

m∑
j=1

ρjπD(1− πj)

2

= α2.

(22)

Then, by combing (21) and (22), we have ∣∣∣∣∂Tj∂t
∣∣∣∣ ≤ 2

α2
.

This bound illustrates that Tj(f(x)) is Lipschitz-continuous with respect to f(x) with a Lipschitz constant 2/α2 and we
complete the proof.

A.6. Proof of Theorem 6

We first introduce the following lemmas which are useful to derive the estimation error bound.

Lemma 7 (Uniform deviation bound). Let g ∈ G, where G = {x 7→ T (f(x)) | f ∈ F} is a class of measurable functions,

Xtr = {(xi, ȳi)}ntr
i=1

i.i.d.∼ D̄ be a fixed sample of size ntr i.i.d. drawn from D̄, and {σ1, . . . , σntr
} be the Rademacher

variables, i.e., independent uniform random variables taking values in {−1, 1}. Let Rntr
(` ◦ G) be the Rademacher

complexity of ` ◦ G which is defined as

Rntr
(` ◦ G) = E

[
sup
g∈G

1

ntr

ntr∑
i=1

σi`(g(xi), ȳi)

]
.

Under the assumptions of Theorem 6, `(g(x), ȳ) is upper-bounded by M`. Then, for any δ > 0, we have with probability at
least 1− δ,

sup
g∈G
|R̂surr(g)−Rsurr(g)| ≤ 2Rntr

(` ◦ G) +M`

√
ln(2/δ)

2ntr
.

Proof. We consider the one-side uniform deviation supg∈G R̂surr(g)−Rsurr(g). Suppose that a sample (xi, ȳi) is replaced
by another arbitrary sample (xj , ȳj), the change of supg∈G R̂surr(g)−Rsurr(g) is no more than M`/ntr, since the loss `(·)
is bounded by M`. By applying the McDiarmid’s inequality (McDiarmid, 1989), for all ε′ > 0 we have

Pr{supg∈G R̂surr(g)−Rsurr(g)− E[supg∈G R̂surr(g)−Rsurr(g)] ≥ ε′} ≤ exp

(
−2ntrε

′2

M2
`

)
.

Equivalently, for any δ > 0, with probability at least 1− δ/2,

sup
g∈G

R̂surr(g)−Rsurr(g) ≤ E
[
sup
g∈G

R̂surr(g)−Rsurr(g)

]
+M`

√
ln(2/δ)

2ntr
.

By symmetrization (Vapnik, 1998), it is a routine work to show that

E
[
sup
g∈G

R̂surr(g)−Rsurr(g)

]
≤ 2Rntr

(` ◦ G).

The other side uniform deviation supg∈G Rsurr(g) − R̂surr(g) can be bounded similarly. By combining the two sides’
inequalities, we complete the proof.
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Lemma 8. Let f ∈ F , where F = {f : X → R} is a class of measurable functions, {xi}ntr
i=1

i.i.d.∼ ptr(x) be a fixed sample
of size ntr i.i.d. drawn from the marginal density ptr(x), and {σ1, . . . , σntr} be the Rademacher variables. Let Rntr(F) be
the Rademacher complexity of F which is defined as

Rntr
(F) = E

[
sup
f∈F

1

ntr

ntr∑
i=1

σif(xi)

]
.

Then we have

Rntr
(` ◦ G) ≤ 2

√
2mL`
α2

Rntr
(F).

Proof. In what follows, we upper-bound Rntr
(` ◦ G). Since `(g(x), ȳ) is L`-Lipschitz continuous w.r.t g, according to the

Rademacher vector contraction inequality (Maurer, 2016), we have

Rntr
(` ◦ G) = E

[
sup
g∈G

1

ntr

ntr∑
i=1

σi`(g(xi), ȳi)

]

≤
√

2L`
ntr

· E

sup
g∈G

ntr∑
i=1

m∑
j=1

σijgj(xi)


≤
√

2L`
ntr

·
m∑
j=1

E

[
sup
g∈G

ntr∑
i=1

σijgj(xi)

]
, (23)

where gj(xi) is the j-th component of g(xi), and σij are an ntr ×m matrix of independent Rademacher variables. As
shown in Lemma 5, gj(x) = Tj(f(x)) and Tj(f) is Lipschitz continuous w.r.t f with a Lipschitz constant 2/α2. Then we
apply the Talagrand’s contraction lemma (Shalev-Shwartz & Ben-David, 2014) and obtain

m∑
j=1

E

[
sup
g∈G

ntr∑
i=1

σijgj(xi)

]
=

m∑
j=1

E

[
sup
f∈F

ntr∑
i=1

σijTj(f(xi))

]

≤ 2

α2

m∑
j=1

E

[
sup
f∈F

ntr∑
i=1

σijf(xi)

]

=
2mntr

α2
Rntr

(F).

By substituting it into (23), we complete the proof.

Based on Lemma 7 and Lemma 8, the estimation error bound is proven through

Rsurr(f̂surr)−Rsurr(f
?
surr)

=
(
R̂surr(f̂surr)− R̂surr(f

?
surr)

)
+
(
Rsurr(f̂surr)− R̂surr(f̂surr)

)
+
(
R̂surr(f

?
surr)−Rsurr(f

?
surr)

)
≤
(
Rsurr(f̂surr)− R̂surr(f̂surr)

)
+
(
R̂surr(f

?
surr)−Rsurr(f

?
surr)

)
≤ 2 sup

f∈F
|R̂surr(f)−Rsurr(f)|

= 2 sup
g∈G
|R̂surr(g)−Rsurr(g)|

≤ 4Rntr(` ◦ G) + 2M`

√
ln(2/δ)

2ntr

≤ 8
√

2mL`
α2

Rntr
(F) + 2M`

√
ln(2/δ)

2ntr
,

where the second equality is due to that G = {x 7→ T (f(x)) | f ∈ F} and T (·) is deterministic.
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B. Supplementary Information on the Experiments
In this appendix, we provide supplementary information on the experiments.

B.1. Datasets

We describe details of the datasets as follows.

MNIST This is a dataset of normalized grayscale images containing handwritten digits from 0 to 9. All the images are
fitted into a 28 × 28 pixels. The total number of training images and test images is 60,000 and 10,000 respectively. We use
the even digits as the positive class and odd digits as the negative class.

Fashion-MNIST This is a dataset of grayscale images of different types of modern clothes. All the images are of the size
28 × 28 pixels. Similar to MNIST, this dataset has 60,000 training images and 10,000 test images. We convert this 10-class
dataset into a binary dataset as follows:

• The classes ‘Pullover’, ‘Dress’, ‘T-shirt’, ‘Trouser’, ‘Shirt’, ‘Bag’, ‘Ankle boot’ and ‘Sneaker’ are denoted as the
positive class;

• The classes ‘Coat’ and ‘Sandal’ are denoted as the negative class.

Kuzushiji-MNIST This is a dataset of grayscale images of cursive Japanese (Kuzushiji) characters. This dataset also has
all images of size 28 × 28. And the total number of training images and test images is 60,000 and 10,000 respectively. We
convert this 10-class dataset into a binary dataset as follows:

• The classes ‘ki’, ‘re’, and ‘wo’ are denoted as the positive class;
• The classes ‘o’, ‘su’, ‘tsu’, ‘na’, ‘ha’, ‘ma’, and ‘ya’ are denoted as the negative class.

CIFAR-10 This dataset is made up of color images of ten types of objects and animals. The size of all images in this
dataset is 32 × 32. There are 5,000 training images and 1,000 test images for each class, so 50,000 training and 10,000 test
images in total. We convert this 10-class dataset into a binary dataset as follows:

• The positive class consists of ‘airplane’, ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘cat’, and ‘horse’;
• The negative class consists of ‘automobile’, ‘ship’, and ‘truck’.

The generation of each U set is the same for all four benchmark datasets. More specifically, given the number of U sets m,
class priors {πj}mj=1, and the set sizes {nj}mj=1, for j-th U set, we go through the following process:

1. Randomly shuffle the benchmark dataset;
2. Randomly select npj = nj × πj samples of positive class;
3. Randomly select nnj = nj − npj samples of negative class;
4. Combine them and we obtain the j-th U set.

B.2. Models

We describe details of the model architecture and optimization algorithm as follows.

MLP It is a 5-layer fully connected perceptron with ReLU (Nair & Hinton, 2010) as the activation function. The model
architecture was d− 300− 300− 300− 1, where d is the dimension of the input. Batch normalization (Ioffe & Szegedy,
2015) was applied before each hidden layer and `2-regularization was added. Dropout (Srivastava et al., 2014) with rate
0.2 was also added before each hidden layer. The optimizer was Adam (Kingma & Ba, 2014) with the default momentum
parameters (β1 = 0.9 and β2 = 0.999).

ResNet-32 It is a 32-layer residual network (He et al., 2016) and the architecture was as follows:
0th (input) layer: (32 ∗ 32 ∗ 3)−
1st to 11th layers: C(3 ∗ 3, 16)− [C(3 ∗ 3, 16), C(3 ∗ 3, 16)] ∗ 5−
12th to 21st layers: [C(3 ∗ 3, 32), C(3 ∗ 3, 32)] ∗ 5−
22nd to 31st layers: [C(3 ∗ 3, 64), C(3 ∗ 3, 64)] ∗ 5−
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32nd layer: Global Average Pooling−1,
where C(3 ∗ 3, 96) represents a 96-channel of 3 ∗ 3 convolutions followed by a ReLU activation function, [·]*2 represents a
repeat of twice of such layer, C(3 ∗ 3, 96, 2) represents a similar layer but with stride 2, and [·, ·] represents a building block.
Batch normalization was applied for each hidden layers and `2-regularization was also added. The optimizer was Adam
with the default momentum parameters (β1 = 0.9 and β2 = 0.999).

The MLP model was used for the MNIST, Fashion-MNIST, Kuzushiji-MNIST dataset, and the ResNet-32 model was used
for the CIFAR-10 dataset.

B.3. Other Details

We implemented all the methods by Keras and conducted all the experiments on an NVIDIA Tesla P100 GPU. The batch
size was 256 for all the methods. For MNIST, Fashion-MNIST, and Kuzushiji MNIST dataset, the initial learning-rate was
1e-5 for Um-SSC and 1e-4 for the MMC based methods and LLP-VAT. For CIFAR-10 dataset, the initial learning-rate was
5e-6 for Um-SSC and 1e-5 for the MMC based methods and LLP-VAT. In addition, the learning rate was decreased by
1/(1 + decay · epoch), where the decay parameter was 1e-4. This is the built-in learning rate scheduler of Keras.

We describe details of the hyper-parameters for the baseline methods as follows.

• MMC-U2-b (Scott & Zhang, 2020): by assuming that the number of sets m = 2k, this baseline method firstly pairs all
the U sets and then linearly combines the unbiased balanced risk estimator of each pair, The learning objective is

R̂MMC-U2-b(f) =
∑k

j=1
ωjR̂U2-b(f),

where

R̂U2-b(f) =
c+b1
n

n1∑
i=1

`b(f(x1
i ),+1)−

c+b2
n

n2∑
j=1

`b(f(x2
j ),+1)

−
c−b1
n

n1∑
i=1

`b(f(x1
i ),−1) +

c−b2
n

n2∑
j=1

`b(f(x2
j ),−1),

c+b1 = 1−π2

2(π1−π2) , c−b1 = π2

2(π1−π2) , c+b2 = 1−π1

2(π1−π2) , and c−b2 = π1

2(π1−π2) . For the pairing process, since we use the
uniform set sizes, i.e., the set size of each U set is the same as ntr/m (ntr = 60, 000 in MNIST, Fashion-MNIST, and
Kuzushiji-MNIST, ntr = 50, 000 in CIFAR-10), we pair all the U sets following Proposition 9 in Appendix S6 of Scott
& Zhang (2020), i.e., match the U set with the largest class prior πj with the smallest, the U set with the second largest
class prior πj with the second smallest, and so on. For the combination weights, we set them following Theorem 5
in Section 2.2 of Scott & Zhang (2020). More specifically, for the j-th pair of U sets: X 1

tr and X 2
tr, assume π1 > π2,

since we use uniform set sizes, the optimal weights ωj ∝ (π1 − π2)2. So we set the weight ωj as (π1 − π2)2 and then
normalize all of them to sum to 1, i.e.,

∑k
j=1 ωj = 1.

• MMC-U2: this method improves the MMC-U2-b baseline by replacing the unbiased balanced risk estimator R̂U2-b(f)

with the unbiased risk estimators R̂U2(f) (Lu et al., 2019). The learning objective is

R̂MMC-U2(f) =
∑k

j=1
ωjR̂U2(f),

where

R̂U2(f) =
c+1
n

n1∑
i=1

`b(f(x1
i ),+1)− c+2

n

n2∑
j=1

`b(f(x2
j ),+1)︸ ︷︷ ︸

R̂U2 -p(f)

−c
−
1

n

n1∑
i=1

`b(f(x1
i ),−1) +

c−2
n

n2∑
j=1

`b(f(x2
j ),−1)︸ ︷︷ ︸

R̂U2 -n(f)

,
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c+1 = (1−π2)πD
π1−π2

, c−1 = π2(1−πD)
π1−π2

, c+2 = (1−π1)πD
π1−π2

, and c−2 = π1(1−πD)
π1−π2

. The pairing process and the combination
weights setup follow those of MMC-U2-b.

• MMC-U2-c: this method improves the MMC-U2 baseline by replacing the unbiased risk estimators R̂U2(f) with the
non-negative risk estimators R̂U2-c(f) (Lu et al., 2020). The learning objective is

R̂MMC-U2-c(f) =
∑k

j=1
ωjR̂U2-c(f),

where

R̂U2-c(f) = fc(R̂U2-p(f)) + fc(R̂U2-n(f)).

According to Lu et al. (2020), the generalized leaky ReLU function, i.e.,

fc(r) =

{
r (r ≥ 0),

−κr (r < 0),

for κ ≥ 0, works well as the correction function fc, so we choose it for implementing this baseline method. The
hyper-parameter κ was chosen based on a validation dataset, and the pairing process and the combination weights setup
follow those of MMC-U2-b.

• LLP-VAT (Tsai & Lin, 2020): this baseline method is based on empirical proportion risk minimization. The learning
objective is

R̂prop-c(f) = R̂prop(f) + α`cons(f),

where

R̂prop(f) =
∑m

j=1
dprop(πj , π̂j)

is the proportion risk, πj and

π̂j =
1

nj

nj∑
i=1

1 + sign(f(xji )− 1/2)

2

are the true and predicted label proportions for the j-th U set X jtr, dprop is a distance function, and

`cons(f) = dcons(f(x), f(x̂))

is the consistency loss, dcons is a distance function, x̂ is a perturbed input from the original one x. We set the
hyper-parameters α = 0.05 and the perturbation weight µ = 6.0 for LLP-VAT following the default implementation in
their paper (Tsai & Lin, 2020).

C. Supplementary Experimental Results
In this appendix, we provide supplementary experimental results.

C.1. Comparison with State-of-the-art Methods

Please find Table 5 the final classification errors of comparing our proposed method with state-of-the-art methods on learning
from 10, 25, and 50 U sets (corresponds to Figure 2).

In the experiments, we also find that the empirical training risk of the proposed Um-SSC is obviously higher than all
other baseline methods. This is due to the added transition layer and the rescales the output range. We provide a detailed
explanation as follows.

By using the monotonicity of the transition function Tj(·) (Menon et al., 2015), we can compute the range of the model
output. Since g(x) ∈ [0, 1], by plugging in g(x) = 0 and g(x) = 1 respectively we obtain

Tj(0) =
bj
d

=
ρjπD(1− πj)∑m
j=1 ρjπD(1− πj)

,

Tj(1) =
aj + bj
cj + d

=
ρjπj(1− πD)∑m
j=1 ρjπj(1− πD)

.
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Table 5. Means (standard deviations) of the classification error over three trials in percentage of each method on learning from 10, 25 and
50 U sets. Best and comparable methods (paired t-test at significance level 5%) are highlighted in boldface.

Dataset Sets MMC-U2-b MMC-U2 MMC-U2-c LLP-VAT Um-SSC

MNIST
10 7.7(0.55) 8.03(0.74) 4.46(0.23) 3.62(0.38) 3.05(0.08)
25 5.35(0.22) 5.32(0.28) 3.69(0.11) 3.28(0.35) 2.51(0.02)
50 5.81(0.22) 5.82(0.12) 3.29(0.09) 3.02(0.22) 2.86(0.04)

Fashion-
MNIST

10 16.63(1.38) 9.49(0.37) 8.12(0.51) 21.23(3.52) 6.5(0.21)
25 11.1(0.45) 9.12(0.1) 7.45(0.1) 26.66(0.4) 6.14(0.02)
50 11.18(0.53) 9.6(0.47) 8.52(0.48) 27.92(2.22) 6.6(0.06)

Kuzushiji-
MNIST

10 16.25(0.61) 15.23(0.3) 12.88(0.35) 16.12(0.41) 9.83(0.4)
25 15.93(0.71) 14.02(0.12) 10.18(0.33) 19.48(1.84) 8.98(0.07)
50 15.8(0.37) 12.46(0.43) 9.69(0.37) 18.94(0.4) 8.97(0.52)

CIFAR-10
10 15.83(0.21) 16.01(0.32) 14.33(0.06) 19.38(0.05) 13.43(0.14)
25 19.6(0.77) 16.18(0.27) 14.19(0.25) 16.89(0.15) 13.31(0.13)
50 21.1(1.03) 16.08(0.38) 14.28(0.13) 17.66(0.57) 13.32(0.19)

Table 6. Means (standard deviations) of the classification error over three trials in percentage for the Um-SSC method tested on inaccurate
class priors.

Dataset Sets True ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

MNIST 10 2.54(0.02) 2.64(0.06) 3.31(0.18) 2.98(0.14) 3.84(0.25)
50 2.45(0.04) 2.52(0.02) 2.69(0.04) 3.11(0.19) 3.16(0.13)

Fashion-
MNIST

10 6.22(0.05) 6.31(0.03) 6.13(0.13) 6.61(0.04) 9.39(0.19)
50 6.37(0.26) 6.39(0.17) 6.76(0.11) 7.64(0.22) 10.91(0.47)

Kuzushiji-
MNIST

10 8.74(0.24) 8.97(0.23) 9.77(0.29) 11.31(0.21) 11.62(0.56)
50 9.0(0.22) 9.27(0.26) 9.15(0.15) 9.38(0.18) 10.61(0.03)

CIFAR-10 10 13.54(0.23) 13.7(0.25) 14.43(0.22) 16.82(0.29) 19.7(0.54)
50 13.55(0.18) 13.75(0.09) 14.19(0.22) 15.69(0.21) 18.84(0.26)

According to our generation processes of class priors and set size, πj ∈ [0.1, 0.9] and ρj = 1/m for any j = 1, . . . ,m. The
upper bound of the model output max(Tj(0), Tj(1)) takes value between 0.01 and 0.1. As a result, the cross-entropy loss
gives its value in range [2.3, 4.6], which is relatively high than usual training loss. We note that this high training loss has an
effect on hyper-parameters tuning, especially for the learning rate. We may need a relatively small learning rate for better
performance of our method.

C.2. Robustness against Inaccurate Class Priors

Please find Table 6 the final classification errors of our method on learning from 50 U sets with inaccurate class priors
(corresponds to Figure 3).


