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Abstract
Linear interpolation between initial neural net-
work parameters and converged parameters after
training with stochastic gradient descent (SGD)
typically leads to a monotonic decrease in the
training objective. This Monotonic Linear Inter-
polation (MLI) property, first observed by Good-
fellow et al. (2014), persists in spite of the non-
convex objectives and highly non-linear training
dynamics of neural networks. Extending this
work, we evaluate several hypotheses for this
property that, to our knowledge, have not yet
been explored. Using tools from differential ge-
ometry, we draw connections between the interpo-
lated paths in function space and the monotonic-
ity of the network — providing sufficient condi-
tions for the MLI property under mean squared
error. While the MLI property holds under vari-
ous settings (e.g. network architectures and learn-
ing problems), we show in practice that networks
violating the MLI property can be produced sys-
tematically, by encouraging the weights to move
far from initialization. The MLI property raises
important questions about the loss landscape ge-
ometry of neural networks and highlights the need
to further study their global properties.

1. Introduction
A simple and lightweight method to probe neural network
loss landscapes is to linearly interpolate between the param-
eters at initialization and the parameters found after training.
More formally, consider a neural network with parameters
✓ 2 Rd trained with respect to loss function L : Rd ! R
on a dataset D. Let the neural network be initialized with
some parameters ✓0. Then, using a gradient descent op-
timizer, the network converges to some final parameters
✓T . A linear path is then constructed between these two
parameters denoted ✓↵ = (1� ↵)✓0 + ↵✓T . A surprising
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Figure 1. Monotonic linear interpolation for a ResNet-20 trained
on CIFAR-10 from initialization to an optimum (red) and from
an unrelated initialization to the same optimum (blue). On the
left, we show a 2D slice of the loss landscape, defined by the two
initializations and optimum, along with the optimization trajectory
projected onto the plane (orange). On the right, we show the
interpolated loss curves, with training loss shown relative to the
proportion of distance travelled to the optimum.

phenomenon, first observed by Goodfellow et al. (2014), is
that the function L(✓↵) typically monotonically decreases
on the interval ↵ 2 [0, 1]. We call this effect the Monotonic

Linear Interpolation (MLI) property of neural networks.

The MLI property is illustrated in Figure 1. The interpo-
lated path (✓↵) exhibits the MLI property as the training
loss monotonically decreases along this line. Even more
surprising, linear interpolation between an unrelated ran-
dom initialization and the same converged parameters also
satisfies the MLI property.

Goodfellow et al. (2014) showed that the MLI property
persists on various architectures, activation functions, and
training objectives in neural network training. They con-
clude their study by stating that “the reason for the success
of SGD on a wide variety of tasks is now clear: these tasks
are relatively easy to optimize.” In our work, we observe
that networks violating the MLI property can be produced
systematically and are also trained without significant dif-
ficulty. Moreover, since the publication of their research,
there have been significant developments both in terms of
the neural network architectures that we train today (He
et al., 2016; Vaswani et al., 2017; Huang et al., 2017) and
our theoretical understanding of them (Amari et al., 2020;
Jacot et al., 2018; Draxler et al., 2018; Frankle & Carbin,
2018; Fort & Ganguli, 2019). Hence, with a wider lens that
addresses these developments, we believe that further inves-
tigation of this phenomenon is likely to yield new insights
into neural network optimization and their loss landscapes.
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We study three distinct questions surrounding the MLI prop-
erty. 1) How persistent is the MLI property? 2) Why does
the MLI property hold? 3) What does the MLI property
tell us about the loss landscape of neural networks? To
address these questions, we provide an expanded empirical
and theoretical study of this phenomenon.

To evaluate the persistence of the MLI property, we train neu-
ral networks with varying architectures, optimizers, datasets,
initialization methods, objectives, and training mechanisms
(e.g. batch normalization (Ioffe & Szegedy, 2015)). We
find that the MLI property persists for the majority of these
settings but can be consistently broken through mechanisms
that encourage the weights to move far from initialization.
As far as we know, ours is the first work to observe that MLI
is not a stable property of the network architecture.

One hypothesis for the MLI property is that the networks are
close to linear along the interpolation path. We formalize
this notion using tools from differential geometry and pro-
vide sufficient conditions for neural networks trained under
the MSE loss to satisfy the MLI property. In particular, we
prove that if the length under the Gauss map (which we
refer to as the Gauss length) of the interpolation trajectory
in function space is small, then the network is guaranteed to
have the MLI property. While the converse does not hold in
general, we show that this quantity is correlated with mono-
tonicity in practice. We connect this explanation to our prior
observation that large distances moved in weight space en-
courage non-monotonic interpolations through a surprising
power-law relationship between the distance moved and the
average Gauss length.

Finally, we investigate the loss landscape of the neural net-
works we trained by evaluating the MLI property over al-
ternative linear paths. For example, we examine the inter-
polation path connecting different initializations and final
parameters (as in Figure 1). Surprisingly, when the MLI
property holds for an initialization ! final solution pair, the
MLI property also holds for unrelated initializations to the
same solution.

In summary, our primary contributions include:

• We prove a sufficient condition for neural networks
minimizing MSE to satisfy the MLI property.

• We show that the MLI property does not always hold
and that we can systematically control for/against it.

• We identify several common training mechanisms that
provide this control and connect them to our novel
theoretical results.

• We provide a novel insight into the neural networks’
landscape through our analysis of the MLI property.

2. Related Work
Monotonic linear interpolation. Goodfellow et al.
(2014) were the first to observe that the MLI property per-
sists on various architectures, activation functions, and train-
ing objectives in deep learning. In addition to their empirical
evaluation, they provided a qualitative analysis of the MLI
property in a toy model where they argued that the MLI
property holds despite negative curvature about initializa-
tion and disconnected optima. Concurrent research (Frankle,
2020) extends the original work of Goodfellow et al. (2014)
with evaluations on modern architectures trained with SGD.

Im et al. (2016) provided an empirical investigation of the
loss landscape of neural networks via low dimensional pro-
jections, including those from initialization to converged
solution. Similar to our work, they investigated the effect
that varying optimizers and the use of batch normalization
(Ioffe & Szegedy, 2015) has on the qualitative properties of
the explored loss landscape.

In this work, we provide an expanded study of the MLI
property. We first investigate the persistence of the MLI
property on various tasks, including settings with modern
architectures and techniques that were not invented at the
time of the original investigation. Further, we show that
despite the original work’s claim, we can train networks
that violate the MLI property without significant training
difficulty. Our experiments yield new insights into neural
networks’ loss landscapes and uncover aspects of neural
network training that correlate with the MLI property.

Linear connectivity. This work is connected to empiri-
cal and theoretical advancements in understanding the loss
landscape of neural networks. Much of this recent work
has involved characterizing mode connectivity of neural
networks. In general, linear paths between modes cross
regions of high loss (Goodfellow et al., 2014). However,
Freeman & Bruna (2016); Garipov et al. (2018); Draxler
et al. (2018) show that local minima found by stochastic
gradient descent (SGD) can be connected via piecewise lin-
ear paths. Moreover, Freeman & Bruna (2016) show that
these paths are typically of low curvature. Frankle et al.
(2019) showed that linearly connected solutions may be
found if networks share the same initialization. Fort et al.
(2020) demonstrate the connection between linear connec-
tivity and the advantage nonlinear networks enjoy over their
linearized version. Kuditipudi et al. (2019) posit dropout

stability as one possible explanation for mode connectiv-
ity, with Shevchenko & Mondelli (2019) extending these
result to show that the loss landscape becomes increasingly
connected and more dropout stable with increasing network
depth. Finally, Nguyen (2019) shows that every sublevel
set of an overparameterized network is connected, implying
that all global minima are connected.
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Figure 2. Training loss over the linear interpolation connecting initial and final parameters. Each curve represents a network trained on
CIFAR-10 with different hyperparameter configurations (achieving at least 1.0 training loss). The MLI property holds for networks trained
with SGD, but often fails for networks trained with Adam.

Note that the MLI property we study is distinct from mode
connectivity, where paths are drawn between different final
solutions instead of initialization ! solution pairs. As far
as we are aware, no prior work has explored connections
between the MLI property and mode connectivity. This
would make for exciting future work.

Loss landscape geometry. Recent analysis argues that
there exists a small subspace at initialization in which the
network converges (Gur-Ari et al., 2018; Fort & Ganguli,
2019; Papyan, 2020). Li et al. (2018) show that some of
these spaces can be identified by learning in a random affine
subspace of low dimension. Fort & Scherlis (2019) show
that the success of these random spaces is related to the
Goldilocks zone that depends on the Hessian at initialization.
In a loose sense, the MLI can be considered a special case
of these results, wherein a 1D space is sufficient for training
to succeed. However, this is not the only mechanism in
which neural network training can succeed — the solutions
that violate the MLI property can have good generalization
capability and are found without difficulty.

Venturi et al. (2018) provide necessary and sufficient con-
ditions for the absence of spurious valleys in the loss land-
scapes of single hidden layer networks with 1D outputs.
In particular, they show that as width grows a linear path
from any point can get close to the set of global minima
(but not necessarily the solution found by gradient descent).
Interestingly, they also prove that for some worst-case data
distributions and architectures there must always exist a
barrier on any descent path.

It has long been argued that flatter minima lead to better
generalization (Hochreiter & Schmidhuber, 1997a) with
some caveats (Dinh et al., 2017). Recent work has shown
that (full-batch) gradient descent with a large learning rate
is able to find flatter minima by overcoming regions of
initial high curvature (Lewkowycz et al., 2020). Intuitively,
gradient descent breaks out of one locally convex region
of the space and into another — suggesting that a barrier
in the loss landscape has been surpassed. In this paper, we
show that training with larger learning rates can lead to
failure of the MLI property. And in doing so, identify a high

loss barrier between the initial and converged parameters.
Moreover, we show that these barriers do not appear when
training with smaller learning rates.

Neural tangent kernel. Recent research has shown that
over-parameterized networks appreciate faster and, in some
cases, more linear learning dynamics (Lee et al., 2019;
Matthews et al., 2018). The Neural Tangent Kernel
(NTK) (Jacot et al., 2018) describes the learning dynam-
ics of neural networks in their function space. Existing
work argues that the NTK is near-constant in the infinite
width setting (Sun, 2019), however recent work challenges
this view in general (Liu et al., 2020). Fort et al. (2020)
recently showed that the NTK evolves quickly early on dur-
ing training but the rate of change decreases dramatically
during training. In Appendix D.1, we draw connections
between the NTK literature and the MLI property and show
that sufficiently wide fully-connected networks exhibit the
MLI property with high probability.

Optimization algorithms. In this work, we investigate
the role that optimization algorithms have on the MLI prop-
erty (and thus the explored loss landscape more generally).
Amari et al. (2020) recently showed that for linear regres-
sion, natural gradient descent (Amari, 1998) travels further
in parameter space, as measured by Euclidean distance, com-
pared to gradient descent. We verify this claim empirically
for larger networks trained with adaptive optimizers and
observe that this co-occurs with non-monotonicity along the
interpolating path ✓↵.

3. The Monotonic Linear Interpolation
Property

The Monotonic Linear Interpolation (MLI) property states
that when a network is randomly initialized and then trained
to convergence, the linear path connecting the initialization
and converged solution is monotonically decreasing in the
training loss. Specifically, we say that a network has the
MLI property if, for all ↵1,↵2 2 [0, 1] with ↵1 < ↵2,

L(✓↵1) � L(✓↵2), where ✓↵ = ✓0 + ↵(✓T � ✓0). (1)
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Here, ✓0 denotes the parameters at initialization and ✓T

denotes the parameters at convergence.

3.1. �-Monotonicity

Goodfellow et al. (2014) found that the MLI property holds
for a wide range of neural network architectures and learning
problems. They provided primarily qualitative evidence of
this fact by plotting L(✓↵) with discretizations of [0, 1]
using varying resolutions. We instead propose a simple
quantitative measure of non-monotonicity.

Definition 1. (�-monotonicity) Consider a linear parame-

ter interpolation parameterized by ↵,✓0, and ✓T with cor-

responding loss function L. The path is �-monotonic for

� � 0 if for all ↵1,↵2 2 [0, 1] with ↵1 < ↵2, we have

L(↵2)� L(↵1) < �.

Intuitively, the above definition states that any bump due
to increasing loss over the interpolation path should have
a height upper-bounded by �. We are interested in the
smallest � � 0 for which this definition holds. Notably,
this minimum � can be approximated well numerically by
stepping along the interpolation path in fixed intervals to find
↵1 and ↵2 giving the largest positive gap L(↵2)� L(↵1).

3.2. Weight-space perspective

It is natural to attempt to reason about the MLI property in
terms of the parameters of the neural network. Intuitively,
the MLI property suggests that, during optimization, the
parameters move into a nearby basin of low loss without
encountering any high-loss barriers in their path.

We can formalize this intuition for “Lazy Training” (Chizat
et al., 2018), where the weights find a minimum near their
initial value. Consider the second-order Taylor series expan-
sion about the converged minimum ✓⇤,

L(✓0) ⇡ L(✓⇤) + (✓0 � ✓⇤)>r2
✓L(✓

⇤)(✓0 � ✓⇤). (2)

Note that the first-order Taylor expansion term does not ap-
pear as r✓L(✓⇤) = 0. If the difference between the initial
and converged parameters, k✓0 � ✓⇤k, is sufficiently small,
then this quadratic approximation holds well throughout
the linear interpolation. In this case, the linear interpola-
tion yields a monotonic decrease in the loss (Lemma 7,
Appendix D).

Experimentally, we investigate the connection between the
distance moved in weight space and the monotonicity of the
resulting interpolation. We find that networks that move fur-
ther in weight space during training are significantly more
likely to produce non-monotonic initialization!optimum
interpolations. Theoretically, we investigate the MLI prop-
erty for wide neural networks where lazy training occurs
provably (Lee et al., 2019). In this setting, we prove that the

MLI property holds with high probability for networks of
sufficient width (Theorem 8, Appendix D).

3.3. Function-space perspective

We typically train neural networks with a convex loss func-
tion applied to the network’s output. While the parameter
space of neural networks is extremely high-dimensional and
exhibits symmetries, the function space is generally simpler
and easier to reason about (Jacot et al., 2018). To that end,
we let

z(↵;x) = f(x;✓↵) 2 Rk, ↵ 2 [0, 1] (3)

denote the logit interpolation of a neural network f evalu-
ated on data point x with parameters ✓↵ = ✓0+↵(✓T �✓0).

One special case that guarantees the MLI property is that of
linear functions, f(x;✓) = ✓>x (with L(✓0) > L(✓T )). In
this case, the logit interpolations are also linear and, under a
convex loss function, f will satisfy the MLI property (Boyd
et al., 2004). In practice, we work with non-linear neural
networks that have non-linear logit interpolations. However,
we observed that the logit interpolations are often close
to linear (in a sense that we formalize soon) and that this
coincides with the MLI property (Figure 3). Therefore, we
raise the question: Can we guarantee the MLI property for
logit interpolations that are close to linear?

Figure 3. 2D projections (computed with PCA) of logit interpo-
lations for fully-connected networks trained on Fashion-MNIST.
Both networks achieve near-perfect final training accuracy. How-
ever, the first one (left) interpolates monotonically while the second
one (right) does not. The only difference between these two net-
works is that the second was trained using batch normalization
while the first was not.

Measuring logit linearity. There is no standard method
to measure the linearity of a curve, but there are several tools
from differential geometry that are applicable. In this work,
we focus on the length under the Gauss map, which we refer
to as the Gauss length, a unit-free measure that is related
to the curvature. In the case of curves, the Gauss length is
computed by mapping the normalized tangent vectors of
the curve onto the corresponding projective space (through
the so-called Gauss map), and then measuring the length
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of the curve in this space. This is described formally in the
following definition.

Definition 2 (Gauss length). Given a curve z : (0, 1) !
Rd

. Let v̂(↵) = @z
@↵/k

@z
@↵k2 denote the normalized tangent

vectors. The length under the Gauss map (Gauss length) is

given by:
Z 1

0

p
h@↵v̂(↵), @↵v̂(↵)id↵,

where @↵v̂(↵) denotes the pushforward of the Gauss map

acting on the acceleration vector.

We refer readers to Lee (2006) or Poole et al. (2016) for a
more thorough introduction to these concepts. Intuitively,
the Gauss length measures how much the curve bends along
its path, with a Gauss length of zero indicating a linear
path. In Theorem 3, we prove that a sufficiently small Gauss
length guarantees the MLI property for MSE loss.

Theorem 3 (Small Gauss length gives monotonicity). Let

L(z) = kz � z⇤k22 for z⇤ 2 Rd
, and let z : (0, 1) ! Rd

be a smooth curve in Rd
with z(1) = z⇤ and L(z(0)) > 0.

If the Gauss length of z is less than ⇡/2, then L � z(↵) is

monotonically decreasing in ↵.

See Appendix A for the proof. Informally, this theorem can
be understood through a simple physical analogy. Imagine
that you are standing on the inside surface of a uniform
bowl and wish to increase your height before reaching the
bottom. To do so, you must walk at an angle that is at least
⇡/2 relative to the line connecting you to the bottom. Now,
the smallest total rotation that guarantees your return to the
bottom is at least ⇡/2 radians.

Importantly, Theorem 3 applies to arbitrary smooth curves
including those produced in the function space of neu-
ral networks when we interpolate in the weight space
(z(↵;x) above). As an application of Theorem 3, in Ap-
pendix A.1, we give sufficient conditions for the MLI prop-
erty to hold for two-layer linear models (whose loss land-
scape is non-convex with disconnected globally optimal
manifolds (Kunin et al., 2019)). Furthermore, we prove that
these sufficient conditions hold almost surely for models
satisfying the tabula rasa assumptions of Saxe et al. (2019).

One notable departure from the theory in our experiments
is that we consider the average loss over the dataset. In this
case, individual logit trajectories may be non-monotonic
while the network satisfies the MLI property. Nonetheless,
we find the average Gauss length to be a good indicator for
the monotonicity of the network as a whole.

4. Exploring & Explaining the MLI Property
In this section, we present our empirical investigation of the
following questions: 1) How persistent is the MLI property?

2) Why does the MLI property hold? 3) What does the MLI
property tell us about the loss landscape of neural networks?

For all experiments, unless specified otherwise, we dis-
cretize ↵ in the interval [0, 1] using 50 uniform steps. Here
we report statistics from the training set throughout but note
that the same observations hold for held-out datasets. Many
additional results can be found in Appendix C.

A note on batch normalization. We experiment with net-
works that use batch normalization during training. These
networks require additional care when interpolating network
parameters as the running statistics will not align with the
activation statistics during interpolation. Therefore, we opt
to reset and warm up the running statistics for each interpo-
lated set of parameters. This warm-up consists of computing
the activation statistics over an epoch of the training data,
meaning that each interpolation curve requires an additional
50 epochs (the number of discretizations of ↵) of data con-
sumption to get accurate loss/accuracy estimates. Note that
the learned affine transformation is interpolated as usual.

Experiment settings. We summarize the main settings
here with full details of our experimental procedure given in
Appendix B. We trained neural networks for reconstruction,
classification, and language modeling. For the reconstruc-
tion tasks, we trained fully-connected deep autoencoders on
MNIST (LeCun et al., 2010). For the classification tasks, we
trained networks on MNIST, Fashion-MNIST (Xiao et al.,
2017), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009).
On these datasets, we explored fully-connected networks,
convolutional networks, and residual architectures (He et al.,
2016). In the above cases, we provide substantial explo-
ration over varying architectures and optimization. We
provide a short study on the language modeling setting
as well by training LSTM (Hochreiter & Schmidhuber,
1997b) and Transformer (Vaswani et al., 2017) architec-
tures on WikiText-2 (Stephen et al., 2016) dataset. We also
experimented with RoBERTa (Liu et al., 2019) on the Es-
peranto (Conneau et al., 2019) dataset. There, we verify the
MLI property and visualize the loss landscape.

4.1. How persistent is the MLI property?

We first investigate the persistence of the MLI property.
Goodfellow et al. (2014) showed that the MLI property per-
sists in classification and language modeling tasks (with
LSTMs (Hochreiter & Schmidhuber, 1997b)) when trained
with SGD. However, several modern advances in neural net-
work training remain unaddressed and the limits of the MLI
property have not been characterized. We provide a sec-
ondary investigation of the MLI property on reconstruction,
classification, and language modelling tasks using modern
architectures and methods.
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In summary, we found that the MLI property is persistent
over most standard neural network training knobs, includ-
ing (but not limited to): learning task, layer width, depth,
activation function, initialization method and regularization.
However, there were three mechanisms through which we
regularly observed the failure of the MLI property: the use
of large learning rates, the use of adaptive optimizers such
as Adam (Kingma & Ba, 2014), and the use of batch nor-
malization (Ioffe & Szegedy, 2015). For the remainder of
this section, we focus on the effect of these mechanisms
but refer readers to Appendix C for a wider view of our
study. We defer further analysis of explanations for the MLI
property to Section 4.2.

4.1.1. THE EFFECT OF LARGE LEARNING RATES

We found throughout that large learning rates were nec-
essary to train networks that violated the MLI property.
However, large learning rates alone were not always suf-
ficient. In Table 1, we show the proportion of networks
with non-monotonic interpolations over varying learning
rate (including only those models that achieved better than
0.1 training loss). Models trained with SGD using smaller
learning rates always exhibited the MLI property. On the
other hand, models trained with SGD with larger learning
rates often violated the MLI property. For example, 71%
of the configurations with a learning rate of 1.0 were found
to be non-monotonic. One hypothesis for this behaviour
is due to the so-called catapult phase (Lewkowycz et al.,
2020; Jastrzebski et al., 2020), where large learning rates
encourage the parameters to overcome a barrier in the loss
landscape. Additional results on the effect of using larger
learning rates can be found in Appendix C.2.

4.1.2. THE EFFECT OF ADAPTIVE OPTIMIZERS

Prior work has only investigated the MLI property when
training with SGD. To address this gap, we trained a wide va-
riety of networks with adaptive optimizers (RMSProp (Hin-
ton et al., 2012), Adam (Kingma & Ba, 2014), and K-
FAC (Martens & Grosse, 2015)). Across all settings, we
found that adaptive optimizers with large learning rates fre-
quently led to models violating the MLI property.

MNIST autoencoders. For image reconstruction, we
evaluated the MLI property for deep fully-connected au-
toencoders trained on MNIST. We trained autoencoders
with SGD and Adam, with varying learning rates and with a
varying number of hidden layer size.

In Figure 4, we show the training loss over the interpolated
path for autoencoders with final loss (MSE) lower than 30.
The majority of the networks trained with SGD retained
the MLI property (with few failures at large learning rates).
However, when trained with the Adam optimizer, a larger

Figure 4. Training loss over linear interpolation of deep autoen-
coders trained on MNIST using SGD and Adam. Each interpola-
tion line is for a training configuration with different hyperparame-
ters (achieving better than 30 training loss).

proportion of converged networks exhibited non-monotonic
interpolations.

MNIST & Fashion-MNIST classifiers. On the MNIST
and Fashion-MNIST datasets, we explored varying dataset
size, network size (depth/width of hidden layers), activation
function, choice of optimizer, optimization hyperparame-
ters, initialization methods, and the use of batch normaliza-
tion. In Table 1, we compare two-layer networks trained
with SGD and Adam. Models trained with SGD typically
retained the MLI property but those trained with Adam
frequently did not. In Appendix C.3, we show additional re-
sults for models trained with RMSProp and K-FAC (whose
behaviour is qualitatively close to Adam) along with the
interpolated loss curves.

CIFAR-10 & CIFAR-100 classifiers. On CIFAR-10 and
CIFAR-100 datasets, we trained two-layer convolutional
neural networks (SimpleCNN), LeNet (LeCun et al., 1989),
AlexNet (Krizhevsky et al., 2012), VGG16, VGG19 (Si-
monyan & Zisserman, 2014), and ResNets (He et al., 2016)
with different choices of optimizer and learning rate. In
Figure 2, we show a broad overview of the interpolation
paths for different architectures and optimizers. Overall,
Adam-trained models violated the MLI property 3.2 times
more often than SGD-trained models.

4.1.3. THE EFFECT OF BATCH NORMALIZATION

Batch normalization’s invention and subsequent ubiquity
postdate the initial investigation of the MLI property. Even
now, the relationship between the MLI property and the
use of batch normalization has not been investigated. We
provide the first such study in this section. We found that
the use of batch normalization greatly increased the rate at
which trained networks failed to satisfy the MLI property.

MNIST & Fashion-MNIST classifiers. Table 1 shows
the effect of batch normalization on the MLI property for
fully connected classifiers trained on MNIST & Fashion-
MNIST. The networks trained with batch normalization
failed to satisfy the MLI property more frequently than
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LR: 0.001 0.003 0.01 0.03 0.1 0.3 1.0 3.0

SG
D BN 0.00 (20) 0.00 (24) 0.00 (24) 0.00 (24) 0.00 (24) 0.17 (24) 0.83 (24) 1.00 (16)

No BN 0.00 (4) 0.00 (8) 0.00 (12) 0.00 (20) 0.20 (20) 0.00 (12) 0.00 (4) 0.00 (4)
A

da
m BN 0.17 (24) 0.68 (22) 0.83 (24) 1.00 (24) 1.00 (16) 1.00 (16) 1.00 (4) -

No BN 0.00 (24) 0.20 (20) 0.00 (12) 0.00 (4) - - - -

Table 1. Proportion of trained MNIST & Fashion-MNIST classifiers (achieving better than 0.1 training loss) that had non-monotonic
interpolations from initialization to final solution. The total number of runs with less than 0.1 training loss is displayed in parentheses next
to the proportion. A dashed line indicates that no networks achieved 0.1 loss.

BN BN-I NBN-I NBN-F

SG
D % (total) 0.54 (26) 0.00 (26) 0.00 (23) 0.11 (27)

min� 0.794 0.000 0.000 0.076

A
da

m % (total) 0.77 (22) 0.27 (30) 0.20 (20) 0.04 (23)
min� 0.351 0.054 0.033 0.332

Table 2. Evaluation of effect of batch normalization, initialization,
and choice of optimizer for residual networks trained on CIFAR-10
(achieving better than 1.0 training loss). We display the propor-
tion of networks with non-monotonic interpolation and average
min� such that the network is �-monotonic over varying training
settings. Full explanation of table is given in main text.

those without. This is more pronounced with large learning
rates and with Adam.

CIFAR-10 & CIFAR-100 classifiers. Next, we trained
ResNet models on CIFAR-10 & CIFAR-100 classification
tasks. We evaluated ResNet-{20,32,44,56} trained with
Adam and SGD and with varying learning rates. We also
varied the distribution over initial parameters and whether or
not batch normalization was applied. The results for CIFAR-
10 are displayed in Table 2 (CIFAR-100 results are similar,
and are presented in Appendix C). The column headers,
“BN” and “NBN” indicate batch normalization and no batch
normalization respectively. The suffices “I” and “F” indicate
two alternative initialization schemes, block-identity initial-
ization (Goyal et al., 2017) and Fixup initialization (Zhang
et al., 2019b). For each configuration, we report the percent-
age of models violating the MLI property and the average
minimum � such that the model is �-monotonic (condi-
tioning on � > 0). Batch normalization led to significantly
more networks with non-monotonic interpolations. We also
observed that the initialization of the residual blocks plays
an important role in shaping the loss landscape.

4.2. Why does MLI hold?

In Section 3, we discussed the parameter- and function-
space perspectives of the MLI property. In our experiments,
we explore these two perspectives on reconstruction and
classification tasks. We also provide a similar analysis on
the language modelling task in Appendix C. We computed

the average Gauss length of the logit interpolations and the
weight distance travelled. In both cases, these measures are
predictive of MLI in practice, even for values exceeding the
limits of our theory.

In Appendix C.1, we provide the full set of results for all
settings we explored. Additionally, we provide an investi-
gation of the relationship between the MLI property and
generalization. In summary, we did not find a clear rela-
tionship between the success of the MLI property and the
generalization ability of the neural network.

4.2.1. WEIGHT DISTANCE VS. MONOTONICITY

Throughout our experiments, we found that weight distance
was negatively correlated with the monotonicity of the inter-
polated network. In Figure 5 (left), we show the relationship
between the (normalized) distance travelled in weight space
and the minimum � such that fully-connected classifiers
are ��monotonic.

First, we note that larger learning rates encourage greater
movement in weight space — a finding that also extends
to batch normalization and the use of adaptive optimiz-
ers. Second, we observed that the networks that travelled
short distances during optimization consistently satisfied the
MLI property. Conversely, networks with larger distances
travelled in weight space were more likely to exhibit non-
monotonic loss interpolations. In Appendix C.5, we show
similar results for the autoencoders, CIFAR-10 & CIFAR-
100 classifiers, LSTM & Transformers, and comparisons
over batch normalization and adaptive optimizers.

Figure 7. Power law relationship between Gauss length and weight
distance travelled for MLP & Fashion-MNIST experiments.
(R2 = 0.616)
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Figure 5. For each MNIST & Fashion-MNIST classifier, we compute the minimum � such that the interpolated loss is �-monotonic.
We plot models trained with a learning rate of 0.1 and 0.0001 in the top and bottom rows respectively. On the left, we compare the
distance moved in the weight space. On the right, we compare the Gauss length of the interpolated network outputs. Blue points represent
networks where the MLI property holds and orange points are networks where the MLI property fails.

Figure 6. Classifier interpolation loss on training set between 15 different random initializations and an optimum. The top row shows
interpolation towards a final solution that is monotonic with its original initialization. The bottom row shows this interpolation for a
non-monotonic original pair. For the random initializations, mean loss is shown with standard deviation (±1) as filled region.

4.2.2. GAUSS LENGTH VS. MONOTONICITY

We also observed a negative correlation between the Gauss
length of the logit interpolations and the minimum � such
that the loss interpolation is �-monotonic. In Figure 5
(right), we make this comparison for classifiers trained on
MNIST & Fashion-MNIST. As our analysis predicts, small
Gauss lengths lead to monotonic interpolations. And beyond
the strict limits of our theoretical analysis, we find that as the
Gauss length increases, the non-monotonicity also increases.

We also observed that larger learning rates lead to much
larger Gauss lengths. As with the weight distance, this find-
ing extends to batch normalization and the use of adaptive
optimizers too (see Appendix C.6). In Appendix C.4, we
conduct an ablation study to investigate the relationship be-
tween Gauss length and the choice of optimizer by changing
the optimizer in the middle of training (SGD ! Adam and
Adam ! SGD). Switching to Adam at any point during
training leads to large Gauss length and weight distance
without a significant spike in the training loss — with little
variation due to the time of the optimizer switch.

4.2.3. GAUSS LENGTH VS WEIGHT DISTANCE

When the distance moved in weight space is small, we
would expect a small Gauss length as a linearization of the
network provides a good approximation. However, it is not
obvious what relationship (if any) should be expected more
generally. Surprisingly, we consistently observed a power-
law relationship between the average Gauss length and the
distance moved in weight space (Figure 7). We observed
this relationship across all of the experimental settings that
we explored. Full results are presented in Appendix C.7.

Thus far, we focused on the monotonicity of paths connect-
ing the initialization and final network solution. In this
section, we ask: are (non-)monotonic interpolations unique
to the initialization and final solution pair?

To this end, we evaluated linear interpolations between
learned network parameters and unrelated random initializa-
tions (Figure 6). For a fully-connected MNIST classifier and
a ResNet-20 trained on CIFAR-10, we found that random
initializations display the same interpolation behaviour as
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Figure 8. Linear interpolation for 10 FashionMNIST classifiers with less than 0.01 final loss. Left: Interpolating between all pairs of
initializations. Middle: Interpolating from all initializations to all optima. Right: Interpolating between all pairs of optima.

the original initialization-solution pair. This suggests that
the MLI property is not tied to a particular pair of parame-
ters but rather is a global property of the loss landscape. We
also explored linear interpolations between pairs of initial-
izations, initialization to optima pairs, and pairs of optima
in Figure 8. No barriers were observed between the pairs
of initializations or the initialization ! optimum pairs, but
barriers are present between the optima. This highlights the
rich structure present in the loss landscape of these models
and aligns well with the qualitative predictions of Fort &
Jastrzebski (2019).

Finally, we provide visualizations of the loss landscape
via 2D projections of the parameter space. While low-
dimensional projections of high-dimensional spaces are of-
ten misleading, in the case of linear interpolations, the entire
path lies in the projected plane. Therefore, these visualiza-
tions give us valuable insight into connectivity in the loss
landscape for multiple initialization ! final solution paths.

In Figure 9, we show 2D projections of the loss landscape
for RoBERTa (Liu et al., 2019) trained as a language model
on Esperanto (Conneau et al., 2019) using the HuggingFace
library (Wolf et al., 2020). We trained two models and
plotted the initial points and optima for both. Both initial
points are monotonically connected to both minima.

Figure 9. Two-dimensional sections of the weight space for
RoBERTa trained as a language model on Esperanto. Left: plane
defined by two initializations and the optima reached from one of
them is shown. Right: plane defined by “Init 1” and two optima
are shown (with “Init 2” projected onto the plane).

5. Conclusion
Goodfellow et al. (2014) first showed that linear interpola-

tion between initial and final network parameters monotoni-
cally decreases the training loss. In this work, we provided
the first evidence that this so-called, Monotonic Linear In-
terpolation (MLI), is not a stable property of neural network
training. In doing so, we provided a deeper theoretical un-
derstanding of the MLI property and properties of the loss
landscape in general. Our empirical investigation of the
MLI property explored variations in datasets, architecture,
optimization, and other training mechanisms. We identified
several mechanisms that systematically produce trained net-
works that violate the MLI property, and connected these
mechanisms to our theoretical explanations of the MLI prop-
erty. Additional results indicate that the MLI property is
not unique to the initialization!solution pair produced by
training, but rather is a global property of the loss landscape
connecting arbitrary initialization!solution pairs. The em-
pirical and theoretical analysis we presented highlights the
intriguing properties of neural network loss landscapes.
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