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Appendix
Organization. The Appendix is organized as follows: In
Appendix A, we describe the hyperparameters and provide
the description about evaluation for multiple perturbations.
In Appendix B, we provide additional experiments includ-
ing the evaluation on common corruptions and unforseen
perturbations, effect of the adversarial consistency regular-
ization on clean accuracy, and an expanded comparison
of the baselines with our proposed framework on multiple
adversarial perturbations. Furthermore, Appendix B demon-
strates the examples generated by our input-dependent meta-
noise generator for multiple datasets and visualization of
loss landscape on the SVHN dataset.

A. Experimental setup
A.1. Training setup

We use the SGD optimizer with momentum 0.9 and weight
decay 5 · 10−4 to train all our models with cyclic learning
rate with a maximum learning rate λ that increases linearly
from 0 to λ over firstN/2 epochs and then decreases linearly
from N/2 to 0 in the remainder epochs, as recommended
by (Wong et al., 2020) for fast convergence of adversarial
training. We train all the models with 30 epochs on a single
machine with four GeForce RTX 2080Ti using WideResNet
28-10 architecture for CIFAR-10, SVHN and ResNet-50
for Tiny-ImageNet. We use the maximum learning rate of
λ = 0.21 for all our experiments. We use β = 12 (weight
for adversarial consistency loss) for the reported results of
MNG-AC for all the datasets.

The noise-generator is formulated as a convolutional net-
work with four 3×3 convolutional layers with LeakyReLU
activations and one residual connection from input to output
following (Rusak et al., 2020). All our algorithms are im-
plemented using Pytorch (Paszke et al., 2019). We use the
weight for the KL divergence (β = 6.0) for TRADES and
RST in all our experiments. We replicate all the baselines on
SVHN and TinyImageNet since most of the baseline meth-
ods have reported their results only on MNIST and CIFAR-
10. Moreover, we found that MSD (Maini et al., 2020)
and Advmax are sensitive to the learning rate on SVHN
dataset; therefore, we tune the maximum learning rate and
use λ = 0.01 for these baselines. We believe that this is
due to the the change in optimization formulation, which
involves optimization on the worst perturbation and leads to
this sensitivity for larger datasets.

A.2. Evaluation setup

For CIFAR-10 and SVHN dataset, we use ε =
{ 8
255 ,

2000
255 ,

128
255} and α = {0.004, 1.0, 0.1} for `∞, `1, and

`2 attacks respectively. For Tiny-ImageNet dataset, we use
ε = { 4

255 ,
2000
255 ,

80
255} and α = {0.004, 1.0, 0.1} for `∞, `1,

and `2 attacks respectively. We use 10 steps of PGD at-
tack for `∞, `2 during training. For `1 adversarial train-
ing, we use 20 steps during training and 100 steps during
evaluation. We use the code provided by the authors for
evaluation against AutoAttack (Croce & Hein, 2020) and
Foolbox (Rauber et al., 2017) library for all the other attacks.

B. Additional experimental results
Robustness against common corruprions. Our sampling
strategy further allows us to increase our perturbation set,
which is limited in previous works due the increased com-
putation cost. Consequently, we evaluate our method on
common corruptions perturbation set (Hendrycks & Diet-
terich, 2019). In particular, we use the validation corruptions
provided by the authors (speckle noise, gaussian blur, spat-
ter, and saturate) during training and evaluate on other 15
types of unseen corruptions across five levels of severity.
We show the results in Table 6. Note that, while the max and
multi-steep descent strategies lead to an increase in the test
error, MNG-AC achieves significantly better performance
compared to the other multi-perturbation baselines. This
demonstrates demonstrate the simplicity and effectiveness
of MNG-AC on diverese perturbation sets.

Effect of β on clean accuracy. We further show the effect
of β on the clean accuracy in Figure 2. Interestingly, while
increasing β improves the robustness against multiple ad-
versarial perturbations, it decreases the clean accuracy. In
particular, the absolute performance of Accunionadv improves
by ∼ 5%, and the clean accuracy drops by ∼ 3% with an
increase in the weight of adversarial consistency loss for all
the datasets. We report the MNG-AC results with β = 12
for all our experiments to achieve an optimal trade-off for
our proposed method.

Expanded results. Due to the length limit of our paper,
we provide a breakdown of all the attacks on CIFAR-10 in
Table 8, SVHN on Wide ResNet 28-10 in Table 9, Tiny-
ImageNet on ResNet50 in Table 10.

Results on unforseen adversaries. We further evaluate
our model on various unforeseen perturbations (Kang et al.,
2019) namely we evaluate on the Elastic, `∞-JPEG, `1-
JPEG and `2-JPEG attacks. Note that, even though adver-
sarial training methods do not generalize beyond the threat
model, we observe that MNG-AC improves the performance
on these unseen adversaries. We compare our MNG-AC
to the baselines trained with multiple perturbations on the
SVHN dataset in Table 7. We notice that even though,
Advmax achieves better performance on `p-JPEG attacks,
it obtains the minimum robustness across the Accunion

adv met-
ric. In contrast, MNG-AC generalizes better over both the
baselines for the worst-attack and shows a relative gain of
+3.5% over the best performing baseline.
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Table 6. Average test error (%) of different corruptions on CIFAR-10 dataset on WideResNet 28-10 over 5 levels of severities of common
corruptions. We report the results averaged across 3 runs and five levels of severity for each corruption.

Noise Blur Weather Digital

Model All Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Adv∞ 22.7 17.1 16.3 23.8 18.8 20.0 22.8 19.4 19.5 22.9 38.1 16.5 54.1 19.8 16.1 16.1
Adv1 16.6 20.0 17.3 18.1 16.0 18.5 20.7 17.9 13.4 12.6 17.7 8.2 27.6 15.0 12.7 12.3
Adv2 18.7 13.5 12.8 16.7 15.7 16.9 19.0 16.7 17.0 17.6 34.8 12.6 45.0 16.7 12.9 12.7

Advavg 21.8 16.5 15.8 16.6 18.8 19.0 21.9 19.8 20.3 22.0 38.5 16.2 49.5 19.9 16.2 15.6
Advmax 23.8 18.2 17.5 18.3 20.4 21.0 23.5 21.4 22.0 25.0 39.5 18.6 53.0 21.6 18.2 17.6
MSD 25.1 19.9 19.1 19.9 21.4 22.1 24.4 22.3 23.7 27.3 40.0 20.5 53.9 22.8 19.4 19.0

MNG-AC 16.6 15.3 13.8 16.4 13.2 22.0 17.0 14.5 16.2 17.3 18.6 12.7 27.1 15.8 15.7 14.2
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Figure 4. Ablation study on the impact of Lac on clean accuracy on
various datasets. With an increase in β, the clean accuracy decreases,
due to the inherent accuracy-robustness on all the datasets.

Table 7. Performance of MNG-AC against unforseen adversaries on
SVHN dataset.
Model Elastic `∞-JPEG `1-JPEG `2-JPEG Accunionadv

Advavg 77.1± 1.1 86.6± 0.28 81.5± 2.1 81.2± 1.7 62.1 ± 0.5

Advmax 60.2± 2.3 89.9± 1.9 87.9± 2.1 87.0± 2.5 58.5± 1.5

MNG-AC 79.6± 1.7 87.5± 0.9 75.9± 0.2 81.4± 1.2 64.3± 0.5

Visualization of generated examples. We visualize the
generated examples by our generator during training by
randomly selecting samples projected on various `p norms
and datasets in Figure 5. From the figure, we can observe
that our meta-noise generator incorporates the features by
different attacks and learns diverse input-dependent noise
distributions across multiple adversarial perturbations by
explicitly minimizing the adversarial loss across multiple
perturbations during meta-training. Overall, it combines
two complementary approaches and leads to a novel input-
dependent learner for generalization across diverse attacks.

Visuaization of loss landscape on SVHN dataset. Fig-
ure 6 shows the visualization of loss landscape of vari-
ous methods against `∞, `1, and `2 norm attack for SVHN
dataset on Wide ResNet 28-10 architecture. Similar to the
CIFAR-10 dataset, we can observe that the loss is highly
curved for multiple perturbations in the vicinity of the data
point x for the adversarial training trained with a single per-
turbation, which reflects that the gradient poorly models the
global landscape. In contrast, MNG-AC achieves smoother
loss surface across all types of `p norm attacks.
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Table 8. Summary of adversarial accuracy results for CIFAR-10 on Wide ResNet 28-10 architecture. The best and second-best results are
highlighted in bold and underline respectively.

Adv∞ Adv1 Adv2 Trades∞ RST∞ Advavg Advmax MSD MNG-AC MNG-AC + RST

Clean Accuracy 86.8± 0.1 93.3± 0.6 91.7± 0.2 84.7± 0.3 88.9± 0.2 87.1± 0.2 85.4± 0.3 82.3± 0.2 84.9± 0.3 88.7± 0.2

PGD-`∞ 46.9± 0.5 0.40± 0.7 30.4± 1.4 52.0± 0.6 56.9± 0.1 35.7± 0.5 42.5± 0.4 46.3± 0.6 45.4± 0.8 52.8± 0.9

PGD-Foolbox 54.7± 0.4 0.33± 0.6 40.9± 0.9 57.8± 0.5 62.9± 0.3 45.0± 0.4 50.4± 0.4 52.9± 0.8 52.1± 0.6 59.0± 0.7

AutoAttack 44.9± 0.7 0.0± 0.0 28.8± 1.3 48.9± 0.9 54.9± 0.3 34.2± 0.5 39.9± 0.5 43.5± 0.5 41.4± 0.7 47.2± 0.8

Brendel & Bethge 49.9± 1.1 0.0± 0.0 35.4± 1.0 52.1± 0.7 56.5± 1.8 40.2± 1.5 45.5± 0.9 49.3± 1.1 47.0± 0.9 53.4± 0.8

All `∞ attacks 44.9± 0.7 0.0± 0.0 28.8± 1.3 48.9± 0.7 54.9± 1.8 34.1± 0.5 39.9± 0.5 43.5± 0.5 41.4± 0.7 47.2± 0.8

PGD-`1 26.4± 0.5 93.9± 0.6 54.4± 0.6 32.4± 1.0 36.2± 0.6 61.4± 0.6 57.9± 0.6 54.4± 0.7 65.4± 0.2 73.8± 0.2

PGD-Foolbox 35.2± 0.7 92.3± 1.3 54.2± 0.5 40.3± 0.7 44.6± 0.3 64.5± 0.2 60.7± 0.5 60.3± 0.4 65.5± 0.1 74.9± 0.7

EAD 72.9±1.0 87.1± 3.3 75.9± 1.9 80.2± 0.7 84.5± 0.2 85.7± 0.2 83.3± 0.5 80.8± 0.1 79.3± 0.6 88.4± 0.5

SAPA 71.5± 0.2 80.7± 1.8 81.9± 0.5 71.4± 0.7 76.0± 0.5 82.7± 0.1 80.0± 0.1 76.9± 0.5 76.7± 0.4 85.4± 0.3

All `1 attacks 26.2± 0.4 80.7± 0.7 54.2± 0.4 32.3± 1.0 36.0± 0.9 61.3± 0.6 57.9± 0.7 54.3± 0.4 65.4± 0.3 73.8± 0.7

PGD-`2 57.1± 0.4 3.0± 0.9 66.2± 0.2 60.8± 0.8 62.4± 0.2 66.5± 0.4 66.4± 0.2 65.0± 0.2 67.2± 0.2 76.7± 0.7

PGD-Foolbox 65.9± 0.7 3.4± 1.9 72.0± 0.4 66.2± 0.6 70.8± 0.3 70.1± 0.1 69.7± 0.7 68.6± 0.2 70.9± 0.3 79.0± 0.3

Gaussian Noise 84.6± 0.5 81.0± 2.3 88.5± 0.4 82.4± 0.6 87.4± 0.2 84.5± 0.6 81.9± 0.4 80.7± 0.8 79.9± 0.3 87.7± 0.4

AutoAttack 55.1± 0.8 0.0± 0.0 65.8± 0.3 57.8± 0.6 59.8± 0.2 65.7± 0.4 64.5± 0.1 63.1± 0.5 65.2± 0.5 73.7± 0.2

Brendel & Bethge 59.6± 1.2 28.1± 0.3 68.6± 0.2 60.9± 1.0 62.9± 0.7 67.5± 0.2 66.6± 0.2 66.4± 0.3 66.6± 0.7 75.3± 0.2

CWL2 57.5± 0.9 0.1± 0.0 66.7± 0.3 59.3± 0.4 60.9± 0.3 66.8± 0.2 65.4± 0.3 64.1± 0.3 66.5± 0.6 74.2± 0.5

All `2 attacks 55.0± 0.9 0.0± 0.0 65.8± 0.3 57.8± 0.6 59.5± 0.2 65.7± 0.4 64.5± 0.1 63.1± 0.5 65.2± 0.5 73.7± 0.2

Accunionadv 25.6± 0.6 0.0± 0.0 28.6± 1.4 31.5± 1.2 35.7± 0.6 34.1± 0.1 39.7± 0.5 42.7± 0.5 41.4± 0.7 47.2± 0.7

Accavgadv 41.9± 0.6 26.8± 0.6 49.6± 0.3 46.3± 0.7 50.1± 0.8 53.7± 0.3 54.1± 0.4 53.6± 0.2 57.2± 0.4 64.9± 0.3

Table 9. Summary of adversarial accuracy results for SVHN dataset on Wide ResNet 28-10 architecture.

Adv∞ Adv1 Adv2 Trades∞ RST∞ Advavg Advmax MSD MNG-AC MNG-AC + RST

Clean Accuracy 92.8± 0.1 92.4± 1.6 94.9± 0.0 93.9± 0.0 95.6± 0.0 92.6± 0.1 86.9± 0.3 81.8± 0.3 93.4± 0.0 96.3± 0.3

PGD-`∞ 49.1± 0.1 3.2± 2.4 29.3± 0.4 55.5± 1.4 66.9± 0.8 24.9± 2.7 32.7± 0.6 39.7± 0.7 42.6± 0.5 58.0± 1.4

PGD-Foolbox 60.7± 0.4 2.5± 1.9 43.2± 1.3 66.4± 1.1 73.8± 0.3 37.1± 3.1 45.6± 0.2 48.5± 0.2 56.1± 0.9 66.8± 0.6

AutoAttack 46.2± 0.6 0.0± 0.0 21.8± 0.3 49.9± 1.8 61.0± 2.0 21.5± 2.8 28.8± 0.2 34.1± 0.6 34.2± 1.0 43.8± 1.5

Brendel & Bethge 51.6± 0.7 0.0± 0.0 26.5± 0.9 55.8± 1.5 65.6± 1.2 24.5± 2.9 36.4± 0.4 41.7± 0.2 42.1± 1.9 50.7± 0.9

All `∞ attacks 46.2± 0.6 0.0± 0.0 21.7± 0.4 49.9± 1.7 60.9± 2.0 21.5± 2.7 28.8± 0.2 34.1± 0.6 34.2± 1.0 43.8± 1.5

PGD-`1 10.0± 0.3 97.5± 1.3 45.2± 0.3 4.8± 0.4 3.6± 0.4 62.3± 3.9 48.9± 0.9 43.4± 0.5 71.6± 2.0 78.9± 2.0

PGD-Foolbox 19.9± 0.8 94.6± 0.4 57.5± 0.1 15.5± 0.2 11.3± 0.5 79.2± 3.4 52.8± 0.2 48.2± 0.2 73.3± 0.7 82.0± 0.3

EAD 65.7± 2.1 87.8± 1.9 82.3± 1.2 51.5± 2.9 60.4± 0.8 84.8± 2.4 85.7± 0.3 81.1± 0.2 92.1± 2.2 95.8± 0.3

SAPA 79.4± 0.8 77.3± 5.2 87.3± 0.1 73.5± 1.0 86.2± 0.5 88.5± 0.6 81.4± 0.2 75.6± 0.3 89.9± 1.6 94.1± 0.2

All `1 attacks 8.2± 0.9 77.2± 2.9 44.7± 0.5 4.2± 0.4 3.5± 0.5 61.2± 4.1 48.9± 0.9 43.4± 0.5 71.3± 1.7 78.9± 2.0

PGD-`2 36.3± 0.9 3.4± 1.4 63.6± 0.5 34.4± 2.0 35.2± 0.7 60.5± 0.2 78.5± 0.4 73.0± 0.3 72.3± 0.3 90.6± 0.4

PGD-Foolbox 55.7± 0.1 4.2± 1.8 72.3± 0.9 56.0± 0.2 56.7± 1.0 70.3± 0.6 78.5± 0.4 73.0± 0.3 77.3± 0.2 83.3± 0.2

Gaussian Noise 91.8± 0.1 69.3± 2.5 91.8± 0.2 93.5± 0.3 92.5± 0.4 90.7± 0.9 86.3± 0.5 80.6± 0.7 92.0± 0.4 94.0± 0.5

AutoAttack 30.2± 0.5 0.0± 0.0 62.9± 0.2 28.0± 2.2 38.9± 0.8 58.0± 1.7 56.3± 0.8 54.1± 0.1 66.7± 0.9 72.6± 0.1

Brendel & Bethge 41.8± 0.8 0.0± 0.0 67.0± 0.9 39.9± 1.3 47.8± 0.6 61.4± 2.3 60.9± 0.9 57.9± 0.8 71.2± 1.0 78.0± 0.3

CWL2 39.4± 0.3 0.0± 0.0 54.8± 0.2 35.4± 1.9 45.0± 0.5 61.5± 0.6 57.8± 1.2 55.2± 0.4 69.2± 0.9 74.2± 0.5

All `2 attacks 30.2± 0.5 0.0± 0.0 62.9± 0.2 26.7± 2.0 28.8± 0.9 56.1± 2.3 56.3± 0.8 54.1± 0.1 66.7± 0.9 72.6± 0.2

Accunionadv 8.1± 0.9 0.0± 0.0 21.0± 0.4 4.1± 0.4 3.5± 0.5 20.4± 2.7 28.8± 0.2 34.1± 0.6 34.2± 1.0 43.8± 1.5

Accavgadv 28.3± 0.1 25.7± 1.0 43.1± 0.3 26.9± 1.1 31.1± 0.6 45.9± 0.9 44.7± 0.4 44.0± 0.1 57.4± 0.4 65.1± 0.3
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Table 10. Summary of adversarial accuracy results for Tiny-ImageNet on ResNet50 architecture.

Adv∞ Adv1 Adv2 Trades∞ Advavg Advmax MSD MNG-AC

Clean Accuracy 54.2± 0.1 57.8± 0.2 59.8± 0.1 48.2± 0.2 56.0± 0.2 53.5± 0.0 45.5± 0.1 53.1± 0.1

PGD-`∞ 32.1± 0.0 11.5± 1.2 17.9± 1.1 32.2± 0.4 25.0± 0.6 32.0± 0.6 32.2± 0.8 29.3± 0.3

PGD-Foolbox 34.6± 0.4 17.2± 0.1 5.2± 0.6 34.1± 0.2 34.0± 0.2 29.8± 0.1 33.9± 0.1 32.3± 0.3

AutoAttack 29.6± 0.1 10.5± 0.7 16.3± 0.3 28.7± 0.9 23.7± 0.2 30.0± 0.1 29.4± 0.3 28.1± 0.4

Brendel & Bethge 32.7± 0.1 14.6± 0.8 20.8± 0.6 31.0± 0.9 28.1± 0.2 33.2± 0.5 32.8± 0.1 31.5± 0.6

All `∞ attacks 29.6± 0.1 10.5± 0.7 5.2± 0.6 28.7± 0.9 23.7± 0.2 29.8± 0.1 29.4± 0.3 28.1± 0.7

PGD-`1 38.7± 0.6 44.6± 0.1 44.9± 1.1 36.9± 0.5 44.3± 0.1 39.9± 0.4 35.3± 0.8 45.1± 0.5

PGD-Foolbox 40.0± 0.8 44.8± 0.2 45.2± 0.2 37.6± 0.9 44.7± 1.5 40.6± 0.1 37.3± 0.3 45.0± 0.2

EAD 52.3± 1.5 56.3± 0.6 57.3± 0.0 46.7± 0.9 54.6± 0.9 51.2± 0.2 45.5± 0.1 52.7± 0.3

SAPA 46.5± 0.9 52.9± 0.7 53.5± 1.2 40.8± 0.1 50.3± 1.1 46.6± 0.1 40.2± 0.1 49.3± 0.4

All `1 attacks 38.2± 0.7 44.6± 0.1 44.1± 0.4 33.2± 0.2 43.3± 0.2 39.5± 0.4 35.3± 0.8 45.1± 0.5

PGD-`2 48.5± 1.1 49.1± 0.1 51.8± 1.8 42.6± 0.7 49.9± 1.7 47.0± 0.3 41.1± 0.1 49.1± 0.4

PGD-Foolbox 45.6± 0.4 45.2± 0.4 47.7± 0.7 41.0± 0.3 47.0± 1.3 44.9± 0.4 41.0± 0.6 47.0± 0.2

Gaussian Noise 52.5± 1.3 56.1± 0.6 57.6± 0.3 46.4± 0.9 54.4± 0.8 51.1± 0.0 44.2± 0.2 52.1± 0.5

AutoAttack 42.5± 0.8 41.9± 0.0 44.9± 0.6 38.9± 0.8 44.6± 1.3 42.4± 0.9 33.9± 0.8 44.4± 0.4

Brendel & Bethge 43.7± 0.4 44.4± 0.1 46.6± 1.1 39.2± 0.7 45.1± 1.6 43.6± 0.4 39.2± 1.1 45.4± 0.1

CWL2 43.5± 1.3 44.8± 1.1 47.5± 0.7 39.5± 0.4 46.8± 1.9 43.4± 0.1 34.3± 0.8 46.0± 0.4

All `2 attacks 42.5± 0.6 41.9± 0.0 44.9± 0.1 35.8± 0.7 44.6± 0.1 42.4± 1.0 33.9± 0.8 44.4± 0.1

Accunionadv 19.8± 1.1 10.1± 0.7 5.2± 0.6 26.1± 0.9 23.6± 0.3 29.0± 0.3 29.4± 0.3 28.1± 0.8

Accavgadv 36.7± 0.4 32.2± 0.4 31.7± 0.5 32.8± 0.1 37.2± 0.2 33.5± 0.6 33.5± 0.6 39.1± 0.6
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Figure 5. Visualization of the generated examples by MNG-
AC along projected on `1, `2, and `∞-norm ball for CIFAR-10
and SVHN dataset.
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Figure 6. Visualization of the loss landscapes for the `1, `2, and `∞-norm
attacks on the SVHN dataset. The rows represent the attacks and columns
represent different defenses. We can observe that that MNG-AC obtains
smooth loss surface across all `p-norm attacks.


