
Improving Breadth-Wise Backpropagation in Graph Neural Networks Helps
Learning Long-Range Dependencies

Denis Lukovnikov 1 Asja Fischer 1

Abstract
In this work, we focus on the ability of graph neu-
ral networks (GNNs) to learn long-range patterns
in graphs with edge features. Learning patterns
that involve longer paths in the graph, requires
using deeper GNNs. However, GNNs suffer from
a drop in performance with increasing network
depth. To improve the performance of deeper
GNNs, previous works have investigated normal-
ization techniques and various types of skip con-
nections. While they are designed to improve
depth-wise backpropagation between the represen-
tations of the same node in successive layers, they
do not improve breadth-wise backpropagation be-
tween representations of neighbouring nodes. To
analyse the consequences, we design synthetic
datasets serving as a testbed for the ability of
GNNs to learn long-range patterns. Our analy-
sis shows that several commonly used GNN vari-
ants with only depth-wise skip connections indeed
have problems learning long-range patterns. They
are clearly outperformed by an attention-based
GNN architecture that we propose for improving
both depth- and breadth-wise backpropagation.
We also verify that the presented architecture is
competitive on real-world data.

1. Introduction
The ability of graph neural networks (GNNs) to capture
long-range dependencies in graphs with edge features heav-
ily depends on their depth: at least K GNN layers are
needed to capture information that is K hops away. How-
ever, GNNs suffer from decreasing performance when the
number of layers is increased. Recently, several works have
identified and investigated different possible causes of this
decrease in performance: (1) over-fitting (Vashishth et al.,

1Ruhr University Bochum, Bochum, Germany. Correspon-
dence to: Denis Lukovnikov <denis.lukovnikov@rub.de>, Asja
Fischer <asja.fischer@rub.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2020), (2) over-smoothing (Li et al., 2018; Chen et al., 2019;
Zhao & Akoglu, 2020; Rong et al., 2019; Yang et al., 2020),
(3) over-squashing (Alon & Yahav, 2020), and (4) possible
vanishing gradient (Hochreiter & Schmidhuber, 1997; Pas-
canu et al., 2013; He et al., 2016) problems (Li et al., 2019;
2020; Rahimi et al., 2018).

Our contributions in this paper are threefold. First, we iden-
tify design choices of GNN architectures that may limit their
ability to learn long-range patterns (Section 3). A simple
but effective approach to avoid vanishing gradients and to
reduce over-smoothing is the use of skip connections, as for
example implemented in Residual GCNs (RGCNs) (Li et al.,
2019), Jumping Knowledge Networks (Xu et al., 2018), and
Gated Graph Neural Networks (GGNN) (Li et al., 2015).
However, this approach focuses on improving backprop-
agation only depth-wise, that is between representations
of the same node in successive layers. However, as we
shall discuss, they do not improve breadth-wise backprop-
agation, that is between representations of one node to the
representations of its neighbours in the previous layer. In
addition, we point out that the commonly used uniformly
weighted sum and max/min pooling aggregators can lead to
exponentially decaying gradients, which is related to over-
squashing. Finally, we argue that some commonly used
techniques to take into account edge types or other edge
features may also lead to poor backpropagation behavior,
along with over-parameterization.

Second, in Section 4, we develop a GNN architecture for pre-
dictions on graphs with edge features and multi-relational
graphs, with a focus on avoiding the identified problems.
The presented architecture relies on attention-based aggre-
gation to reduce exponential gradient decay, and ensures
effective breadth-wise backpropagation by adopting breadth-
wise residual connections. The resulting architecture is sim-
ilar to Transformers (Vaswani et al., 2017) but simpler while
allowing to seamlessly integrate edge features.

Third, we propose two synthetic datasets that challenge
the ability of GNNs in learning long-range patterns. The
first task is designed to measure the ability of GNNs to
learn simple rules over multiple hops on a simple chain
while the second tests the models on semi-supervised node
classification on trees. We use these datasets to perform

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

an empirical analysis of commonly used GNNs and the
proposed architecture. In addition, we perform experiments
on the ZINC and OGBG-CODE2 datasets to study real-world
performance.

We hope that the presented work draws attention to the
importance of breadth-wise backpropagation in GNNs and
will facilitate the development of better architectures.

2. Background: Message Passing Networks
Many popular GNNs can be formulated within a message
passing (MP) framework (Gilmer et al., 2017). Consider
a graph G = (V, E), with node set V and a set of directed
edges E , where an edge from node u ∈ V to node v ∈ V
with a feature vector r is specified by a triple (u, v, r). Note
that the feature vector r may contain only one element
specifying an edge type r, in which case the triple specifying
the edge can also be written as (u, v, r), and that it is not
specified in the case of GCNs without edge features.

A GNN maps each node v ∈ V onto representation vectors
h1
v, . . . ,h

K
v by repeatedly aggregating the representations

of the immediate neighbours of every node and updating
node representations in every step of the encoding process,
each associated with one of the K layers of the GNN. In
the encoding process, relational GNNs also take into ac-
count the edge types between the nodes in the graph G. In
the following sections, we work with the message passing
framework where a single GNN layer/step is decomposed
into a three-step process:

h(k)
v = φ(h(k−1)

v , γ({µ(h(k−1)
u , r)}(u,v,r)∈E(·,v))) , (1)

where µ(·) computes a “message” along a graph edge
(u, v, r) depending on the neighbour’s representation h(k−1)

u

and the edge features r, γ(·) aggregates the incoming mes-
sages into a single vector, and φ(·) computes a new repre-
sentation for node v based on the aggregated messages and
it’s previous state. E(·, v) denotes the set of all edges in G
that end in v. After subsequently applying Eq. 1 K times
to each node of the graph, the final node representations
h
(K)
v can be used for different tasks, such as graph or node

classification. One common message function which is for
example used by RGCNs and GGNNs is a relation-specific
linear transformation µMM(hu, r) = Wrhu, where Wr is
a RD×D parameter matrix associated with the edge type
r specified in r. The GGNN implements the update func-
tion φ(·) as a gated recurrent unit (GRU) (Cho et al., 2014):

h
(k)
v = GRU(h

(k−1)
v ,h

(k−1)
v), where the GRU’s input ar-

gument is h
(k−1)
v = γ({µ(h(k−1)

u , r)}(u,v,r)∈E(·,v)), the
vector for the aggregated neighbourhood of v. Some ex-
amples of aggregation functions are a (normalized) sum,
a pooling operator (such as elementwise maximum), and
attention (Veličković et al., 2018).

3. Motivation: Breadth-wise Learning
Many approaches have recently been proposed to mitigate
vanishing gradients and oversmoothing in GNNs, using
techniques such as residual connections (Li et al., 2019;
2020), gated skip connections (Li et al., 2015) and “jumping
knowledge” connections (Xu et al., 2018), However, these
techniques address only backpropagation in the depth of
the network (i.e. vertically towards lower-level features of
the same node). As we will now discuss, this is not suffi-
cient for learning long-range patterns since breadth-wise
backpropagation (i.e. horizontally towards the lower level
features of the neighbours) in such GNNs may still result in
learning problems. Another potential contributor to breadth-
wise backpropagation problems is the exponential gradient
decay associated with some commonly used aggregators.
In addition, the presence of edge features (1) requires addi-
tional model extensions, which may exacerbate the issue,
and (2) may prevent us from using dilated convolutions or
similar techniques (Li et al., 2019; Abu-El-Haija et al., 2019;
Klicpera et al., 2019).

3.1. Depth-wise backpropagation

Consider a simple (R)GCN 1 of the general form h
(k)
v =

σ(W(k)h
(k−1)
v +

∑
(u,v)∈EW

(k)h
(k−1)
u)), where σ is a

non-linear activation function. The classic argument points
out that functions of this form will suffer from vanishing
or exploding gradients because of the stacking of linear
transformations (W) and non-linearities (σ). The back-
propagation path from the top-level features h

(K)
v of a

node to its initial features h
(0)
v involves the derivative of

σ(W(K)(σ(W(K−1) . . . (σ(W(1)h
(0)
v) . . .))). With many

layers (i.e., in the case that K is large), the gradient mag-
nitude might diminish at every step because of the mul-
tiplication with the derivative of the activation function.
Additionally, depending on the values of the weights W,
multiplication with W may cause the gradients to either
vanish or explode. This can become especially problematic
when sharing weights between layers, which is one strategy
to combat over-parameterization in deeper networks.

As shown for recurrent and feed forward neural networks,
these problems can be mitigated by the choice of activation
function (e.g. a ReLU), by using good initializations for the
weights and by using normalization layers (Ioffe & Szegedy,
2015; Ba et al., 2016). LSTMs (Hochreiter & Schmid-
huber, 1997), GRUs, ResNets (He et al., 2016), Highway
Networks (Srivastava et al., 2015), and DenseNets (Huang
et al., 2017) offer alternative solutions by introducing some
form of skip connections. This ensures that the gradient
to deeper layers does not vanish, and also that the gradient

1Note that while we use the this simple form of a GCN for
clarity, the presented discussion also fully applies for RGCNs.

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

γ(hu
(k))

𝜎
+

hv
(k)

hv
(k+1)

W, U

𝜎

hv
(k)

hv
(k+1)

W, U

γ(hu
(k))

(a) Without skip connections.

γ(hu
(k))

𝜎
+

hv
(k)

hv
(k+1)

W, U

𝜎

hv
(k)

hv
(k+1)

W, U

γ(hu
(k))

(b) With skip connections.

Figure 1. Effect of skip connections.

w.r.t. features (or states) in different layers (or timesteps) is
similar. The latter, we believe, could lead to more effective
weight sharing between nodes and layers. He et al. (2016)
point out that the improvement they obtain is not due to
gradient magnitudes but explained by the fact that modeling
the residual error is an easier task for the network.

These approaches can also be applied to improve training of
GCNs. For example, the residual GCN (ResGCN) (Li et al.,
2019), introduces skip-connections into the update equa-
tion of simple GCNs: h(k)

v = h
(k−1)
v + σ(W(k)(h

(k−1)
v +∑

(u,v)∈E h
(k)
u)). Transformers also employ skip connec-

tions both to skip over the attention as well as the 2-layer
MLP. GGNNs and MPNNs (Gilmer et al., 2017) use a GRU-
based update function that implements a gated connection
to previous node features.

3.2. Breadth-wise backpropagation

While the techniques described above improve depth-wise
backpropagation, they do not address breadth-wise back-
propagation (i.e., backpropagation towards the neighbouring
nodes). For an example let us consider a single layer of an
ResCGN illustrated in Fig. 1b, where blue arrow indicates
the depth-wise backpropagation path towards previous node
features of the same node, and the red arrow the breadth-
wise path towards previous node features of the neighbours.
It is clear that while the blue path preserves the gradient,
the red one suffers from the same problems as in the case
without the skip connection (shown in Fig. 1a). Therefore,
performing backpropagation from the top-level features
h
(K)
v of a node v to the (K − L)-level features h

(K−L)
u

of a node u that is L hops away involves the derivative of
σ(W(K)(σ(W(K−1) . . . (σ(W(K−L)h

(K−L)
u) . . .))), and

therefore may suffer from poorly behaving gradients, es-
pecially when using weight-sharing in a deep network. A
similar argument can be provided for the GGNN (see Ap-
pendix E), which connects hkv with hk−1v using a GRU, since
there the previous representations of neighbouring states are
fed through non-linear gates before they are integrated in
hkv .

While proper initialization, the use of normalization layers,
and non-saturating nonlinearities may maintain good gra-
dient magnitudes, the training of the network can still be
improved by implementing some form of breadth-wise skip
connections. In addition, as we will experimentally show,
the use of only depth-wise skip connections can actually
hurt performance when the task requires learning patterns
containing distant nodes.

Exponential gradient decay in aggregation. Note that
the breadth-wise gradient issues are further exacerbated
when aggregating incoming messages by averaging 2, which
diminishes the gradient towards a neighbour by a factor
equal to the number of incoming edges in_deg(n). This
leads to a gradient magnitude that is exponentially decay-
ing in the path distance between nodes and can quickly
vanish when having many high-degree nodes on the path.
This drop is also related to the issues of oversmoothing
and over-squashing (Alon & Yahav, 2020). Also note that
with max-pooling, only an average 1/in_deg(n) fraction of
the neurons has a non-zero gradient in the initial stages of
training. It is not clear how max-pooling evolves through-
out training, which we leave as a question for future work.
Attention-based aggregation is similar to mean aggregation
in the initial stages of training but can evolve to assign a
weight close to one to a neighbouring node. When this hap-
pens, the gradient magnitude w.r.t. the attended neighbour
is not as badly affected as when using a mean. In other
words, attention-based aggregation can evolve to improve
backpropagation to the selected nodes.

Using edge features. Different ways of embedding rela-
tions and incorporating edge features have been proposed.
The message function µMM of RGCNs and GGNNs is
given by a multiplication with a relation-specific matrix.
CompGCN (Vashishth et al., 2020) and VR-GCN (Ye et al.,
2019) make use of vector-based relation parameterization,
and explore composition functions inspired by graph em-
bedding learning methods (Bordes et al., 2013; Yang et al.,
2014; Nickel et al., 2016). Edge features are important
for many GNNs applications, but can pose additional chal-
lenges.

Firstly, the function used to incorporate edge features
could hinder learning long-range patterns. For example,
µMM (defined earlier in Section 2), which is used by sev-
eral GNNs (Li et al., 2015; Schlichtkrull et al., 2018;
Brockschmidt, 2019), performs a linear transformation and
may lead to badly behaving gradients due to repeated multi-
plication of the transformation matrices in a path to a distant
node. Note that this can also be the case for GNNs with
vector-parameterized relations, such as CompGCN, whose

2Frequently, mean aggregation is used instead of a simple sum
in order to stabilize training by normalizing.

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

message function is µCompGCN−ψ =Wλψ(hu,ar), where
ψ is a composition function (e.g. elementwise difference or
product) and ar is the embedding vector corresponding to
the relation r.

Secondly, the way of representing relations may lead to
over-parameterization. For example, µMM defines a train-
able matrix for every relation, leading to O(d2) parameter
complexity. To resolve this, Schlichtkrull et al. (2018) pro-
poses decomposing the relation matrices. Here, the vector-
based relation parameterizations used by CompGCNs and
VR-GCNs are advatigous, since they have O(d) parameter
complexity and can still be decomposed.

Finally, it is not clear whether and how dilated graph con-
volutions (Li et al., 2019) and similar techniques (Abu-El-
Haija et al., 2019; Klicpera et al., 2019) can be used with
edge features. These techniques introduce new edges be-
tween non-neighbouring nodes if they are close in a graph
(e.g. a path of certain length exists between them). This
reduces the number of message passing layers necessary to
reach a distant node. However, it is unclear whether and how
to efficiently take into account the edge features present on
such paths, and what kind of additional modeling limitations
such techniques could have.

4. Residual Graph Attention Networks
To demonstrate that the ability to model long-range patterns
indeed is improved when taking the issues discussed in the
previous section into account, we develop a GNN architec-
ture that addresses both the breadth-wise backpropagation
issue as well as the problem of exponential breadth-wise
gradient decay. The proposed architecture, that we refer
to as Residual Relation Graph Attention Network (ResR-
GAT), follows the general principle of using additive, skip-
connected feature updates both depth-wise (vertically) and
breadth-wise (horizontally).

In summary, the proposed model consists of (1) an attention-
based neighbourhood aggregation mechanism similar to
that used by Graph Attention Networks (GATs) (Veličković
et al., 2018) and transformers (Vaswani et al., 2017) and
(2) a residual message function that takes into account the
edge features. Node-wise updates are optional. The re-
sulting model is relatively simple. While it is similar to
transformers, it has fewer parameters because some parts of
the transformer architecture are omitted. In the following
subsections, we discuss the different parts of the architecture
in more detail.

4.1. Attention-based neighbourhood aggregation

As elaborated in Section 3.2, message aggregation by aver-
aging can lead to decaying gradient magnitudes w.r.t. distant
nodes. In addition, a simple, uniformly weighted sum ag-

gregation squashes the entire K-hop receptive field of a
K-layer GNN into a single vector uniformly, making it very
challenging to distinguish features from the exponentially
growing number of contributing distant nodes (Alon & Ya-
hav, 2020). Since attention can learn to use a high weight
for specific nodes, it can evolve to decrease the effect of
exponential gradient decay towards relevant nodes. For
this reason, we believe that using an attention mechanism
is crucial to enable the learning of long-range patterns in
graphs.

To implement the aggregation function γ(·), we adapt the
scaled multi-head multiplicative attention mechanism of
transformers. The per-head attention distributions are com-
puted as described for transformers, but with two small
differences: (1) the edge type embeddings are used directly
in the keys when computing the attention, and (2) the lin-
ear transformations normally used to obtain value vectors
are omitted. The latter follows the principle of using only
additive operations to enable better long-range backpropa-
gation through messages and node features. Compared to
the transformer’s attention block, the post-attention linear
transformation and the residual connection skipping over
the attention mechanism are omitted. Note that in order to
take into account the lower-level features of a node when
computing its new features, the model requires self-edges
that connect each node with itself. See Appendix A for a
more detailed description of the used attention mechanism.

4.2. Residual message function with edge features

To preserve the gradient in the message function, we choose
an additive function. A simple choice of vector addition
like µAdd has the problem that under a non-weighted sum
aggregator, the relation vectors are interchangeable, which
limits the expressive power of the network. This leads us
to the additional requirement of non-interchangeability of
relations or edge features: ∀a,b, c,d ∈ Rd : a 6= c ∧ b 6=
d ⇐⇒ µ(a,b) + µ(c,d) 6= µ(a,d) + µ(c,b). The
third requirement is vector-based parameterization of rela-
tion types to combat over-parameterization like in RGCN
and GGNN. This also allows to easily replace the relation
vectors with edge feature vectors without additional model
changes.

We use the following two-layer residual message function,
which fulfills these requirements and can model complex
interactions between node and edge features:

z = CELU(bA +WA[hu;ar])) , (2)
u = bB +WBz , (3)
µRes(hu, r) = hu + u , (4)

where ar is an embedding vector associated with the edge
type from u to v, and WA and WB are trainable weight
matrices (with corresponding biases bA and bB) that are

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

shared between different edge types. CELU (Barron, 2017)
is used as the activation function. See also Appendix D.

4.3. Node update function

We experiment with using (1) no update function, i.e. the
identity mapping φId(h

(k−1)
v ,h

(k−1)
v) = h

(k−1)
v and (2)

a gated unit which we refer to as Symmetrically Gated
Recurrent Unit (SGRU). The SGRU is a modified GRU
designed to improve breadth-wise backpropagation when
used in a GNN by gating the input similarly to the current
node state. See Appendix B for an elaborate explanation of
the SGRU. Note that in both cases, we always ensure the
node’s lower-level features hk−1v are included among the
incoming messages by using a self-edge of a special type.

4.4. Relation to transformers

The resulting architecture is similar to transformers and can
be seen as a relation-aware adaptation of the transformer
architecture for graphs. We therefore consider a transformer-
based GNN architecture as one of the baselines in our ex-
periments. A transformer can be formulated as a GNN on
a fully connected graph as follows: (1) the attention mech-
anism is the neighbourhood aggregator and (2) the 2-layer
MLP is the node-wise update function. We use the following
message function in this baseline:

µAddReLU = LeakyReLU(hu + ar) . (5)

This is similar to Shaw et al. (2018)’s work on relative po-
sition encoding in transformers with the difference of the
leaky ReLU activation function, which alleviates the issue
of interchangeable relations mentioned previously and at the
same time is non-saturating and thus helps to preserve gra-
dient magnitude. Compared to this transformer-based GNN
baseline, the proposed ResRGAT moves the 2-layer MLP
from the nodes to the edges, using it as the message func-
tion, and has a slightly different attention mechanism, as
described in Section 4.1. It has fewer parameters and a sim-
pler form than the transformer while enabling better long-
range pattern learning in graphs. While these changes are
not necessary for transformers in normal settings because of
their depth-wise residual connections and fully-connected
graphs, we hope that our work will be useful for future work
with sparse and/or relation-aware transformers (Child et al.,
2019; Beltagy et al., 2020; Shaw et al., 2018).

4.5. Graphs without edge features

The presented approach can be adapted to graphs without
edge features. One possibility is adding self-edges and us-
ing “neighbour” and “self” relation types for neighbour and
self-connections respectively. Alternatively, if self-edges
are not used, it is necessary to use a node update function
that also uses the previous node state. Neighbourhood di-

lation schemes can also be easily integrated. For example,
a MixHop (Abu-El-Haija et al., 2019) variant can be im-
plemented that uses different edge vectors for different hop
distances. We leave the investigation of these modifications
for future work.

5. Experimental Analysis
In this experimental analysis3, we (1) challenge the ability
of existing GNNs to model long-range patterns in graphs
with edge features, (2) investigate how well the proposed
method and its ablations work on the same tasks and (3)
confirm that the proposed method is competitive with recent
work on real-world tasks.

We test the following GNNs: (1) RGCN, (2) GGNN, (3) Re-
lational Graph Attention Network (RGAT) (Busbridge et al.,
2019), (4) GatedGCN (Bresson & Laurent, 2017; Dwivedi
et al., 2020), and (5) a relational transformer “Rel. TM” (see
Section 4.4), where we also experiment with weight sharing
between all layers, which is indicated by “shared”. RGCN
is a variant of the Graph Convolutional Network (Kipf &
Welling, 2016) that also models edge types (relations). Sim-
ilarly to Schlichtkrull et al. (2018), in our implementation
we use a mean aggregator across relation types. However,
we do not decompose our relation matrices since we have
only a small number of relations in our synthetic datasets.
We implement our RGCN and GGNN baselines based on
the code provided by the DGL framework. Note that in
the GGNN, the parameters between layers are shared. We
found several relational variants of the GAT in the literature
(Busbridge et al., 2019; Brockschmidt, 2019; Sinha et al.,
2019; Nathani et al., 2019) and chose to adapt the RGAT of
Busbridge et al. (2019). In contrast to RGCN and GGNN,
which aggregate using a (weighted) sum, RGAT computes
the summation weights dynamically using attention, which
ensure the weights sum up to one (see Appendix C for more
details). GatedGCN implements a gating mechanism on
the edges that is used to gate the transformerd neighbour
states before aggregation. The gates are computed using
a feedforward layer that takes the source and target node
features, as well as the edge features of the previous layer,
and then normalized using a softmax. While many other
GNNs exist, we believe our selection reasonably covers a
range of popular GNNs.

Weight sharing between all layers of ResRGAT is used in
all synthetic experiments. The following ablations of our
model (ResRGAT) are considered in the experiments: (1)
“ResRGAT, val. transf.” uses a linear layer to transform
the value while using attention, like in transformers, (2)
“ResRGAT, skip. att. ” uses the skip connection to skip over

3Code is available at https://github.com/
lukovnikov/resrgat.

https://github.com/lukovnikov/resrgat
https://github.com/lukovnikov/resrgat

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

the attention as in transformers, (3) “ResRGAT, no rel. cat. ”
does not concatenate the edge features directly in the key
vector. Parameters are always shared between all layers of
ResRGAT.

5.1. Conditional recall

In this experiment, we show that the baseline GNNs are
not able to solve a simple sequence classification task that
involves remembering one of the symbols in a sequence
according to a set of simple rules. We deliberately design
this task to measure how well the different GNNs can learn
over a larger numbers of hops in a simple graph.

We define a sequence classification task where given a se-
quence of characters [x1, . . . , xN], the model is asked to
predict the correct class based on the representation of the
last node (corresponding to input xN). The input sequences
are strings of letters and digits of a given length (which
was varied between different experiments). The class of
the sequence is determined by the following rules: (i) if
there is a digit in the sequence, the first digit corresponds
to the class label; (ii) otherwise, if there is an upper case
character, the first upper case character is the class label;
(iii) otherwise, the class is given by the first character in the
sequence. Some examples are: ”abcdefg“→ ”a“, ”abcDefg“
→ ”D“, ”abcd3Fg“ → ”3“, ”abCd3fg“ → ”3“. Twenty
examples were randomly generated per output class for a
total of 1220 examples and the data was split in 80/10/10
train/validation/test splits. See Appendix F for more details
on the experimental setup.

The input sequences are transformed into graphs by (i) cre-
ating a node for every character of the sequence and (ii)
adding edges labeled with the next type between every
adjacent element in the sequence and the self type for
self-edges linking the node to itself. Given these edges, the
GNN has to use at least N layers/steps in order to propa-
gate information from the first node to the last node. The
number of layers L is always set to N + 1. The readout for
prediction takes the representation of the last node in the
sequence.

Results and discussion. The results for the different
GNNs4 and varying sequence lengths5 N are shown in
Table 1. While all existing GNNs that we tested reach
acceptable accuracy for length 5, their accuracy severely
suffers when the length is increased. In contrast, our model
solves the task well for all lengths.

Surprisingly, methods using some form of skip connections
(i.e. GGNN, Transformer, GatedGCN) severely underper-

4We also experimented with weight sharing for RGCN.
5All examples have the same, specified length in one experi-

ment.

next next nexta 8 c D

L = 1

L = 2

L = 3

L = 0

Figure 2. The input graph (ovals) for an example of the Conditional
Recall task and the computational graph for 3 GNN layers. The
final feature vector of the blue node is used for prediction and the
red node specifies the desired output. Blue arrows are the depth-
wise messages within the node and red arrows the breadth-wise
messages to neighbours.

form compared to the skip-less RGCN and RGAT. To verify
that this is not only due to an increase in the number of lay-
ers, we modify the setup to verify that these models perform
well in a deep (L=16) but short sequence (N=5) setup. Even
though many layers are used, the task requires looking over
at most 4 hops in the graph. As we can see from the results
shown in last column of Table 1, the methods implementing
depth-wise skip connections perform well while having the
same number of layers as in the N=15 setting.

It is important to keep in mind that the computational graph
of a GNN is different from that of an RNN applied to the
same sequence. For RNNs, the “update distance” (i.e. the
number of updates performed on the path) between the
last state hT of an RNN and an input token xT−k (from k
timesteps before) is k. In contrast, as illustrated in Figure 2,
the update distance between the top-level features of any
node and the initial features of any node is always equal to
the number of layers in the GNN. In the case of an RGCN,
the neighbours and the node itself are treated equally, while
GGNNs provide a direct gated connection to previous node
features, enabling easier depth-wise backpropagation. How-
ever, this does not improve backpropagation to distant nodes
in the graph (see also Appendix E).

We also inspected the gradients w.r.t. the input vectors and
experimented with different initializations for the edge type
matrices of the baseline models. We found that the initial-
ization indeed strongly affects the gradient magnitudes and
also affects training behaviour. Because gradient magnitude
w.r.t. the input doesn’t appear to be the decisive factor, we
believe that our proposed changes encourage more effective
weight sharing across nodes and layers and provide a better
training signal (He et al., 2016).

To investigate how the number of examples affects the base-
lines, we also trained the RGCN and the GGNN with 50
examples of length N = 15 per class (instead of 20). We
found improvements for both baselines (the weight-shared
RGCN reached 53.9 ± 4.3 %, the GGNN 48.7 ± 7.9 %.)
but both still severely underperform compared to ResRGAT

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

Table 1. Conditional recall results. Average accuracy on the test set is reported. N is sequence length. L is the number of layers.

N=5 N=10 N=15 N=5 (L=16)

RGCN 91.8± 2.4 53.5± 4.9 6.3± 8.9 47.5± 1.8
GGNN 69.7± 3.3 2.5± 1.8 3.3± 2.4 80.1± 1.4
RGAT 91.0± 1.2 75.1± 3.2 30.2± 21.0 41.0± 3.3
GatedGCN 81.2± 4.0 5.5± 1.0 4.4± 1.0 80.3± 1.8
Rel. TM 96.2± 2.2 5.5± 1.0 4.6± 1.9 94.8± 0.7
Rel. TM (shared) 93.7± 2.4 6.3± 2.4 6.0± 1.5 96.2± 1.7
GRU 93.7± 2.5 9.3± 3.7 4.6± 1.9 81.1± 3.5

ResRGAT 99.2± 0.7 97.8± 1.0 95.4± 3.4 98.6± 1.4
ResRGAT+SGRU 97.8± 1.0 94.8± 2.2 92.4± 2.7 99.5± 0.4

ResRGAT, skip. att. 98.1± 1.4 94.0± 1.0 33.3± 1.7 99.2± 1.2
ResRGAT, val. transf. 98.1± 0.8 94.5± 3.3 82.8± 9.0 99.7± 0.4
SGRU 94.8± 2.3 89.9± 2.0 84.4± 0.7 92.9± 4.0

(even when it’s trained with less data) and the results heavily
depend on the chosen hyperparameters.

Finally, we also experimented with GNNs simply using a
GRU or a SGRU as the node-wise update function. 6 As
reported in Table 1, the SGRU performs better than the
GRU, and is thus more suitable for use in GNNs.

5.2. Tree max

In this experiment, we use a semi-supervised node classifi-
cation task to evaluate the ability of a GNN to learn patterns
over a large number of hops for many nodes simultaneously.
The input graphs are trees with nodes labeled with random
integers between 1 and 100. The expected output labels
for the node classification task are defined as the largest
value of all the descendants of a node and the node itself.
The graphs contain edges from a parent to its children, and
from children to their parent, as well as self-edges. We
use numbered child edges and child-of edges, for example,
:CHILD-1-OF for the edge going from the first child of a
node to its parent.

As an example of this task, consider the following input
tree: (1 (2 (3) (4)) (5 (6) (7 (8) (9) (10)))). Labeling all
nodes with their correct output labels results in: (10 (4 (3)
(4)) (10 (6) (10 (8) (9) (10)))). In this case, to correctly
predict the output label of the root node (1), the GNN must
handle three hops. Please see Figure 5 in Appendix G for
an illustration of the graph for this example.

A total of 800 examples are generated, each containing one
tree with a randomly chosen depth between 5 and 17. A

6We simply feed the GRU/SGRU with the previous features of
the node as state and the features of the preceding node as input.
Note there is only one or none neighbour in this data set and thus
aggregation and message functions can be omitted.

50/25/25% training/validation/test split is used. The largest
generated trees contained more than 200 nodes. Generally,
17-layer GNNs are used in the experiments. Instead of train-
ing and evaluating with the expected labels of all nodes, we
choose a more challenging semi-supervised setting. The la-
bels of nodes that are closer than half of the depth of the tree
to nodes containing their expected output label are omitted.
Of the other nodes, only a random 50% retain their labels.
Unlabeled nodes are not used in loss or accuracy computa-
tion. More details about the data and the experimental setup
can be found in Appendix H.

Results and discussion. As shown in Table 2, the best
node-level and graph-level7 accuracies were obtained using
the proposed ResRGAT model. Similarly to the observations
made in the previous experiment, models with only depth-
wise skip connections perform worse.

The ablation study further indicates that concatenating edge
features to the key vector may not be necessary for these
data. Removing the skip connection and value transfor-
mation appears to result in a larger improvement, which
supports the discussion in Sections 3 and 4. Note that re-
moving the skip connection and value transformation leads
to a simpler model with fewer parameters.

5.3. Performance on ZINC

We aim to verify that our model does not lose performance
compared to existing work on real data. To this end, we
run experiments on the ZINC molecule dataset and use the

7Graph-level accuracy is 100% for an example only if all la-
beled nodes in the graph have been classified correctly, and is 0%
otherwise. Please note that since this is a semi-supervised task,
only a fraction of the nodes is labeled and the graph-level accuracy
takes into account only these nodes.

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

Table 2. Node and graph-level accuracies over the test set of the
Tree Max task (higher is better). Top part: baselines. Middle part:
ResRGAT as described in Section 4. Bottom part: ablations.

Node-level Graph-level

RGCN 63.4± 1.1 35.2± 3.1
GGNN 21.0± 2.4 7.7± 2.5
RGAT 45.6± 5.5 17.3± 4.6
GatedGCN 37.1± 9.3 16.8± 5.7
Rel. TM 23.2± 2.3 10.7± 1.0
Rel. TM (shared) 23.3± 2.4 10.8± 0.8

ResRGAT 93.3± 1.0 83.8± 2.1
ResRGAT+SGRU 92.6± 1.1 82.0± 1.1

ResRGAT, no rel. cat. 92.5± 1.3 81.7± 1.6
ResRGAT, skip. att. 91.3± 0.1 79.0± 1.1
ResRGAT, val. transf. 92.4± 0.9 81.8± 0.9

Table 3. Number of layers (#L), number of parameters (#P) and
MAE (where lower values are better) on the test set of ZINC.

#L #P Test MAE±s.d.

GatedGCN 4 106k 0.375± 0.003
16 504k 0.282± 0.015

GatedGCN+PE 16 505k 0.214± 0.013
MPNN (sum) 4 ∼100k 0.288± 0.002
MPNN (max) 4 ∼100k 0.328± 0.008
PNA (no scalers) 4 ∼100k 0.247± 0.036
PNA 4 ∼100k 0.188± 0.004

ResRGAT 4 105k 0.327± 0.016
16 489k 0.314± 0.019

+SGRU 4 99k 0.240± 0.009
16 483k 0.212± 0.009

same constraints as Dwivedi et al. (2020) 8, who experiment
with several architectures and achieve the best results for
a Gated GCN using edge features. ZINC contains 10k
training, 1k validation, and 1k test examples. The task is
graph regression w.r.t. the “constrained solubility” property
of molecules, measured using mean absolute error (MAE).

We use three different seeds. In the 4-layer setup, weight
sharing is not used. A partially weight-shared ResRGAT is
used for the 16-layer experiments to reduce the total number
of parameters while not using full weight sharing, i.e. eight
unique layers are used, each repeated twice consecutively.

Results and discussion: The results, presented in Table 3,
show that the SGRU variant of our model performs better

8https://github.com/graphdeeplearning/
benchmarking-gnns

Table 4. Validation and test F1 on ogbg-code2 (higher is better). †

DAGNN (Thost & Chen, 2021) can only be applied to DAGs. ∗:
without edge features, results reported by Tailor et al. (2021).

Validation F1±s.d. Test F1±s.d.

GIN 0.1376± 0.0016 0.1495± 0.0023
GCN 0.1399± 0.0017 0.1507± 0.0018
GIN+VN 0.1439± 0.0020 0.1581± 0.0026
GCN+VN 0.1461± 0.0013 0.1595± 0.0018
EGC-M∗ 0.1464± 0.0021 0.1595± 0.0019
PNA∗ 0.1453± 0.0025 0.1570± 0.0032
MPNN-Max∗ 0.1441± 0.0016 0.1552± 0.0022
DAGNN† 0.1607± 0.0040 0.1751± 0.0049

ResRGAT 0.1595± 0.0027 0.1715± 0.0013
+SGRU 0.1551± 0.0013 0.1676± 0.0011

than GatedGCN while using the same data and a compa-
rable number of parameters. In fact, it’s on par with the
Gated GCN variant that in addition uses positional encod-
ings. Comparison with the vanilla variant of our model
shows that the SGRU-based node update is essential for
the obtained performance. The model recently presented
by Corso et al. (2020) (PNA) performs best. Note, however,
that PNA uses multiple aggregators and to achieve results
better than the ResRGAT explicitly uses degree information
with multiple different scalers.

5.4. Performance on OGBG-CODE2

We also run experiments on the OGBG-CODE29 dataset pro-
vided as part of the Open Graph Benchmark initiative (Hu
et al., 2020). We adapt the code of the OGB team10, using
our model instead of the baselines11.

The OGBG-CODE2 dataset contains 453k examples consist-
ing of Abstract Syntax Trees (AST) and the task is a form
of code summarization, where the goal is to predict the
method name description based on its AST. Performance
is measured using the F1 score between predicted tokens
and expected tokens. OGBG-CODE2’s original project-based
split contains 408k training, 23k validation, and 22k test
examples such that the test set does not contain examples
from projects of the examples observed during training.

We run our experiments with three different seeds and report
the validation and test F1 scores, as well as their standard
deviations over the seeds in Table 4. We use 10 layers,

9https://ogb.stanford.edu/docs/graphprop/
#ogbg-code2

10https://github.com/snap-stanford/ogb/
tree/master/examples/graphproppred/code2

11We also implement a custom batch sampler that packs less
examples in a batch if they are too large, in order to run experiments
more efficiently by enabling more constant memory use.

https://github.com/graphdeeplearning/benchmarking-gnns
https://github.com/graphdeeplearning/benchmarking-gnns
https://ogb.stanford.edu/docs/graphprop/##ogbg-code2
https://ogb.stanford.edu/docs/graphprop/##ogbg-code2
https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/code2
https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/code2

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

where every two layers share weights, and mean pooling to
build the final graph representation vector. We compare the
ResRGAT against the baselines from OGB, as well as the
directed acyclic graph neural network (DAGNN) recently
proposed by Thost & Chen (2021).

Results and discussion: The results, presented in Table 4,
show that our model performs better than baselines but
it is outperformed by the DAGNN. In contrast to ZINC,
ResRGAT without SGRU performs better here. Note that
DAGNN exploits an inductive bias that relies on the assump-
tion that the input graph is a DAG, and is thus especially
tailored for this type of datasets but not generally applica-
ble to all graph structures. In contrast, the GCN and GIN
baselines, and ResRGAT can be applied to any graph.

6. Related Work
Li et al. (2019) investigate the GCN equivalents of
ResNet (He et al., 2016) and DenseNet (Huang et al., 2017),
evaluated on point cloud semantic segmentation, as well as
dilated aggregation. Residual-GCNs and Dense-GCNs (Li
et al., 2019), Highway GCN (Rahimi et al., 2018), Column
Networks (Pham et al., 2017) and Li et al. (2020) are sim-
ilar to the GGNN (Li et al., 2015) in using gated, residual
or concatenated skip connections to previous nodes states.
Xu et al. (2018) propose to add skip connections from all
layers straight to the output layer to combat oversmoothing.
The neighbourhood dilation proposed by Li et al. (2019) for
point cloud semantic segmentation increases the receptive
field of the network without requiring the information to
pass through other nodes. Additionally, different normaliza-
tion techniques (Zhou et al., 2020; Zhao & Akoglu, 2020;
Li et al., 2020) have very recently been proposed that im-
prove the training of deep GNNs. Works such as SSE (Dai
et al., 2018) and IGNN (Gu et al., 2020) avoid backpropaga-
tion through deep networks by instead learning steady-state
representations. AGGCN (Guo et al., 2019) transforms a
graph into a fully connected graph and uses self-attention
and thus, similarly to transformers (Vaswani et al., 2017),
benefits from direct access to distant nodes. However, this
leads to quadratic complexity in the number of nodes (due to
attention in a fully connected graph). Nathani et al. (2019)
propose a relational variant of GAT for link prediction in
knowledge graphs. In contrast to previous work, we focus
on improving the communication between neighbours in
GNNs for graphs with edge features.

A family of methods closely related to GNNs are TreeL-
STMs (Tai et al., 2015) and GraphLSTMs (Peng et al., 2017;
Liang et al., 2016; Song et al., 2018; Bresson & Laurent,
2017). Some versions of these methods have similar benefi-
cial properties regarding backpropagation to distant nodes
but are not suited for use in a general graph setup. Song et al.

(2018) adapt Graph LSTMs into a message passing network,
however, their implementation of the LSTM-based update
suffers from the same issues as the GGNN. Compared to
our proposed method, GraphLSTMs use independent forget
gates for every neighbour instead of attention. Song et al.
(2018) uses a global forget gate, which reduces the ability of
the model to focus more on certain nodes. DAGNN (Thost &
Chen, 2021) generalizes the TreeLSTM and similarly to our
model, uses attention-based aggregation and a GRU-based
update. However, DAGNN is restricted to DAGs.

7. Conclusion
In this work, we show that several popular GNN architec-
tures perform badly at tasks that explicitly challenge their
ability to capture long-range patterns in graphs containing
edge features. We present problems in breadth-wise back-
propagation as the main reason behind this failure. We argue
that these problems are exacerbated by exponential gradient
decay due to uniform aggregation and certain approaches
to propagate edge features. An experimental analysis using
two synthetic tasks supports the claimed learning issues of
existing methods. Then, we present a novel GNN archi-
tecture, that is developed applying well-known practices
regarding long-range backpropagation both depth-wise and
breadth-wise. The resulting architecture solves the synthetic
tasks well, indicating that it is possible to capture long-range
patterns that proved extremely challenging for several ex-
isting GNNs. In addition, it performs competitively on the
real-world ZINC and OGBG-CODE2 datasets. We hope that
the presented work draws attention to the importance of
breadth-wise backpropagation in GNNs and will facilitate
the development of better architectures in the future.

Acknowledgements
We thank all the reviewers for their helpful comments
and suggestions. We also thank our colleagues Prof. Dr.
Jens Lehmann, Gaurav Maheshwari, Priyansh Trivedi, Dr.
Mikhail Galkin, and Rostislav Nedelchev for their help and
illuminating discussions.

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In In-
ternational Conference on Machine Learning, pp. 21–29,
2019.

Alon, U. and Yahav, E. On the bottleneck of graph neural
networks and its practical implications. arXiv preprint
arXiv:2006.05205, 2020.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Barron, J. T. Continuously differentiable exponential linear
units. arXiv, pp. arXiv–1704, 2017.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Advances in neural information
processing systems, pp. 2787–2795, 2013.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Brockschmidt, M. Gnn-film: Graph neural networks with
feature-wise linear modulation. 2019.

Busbridge, D., Sherburn, D., Cavallo, P., and Hammerla,
N. Y. Relational graph attention networks. arXiv preprint
arXiv:1904.05811, 2019.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. arXiv
preprint arXiv:1909.03211, 2019.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using rnn encoder–decoder for
statistical machine translation. pp. 1724–1734, 2014.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
Advances in Neural Information Processing Systems, 33,
2020.

Dai, H., Kozareva, Z., Dai, B., Smola, A., and Song, L.
Learning steady-states of iterative algorithms over graphs.
In International conference on machine learning, pp.
1106–1114. PMLR, 2018.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 1263–1272. JMLR.
org, 2017.

Gu, F., Chang, H., Zhu, W., Sojoudi, S., and Ghaoui,
L. E. Implicit graph neural networks. arXiv preprint
arXiv:2009.06211, 2020.

Guo, Z., Zhang, Y., and Lu, W. Attention guided graph
convolutional networks for relation extraction. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 241–251, Flo-
rence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1024. URL https:
//www.aclweb.org/anthology/P19-1024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu,
B., Catasta, M., and Leskovec, J. Open graph bench-
mark: Datasets for machine learning on graphs. CoRR,
abs/2005.00687, 2020. URL https://arxiv.org/
abs/2005.00687.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015. URL http://
arxiv.org/abs/1412.6980.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2016.

https://www.aclweb.org/anthology/P19-1024
https://www.aclweb.org/anthology/P19-1024
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

Klicpera, J., Weißenberger, S., and Günnemann, S. Dif-
fusion improves graph learning. In Advances in Neural
Information Processing Systems, pp. 13354–13366, 2019.

Li, G., Muller, M., Thabet, A., and Ghanem, B. Deepgcns:
Can gcns go as deep as cnns? In Proceedings of the
IEEE International Conference on Computer Vision, pp.
9267–9276, 2019.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739, 2020.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

Liang, X., Shen, X., Feng, J., Lin, L., and Yan, S. Se-
mantic object parsing with graph LSTM. In Leibe,
B., Matas, J., Sebe, N., and Welling, M. (eds.), Com-
puter Vision - ECCV 2016 - 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part I, volume 9905 of Lecture Notes in
Computer Science, pp. 125–143. Springer, 2016. doi:
10.1007/978-3-319-46448-0_8. URL https://doi.
org/10.1007/978-3-319-46448-0_8.

Nathani, D., Chauhan, J., Sharma, C., and Kaul, M. Learn-
ing attention-based embeddings for relation prediction in
knowledge graphs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
pp. 4710–4723, 2019.

Nickel, M., Rosasco, L., Poggio, T. A., et al. Holographic
embeddings of knowledge graphs. In AAAI, volume 2,
pp. 3–2, 2016.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310–1318, 2013.

Peng, N., Poon, H., Quirk, C., Toutanova, K., and Yih, W.-
t. Cross-sentence n-ary relation extraction with graph
lstms. Transactions of the Association for Computational
Linguistics, 5:101–115, 2017.

Pham, T., Tran, T., Phung, D., and Venkatesh, S. Column
networks for collective classification. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelli-
gence, pp. 2485–2491, 2017.

Rahimi, A., Cohn, T., and Baldwin, T. Semi-supervised user
geolocation via graph convolutional networks. In Pro-
ceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 2009–2019, 2018.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. In International Conference on Learning Rep-
resentations, 2019.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European Semantic
Web Conference, pp. 593–607. Springer, 2018.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. In Proceedings
of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Papers),
pp. 464–468, New Orleans, Louisiana, June 2018. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/N18-2074. URL https://www.aclweb.org/
anthology/N18-2074.

Sinha, K., Sodhani, S., Dong, J., Pineau, J., and Hamilton,
W. L. Clutrr: A diagnostic benchmark for inductive rea-
soning from text. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4496–4505,
2019.

Song, L., Zhang, Y., Wang, Z., and Gildea, D. N-ary rela-
tion extraction using graph-state lstm. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2226–2235, 2018.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 1556–
1566, 2015.

Tailor, S. A., Opolka, F. L., Liò, P., and Lane, N. D. Adaptive
filters and aggregator fusion for efficient graph convolu-
tions, 2021.

Thost, V. and Chen, J. Directed acyclic graph neural net-
works. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.
net/forum?id=JbuYF437WB6.

https://doi.org/10.1007/978-3-319-46448-0_8
https://doi.org/10.1007/978-3-319-46448-0_8
https://www.aclweb.org/anthology/N18-2074
https://www.aclweb.org/anthology/N18-2074
https://openreview.net/forum?id=JbuYF437WB6
https://openreview.net/forum?id=JbuYF437WB6

Improving Breadth-Wise Backpropagation in GNNs Helps Learning Long-Range Dependencies

Vashishth, S., Sanyal, S., Nitin, V., and Talukdar, P.
Composition-based multi-relational graph convolutional
networks. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.
net/forum?id=BylA_C4tPr.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In Dy, J. G. and Krause,
A. (eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pp. 5449–
5458. PMLR, 2018. URL http://proceedings.
mlr.press/v80/xu18c.html.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. Embed-
ding entities and relations for learning and inference in
knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Yang, C., Wang, R., Yao, S., Liu, S., and Abdelzaher, T.
Revisiting" over-smoothing" in deep gcns. arXiv preprint
arXiv:2003.13663, 2020.

Ye, R., Li, X., Fang, Y., Zang, H., and Wang, M. A vec-
torized relational graph convolutional network for multi-
relational network alignment. In Kraus, S. (ed.), Pro-
ceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pp. 4135–4141. ijcai.org,
2019. doi: 10.24963/ijcai.2019/574. URL https:
//doi.org/10.24963/ijcai.2019/574.

Zhao, L. and Akoglu, L. Pairnorm: Tackling oversmooth-
ing in gnns. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=rkecl1rtwB.

Zhou, K., Dong, Y., Lee, W. S., Hooi, B., Xu, H., and Feng,
J. Effective training strategies for deep graph neural
networks. arXiv preprint arXiv:2006.07107, 2020.

https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v80/xu18c.html
http://proceedings.mlr.press/v80/xu18c.html
https://doi.org/10.24963/ijcai.2019/574
https://doi.org/10.24963/ijcai.2019/574
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB

