
Nonparametric Hamiltonian Monte Carlo

Carol Mak 1 Fabian Zaiser 1 Luke Ong 1

Abstract

Probabilistic programming uses programs to ex-
press generative models whose posterior probabil-
ity is then computed by built-in inference engines.
A challenging goal is to develop general purpose
inference algorithms that work out-of-the-box for
arbitrary programs in a universal probabilistic
programming language (PPL). The densities de-
fined by such programs, which may use stochastic
branching and recursion, are (in general) nonpara-
metric, in the sense that they correspond to mod-
els on an infinite-dimensional parameter space.
However standard inference algorithms, such as
the Hamiltonian Monte Carlo (HMC) algorithm,
target distributions with a fixed number of param-
eters. This paper introduces the Nonparametric
Hamiltonian Monte Carlo (NP-HMC) algorithm
which generalises HMC to nonparametric models.
Inputs to NP-HMC are a new class of measurable
functions called “tree representable”, which serve
as a language-independent representation of the
density functions of probabilistic programs in a
universal PPL. We provide a correctness proof
of NP-HMC, and empirically demonstrate signif-
icant performance improvements over existing
approaches on several nonparametric examples.

1. Introduction
Probabilistic programming is a general purpose means of
expressing probabilistic models as programs, and automati-
cally performing Bayesian inference. Probabilistic program-
ming systems enable data scientists and domain experts to
focus on designing good models; the task of developing
efficient inference engines can be left to experts in Bayesian
statistics, machine learning and programming languages. To
realise the full potential of probabilistic programming, it is

1Department of Computer Science, University of Ox-
ford, United Kingdom. Correspondence to: Carol Mak
<pui.mak@cs.ox.ac.uk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

essential to automate the inference of latent variables in the
model, conditioned on the observed data.

Church (Goodman et al., 2008) introduced universal proba-
bilistic programming, the idea of writing probabilistic mod-
els in a Turing-complete functional programming language.
Typically containing only a handful of basic programming
constructs such as branching and recursion, universal prob-
abilistic programming languages (PPLs) can nonetheless
specify all computable probabilistic models (Vákár et al.,
2019). In particular, nonparametric models—models with
an unbounded number of random variables—can be de-
scribed naturally in universal PPLs using recursion. These
include probabilistic models with an unknown number of
components, like Bayesian nonparametric models (Richard-
son & Green, 1997), variable selection in regression (Ratner,
2010), signal processing (Murray et al., 2018); and models
that are defined on infinite-dimensional spaces, such as prob-
abilistic context free grammars (Manning & Schütze, 1999),
birth-death models of evolution (Kudlicka et al., 2019) and
statistical phylogenetics (Ronquist et al., 2021). Examples
of practical universal PPL include Anglican (Wood et al.,
2014), Venture (Mansinghka et al., 2014), Web PPL (Good-
man & Stuhlmüller, 2014), Hakaru (Narayanan & Shan,
2020), Pyro (Bingham et al., 2019), Turing (Ge et al., 2018)
and Gen (Cusumano-Towner et al., 2019).

However, because universal PPLs are expressively complete,
it is a challenging problem to design and implement general
purpose inference engines for them. The parameter space
of a nonparametric model is a union of spaces of varying
dimensions. To approximate the posterior via an Markov
chain Monte Carlo (MCMC) algorithm, the transition ker-
nel will have to efficiently switch between a potentially
unbounded number of configurations of different dimen-
sions. This difficulty explains why there are so few general
purpose MCMC algorithms for universal PPLs (Wingate
et al., 2011; Wood et al., 2014; Tolpin et al., 2015; Hur et al.,
2015). We believe it is also the reason why these algorithms
struggle with nonparametric models, as we show in Sec. 5.
A case in point is the widely used universal PPL Pyro. Even
though it allows the specification of nonparametric mod-
els, its HMC and No-U-Turn Sampler (Hoffman & Gelman,
2014) inference engines do not support them reliably: in one
of our benchmark tests, they produced a wrong posterior
(Fig. 6).



Nonparametric Hamiltonian Monte Carlo

In this paper, we introduce the Nonparametric Hamilto-
nian Monte Carlo (NP-HMC) algorithm, which generalises
the Hamiltonian Monte Carlo (HMC) algorithm (Duane
et al., 1987) to nonparametric models. The input to NP-
HMC is what we call a tree representable (TR) function,
which is a large class of measurable functions of type
w ∶ ⋃n∈NRn → R≥0, designed to be a language-independent
representation for the density functions of programs written
in any universal PPL. The parameter space of the standard
HMC algorithm is Rn, a Euclidean space of a fixed di-
mension. By contrast, the parameter space of NP-HMC is
⋃n∈NRn. The key innovation of NP-HMC is a method by
which the dimension of the configuration of the current sam-
ple is incremented lazily, while preserving the efficacy of
HMC by keeping the Hamiltonian approximately invariant.
We prove that NP-HMC is correct, i.e., the induced Markov
chain converges to the posterior distribution. To evaluate the
practical utility of NP-HMC, we compare an implementa-
tion of the algorithm against existing out-of-the-box MCMC
inference algorithms on several challenging models with an
unbounded number of random variables. Our results suggest
that NP-HMC is applicable to a large class of probabilistic
programs written in universal PPLs, offering significantly
better performance than existing algorithms.

Notation We write q to mean a (possibly infinite) real-
valued sequence; q1...i the prefix of q consisting of the first i
coordinates; qi the i-th coordinate of q; and ∣q∣ the length of
q. We write sequence as lists, such as [3.6,1.0,3,55,−4.2],
and the concatenation of sequences q and q′ as q ++ q′.

We write Bn for the Borel σ-algebra of Rn; Nn for the
standard n-dimensional normal distribution with mean 0
and covariance I; ϕn(x ∣ µ,Σ) for the density of x ∈ Rn
in the n-dimensional normal distribution with mean µ and
covariance Σ. For brevity we write ϕn(x) for ϕn(x ∣ 0,I)
and ϕ for ϕ1.

For any R≥0-valued function f ∶ Dom(f) → R≥0, we
write Supp(f) ∶= f−1

(R>0) for the support of f ; and
Suppn(f) ∶= Supp(f) ∩ Rn for the support of f in Rn.
We say x ∈X is f -supported if x ∈ Supp(f).

2. Tree Representable Functions
Conventional HMC samples from a distribution with a den-
sity function w ∶ Rn → R≥0 where the dimension of the
target (parameter) space Rn is fixed. However this is too re-
strictive for probabilistic programs, because—with branch-
ing and recursion—the target space has a variable, even
unbounded, number of dimensions.

Example 1 (Working). Consider the probabilistic program
in Listing 1 where sample(normal(0, 1)) denotes sam-
pling from the standard normal distribution. The dimension
of the target space, i.e. the number of samples drawn, can

q = sample(normal(0, 1))
sum = 0
while sum < q:
sum += sample(normal(0, 1))

observe(sum, normal(q, 1))

Listing 1. A simple probabilistic program.

vary from run to run because of the branching behaviour
of the while loop. (Recall that by trace, we mean the se-
quence of samples drawn in the course of a particular run,
one for each random primitive encountered.) The density
function then records the weight of this trace, computed by
multiplying the probability densities of all sampled values
and the likelihoods of all observations during the run. For
the above program, we could have a trace [0.3,0.5] ∈ R2

of length 2 or a trace [1.0,0.5,0.5] ∈ R3 of length 3, and
so on. Hence we have to consider density functions of type
w ∶ ⋃n∈NRn → R≥0. However, not every such function
makes sense as the density of a probabilistic program. For
example, if w([1.0,0.5,0.5]) > 0 then the program can exe-
cute successfully with the trace [1.0,0.5,0.5], but not with
[1.0,0.5] or any other prefix. In other words, no proper
prefix of [1.0,0.5,0.5] is in Supp(w).

Thus we set our target space to be the measure space of
traces T ∶= ⋃n∈NRn equipped with the standard disjoint
union σ-algebra ΣT ∶= {⋃n∈NUn ∣ Un ∈ Bn}, with mea-
sure given by summing the respective (higher-dimensional)
normals µT(⋃n∈NUn) ∶= ∑n∈NNn(Un).

We consider density functions that are measurable functions
w ∶ T → R≥0 satisfying the prefix property: whenever q ∈
Suppn(w) then for all k < n, we have q1...k

/∈ Suppk(w).
We call them tree representable (TR) functions because
any such function w can be represented as a possibly infinite
but finitely branching tree, which we call program tree.
This is exemplified in Fig. 1 (left), where a circular node
denotes an element of the input of type R; a rectangular
node gives the condition for q ∈ Suppn(w) (with the left,
but not the right, child satisfying the condition); and a leaf
node gives the result of the function on that branch. Any
branch (i.e. path from root to leaf) in a program tree of w
represents a set of finite sequences [q1, . . . , qn] in Supp(w).
In fact, every program tree of a TR function w specifies a
countable partition of Supp(w) via its branches. The prefix
property guarantees that for each TR function w, there are
program trees of the form in Fig. 1 (left) representing w.

We target TR functions as densities for our new sampler NP-
HMC because they are a naturally large class of functions.
In particular, every program of a universal PPL has a density
function that is tree representable.1 (See Prop. 7 in App. A
for a formal account.) For instance, the program in Listing 1

1 With (additional) suitable assumptions about the computabil-
ity of w, we can view any such tree as the abstract syntax tree of a



Nonparametric Hamiltonian Monte Carlo

q1

[q1]
?∈ Supp1(w)

w([q1]) q2

[q1, q2]
?∈ Supp2(w)

w([q1, q2]) q3

[q1, q2, q3]
?∈ Supp3(w)

w([q1, q2, q3]) ⋮

yes no

yes no

yes no

q1

q1 ≤ 0

ϕ(0 ∣ q1,1) q2

0 < q1 ≤ q2

ϕ(q2 ∣ q1,1) q3

0 < q1 and
q2 < q1 ≤ q2+q3

ϕ(q2 + q3 ∣ q1,1) ⋮

0.3

0.5

Figure 1. (left) Generic TR function w; (right) TR function w for
the probabilistic program in Listing 1.

has density2 w (w.r.t. the stock measure µT) given by

w(q) ∶=

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

ϕ(∑
n
i=2 qi ∣ q1,1)

if ∀k < ∣q∣

∑
k
i=2 qi < q1 ≤ ∑

n
i=2 qi,

0 otherwise

which is TR and it has a program tree as depicted in Fig. 1
(right). Notice that every element in the support of w
belongs to a branch in this tree: for example, the trace
[0.3,0.5] belongs to the blue branch in Fig. 1 (right).

As we will explain in Sec. 3, the prefix property (satisfied by
TR functions) is essential for the correctness of NP-HMC.

3. Nonparametric HMC
Nonparametric Hamiltonian Monte Carlo (NP-HMC)
(Fig. 4) is a MCMC algorithm that, given a TR function
w, iteratively proposes a new sample q ∈ ⋃n∈NRn and ac-
cepts it with a suitable Hastings acceptance probability, such
that the invariant distribution of the induced Markov chain
is

ν ∶ A↦
1

Z
∫
A
w dµT

with normalising constant Z ∶= ∫T w dµT. As the name
suggests, NP-HMC is a generalisation of the standard HMC
algorithm (Rem. 2.i) to nonparametric models, in the form
of TR functions whose support is a subspace of T of un-
bounded dimension.

In this section, we first explain our generalised algorithm,
using a version (Alg. 1) that is geared towards conceptual
clarity, and defer discussions of more efficient variants.

program that computes w, but with any recursion unravelled (so
that the tree is potentially infinite).

2Notice that, even though the program samples from a nor-
mal distribution, w does not factor in Gaussian densities from
those sample statements, just the observe statement, since they are
already accounted for by µT.

Idea We assume basic familiarity with the HMC algo-
rithm; see (Betancourt, 2018) for the intuition behind it and
(Neal, 2011) for details. Like the HMC algorithm, NP-HMC
views a sample q as a particle at position q, with a randomly
initialised momentum p, moving on a frictionless surface
derived from the density function w. The key innovation
lies in our treatment when the particle moves beyond the
surface, i.e. outside the support of the density function. This
procedure is called extend (Alg. 3), which we will now
illustrate.

Let’s trace the movement of a particle at position q = [−3.1]
with a randomly chosen momentum p = [1.2], on the sur-
face (a line in 1D) determined by the TR function w in
Fig. 1 (right). The first two steps taken by the particle are
simulated according to the Hamiltonian dynamics on the
surface − log(ϕ(0 ∣ q1,1)) ⋅ [q1 ≤ 0], which is derived from
the restriction of w to R. The positions on the surface and
states3 of the particle at each step are given in Fig. 2.

At the third time step, the particle is at the position [1.15],
which is no longer on the surface. To search for a suitable
state, NP-HMC increments the dimension of the current
surface (line) as follows.

First, the surface is extended to − log(ϕ(0 ∣ q1,1)) ⋅ [q1 ≤

0]− log(ϕ(q2 ∣ q1,1)) ⋅ [0 < q1 ≤ q2], which is derived from
the sum of the respective restrictions of w to R and to R2, as
depicted in Fig. 3. Since w satisfies the prefix property, the
respective supports of these restrictions, namely {[q1, q2] ∈

R2
∣ q1 ≤ 0} and {[q1, q2] ∈ R2

∣ 0 < q1 ≤ q2}, are disjoint;
and hence the states of the particle on the previous surface
− log(ϕ(0 ∣ q1,1)) ⋅ [q1 ≤ 0] can be reused on the updated
surface. Notice that the respective first coordinates of the
particle’s positions on the surface in Fig. 3 are identical to
the particle’s positions on the surface (line) in Fig. 2.

Next, the initial state (q = [−3.1],p = [1.2]) is extended by
appending a randomly chosen value to both the position and
momentum components, so that the particle is positioned
on the updated surface with an initial momentum. In our
example, −1.61 and 3.04 are sampled and the initial state of
the particle becomes (q = [−3.1,−1.61],p = [1.2,3.04])
which is located on the surface as shown in Fig. 3. The states
at times 1, 2 and 3 are updated accordingly and are given in
the table in Fig. 3. Notice that the particle at time 3 is now
positioned on the updated surface, and hence Hamiltonian
dynamics can resume. The rest of this section is devoted to
formalising our algorithm.

Assumption. Henceforth we assume that the input TR func-
tion w satisfies the following:

3As in HMC, a state of the NP-HMC algorithm is a position-
momentum pair (q,p) with ∣q∣ = ∣p∣; but unlike HMC, q,p ∈ T.



Nonparametric Hamiltonian Monte Carlo

−4 −2 0 2 4
0

2

4

6

8

[-3.1]

[-2.37]

[-0.86]

q1

E
ne

rg
y

− log(ϕ(0 ∣ q1,1)) ⋅ [q1 ≤ 0]

Time 0 1 2 3

q [-3.1] [-2.37] [-0.86] [1.15]

p [1.2] [3.29] [3.94] [5.26]

Figure 2. The Hamiltonian dynamics of a particle on the
surface − log(ϕ(0 ∣ q1,1)) ⋅ [q1 ≤ 0] on R.

−4 −2 0 2 4 −4−20 2 40

2

4

6

8

[-3.1, -1.61]

[-2.37, -0.39]

[-0.86, 0.82] [1.15, 2.04]

q1
q2

E
ne

rg
y

− log(ϕ(0 ∣ q1,1)) ⋅ [q1 ≤ 0]

− log(ϕ(q2 ∣ q1,1)) ⋅ [0 < q1 ≤ q2]

Time 0 1 2 3

q [-3.1, -1.61] [-2.37, -0.39] [-0.86, 0.82] [1.15, 2.04]

p [1.2, 3.04] [3.29, 3.04] [3.94, 3.04] [5.26, 3.04]

Figure 3. The Hamiltonian dynamics of a particle on the updated surface
− log(ϕ(0 ∣ q1,1)) ⋅ [q1 ≤ 0] − log(ϕ(q2 ∣ q1,1)) ⋅ [0 < q1 ≤ q2] on R2.

1 Integrability, i.e., the normalising constant Z <

∞. (Otherwise, the inference problem would be ill-
defined.)

2 The function w is almost everywhere continuously dif-
ferentiable on T. (Since Hamiltonian dynamics ex-
ploits the derivative of w in simulating the position of
a particle, this ensures that the derivative exists “often
enough” for the Hamiltonian integrator to be used.)

3 For almost every infinite real-valued sequence q, there
is a k such thatw is positive on q1...k. (This ensures the
extend subroutine in Alg. 3 terminates almost surely.)

Remark 2. (i) NP-HMC is a generalisation of HMC to non-
parametric models. Precisely, NP-HMC specialises to stan-
dard HMC (with the leapfrog integrator) in case the density
function w satisfies Dom(w) = Rn for some n, in addition
to Assumptions 1, 2 and 3.

(ii) All closed integrable almost surely terminating pro-
grams of a universal PPL4 induce densities that satisfy As-
sumptions 1, 2 and 3. (See App. A and Lem. 12 for an
account.)

Truncations The surfaces on which the particle is posi-
tioned are derived from a sum of appropriate restrictions
of the input TR function w, defined as follows. The n-th
truncation w≤n ∶ Rn → R≥0 is q ↦ ∑nk=1w(q1...k

), which
returns the cumulative sum of the weight on the prefixes
of an n-dimensional trace q. Thanks to the prefix property,
for each q, at most one summand is non-zero. So any real-
valued w≤n-supported sequence q ∈ Rn has a prefix in the
support of w; and any w-supported sequence of length n is
also w≤n-supported.

4An almost surely terminating program (as defined in App. A)
almost never observes a value with zero probability density.

We define a family U = {Un}n∈N of potential energies
where each Un ∶ Rn ⇀ R≥0 is a partial function defined
as Un ∶= − logw≤n with domain Dom(Un) ∶= Supp(w≤n).
These are the surfaces on which the particle is positioned.

Proposal step The nonparametric (NP) integrator ΨNP

(Alg. 2) proposes a state by simulating the Hamiltonian
motion of a particle at position q ∈ Rn, with potential energy
Un(q) and a randomly chosen momentum p ∈ Rn.5 The
simulation runs L discrete update steps (also called leapfrog
steps) of size ε > 0, or until the particle leaves the domain of
Un (i.e. the support of w≤n). At that moment, the simulation
stops and NP-HMC “extends” the state (q,p) via the extend
subroutine (Alg. 3), until the position of the particle falls
into the domain of some potential energy (i.e. support of
some higher dimensional truncation).6 Once the extended
position of the particle is settled, simulation resumes. If no
extension is necessary, the behaviour is the same as that of
the standard HMC leapfrog integrator.

Extend The heart of NP-HMC is the extend subroutine
(Alg. 3). Suppose extend is called after i position steps
and i − 1/2 momentum steps are completed, i.e., at time
t = i ε. If q is in the domain of U∣q∣, extend leaves the state
unchanged; otherwise q is not long enough and the while
loop extends it as follows.

• Sample a pair (x0, y0) of real numbers from the stan-
dard normal distribution respectively.

• Trace the motion of a particle with constant potential
energy 1 for i position and i − 1/2 momentum steps,
starting from (x0, y0), to obtain (x, y). Notice that

5The Hamiltonian motion is almost always defined, by Ass. 2.
6This happens almost surely, thanks to Ass. 3.



Nonparametric Hamiltonian Monte Carlo

Algorithm 1 NP-HMC Step
Input: current sample q0, density function w, step size
ε, number of steps L
Output: next sample q
p0 ∼ N∣q0∣ {Initialise}
U = {Un ∶= λq. − log(w≤n(q))}n∈N
((q,p), (q0,p0)) = ΨNP((q0,p0), U, ε,L)

if U(0,1) < min (1,
w≤∣q∣(q)ϕ2∣q∣(q++p)

w≤∣q∣(q0)ϕ2∣q∣(q0++p0)) then
return q1...k where w(q1...k

) > 0
else

return q01...k where w(q0
1...k

) > 0
end if

Algorithm 2 NP Integrator ΨNP

Input: current state (q0,p0), family of potential energies
U = {Un}n∈N, step size ε, number of steps L
Output: new state (q,p), extended initial state (q0,p0)

(q,p) = (q0,p0) {Initialise}
for i = 0 to L do
p = p − ε

2
∇U∣q∣(q) {1/2 momentum step}

q = q + εp {1 position step}
((q,p), (q0,p0)) = extend((q,p), (q0,p0), i ε,U)

p = p − ε
2
∇U∣q∣(q) {1/2 momentum step}

end for
return ((q,p), (q0,p0))

Algorithm 3 extend

Input: current state (q,p), initial state (q0,p0), time t,
family of potential energies U = {Un}n∈N
Output: extended state (q,p), extended initial state
(q0,p0)

while q ∉ Dom(U∣q∣) do
x0 ∼ N1; y0 ∼ N1 {sample from normal}
(x, y) = (x0 + t y0, y0) {run for time t}
(q0,p0) = (q0 ++ [x0],p0 ++ [y0]) {update initial}
(q,p) = (q ++ [x],p ++ [y]) {update current}

end while
return ((q,p), (q0,p0))

Figure 4. Pseudocode for Nonparametric Hamiltonian Monte Carlo

the momentum update is simply the identity, hence we
only need to consider i position updates which takes x
to x0 + t y0.

• Append (x0, y0) to the initial state (q0,p0) and (x, y)
to the current state (q,p).

Thus the length of the position q is incremented, and by As-
sumption 3, this loop terminates almost surely at a position
q in the domain of the potential energy of dimension ∣q∣.

Putting them together A single NP-HMC iteration, as
shown in Alg. 1, produces a proposed sample q from the
current sample q0, by applying the NP integrator ΨNP to
the state (q0,p0) with a freshly sampled momentum p0.
The proposed state (q,p) is then accepted with probability
given by the Hastings acceptance ratio.
Remark 3. The prefix property of the input TR function w
plays an important role in the NP-HMC inference algorithm.
If Alg. 1 returns q as the next sample, then for any exten-
sion q′ of q, we have w(q′) = 0, and so, all such q′ are
irrelevant for inference (because U∣q′∣(q

′
) = U∣q∣(q)). If the

prefix property weren’t satisfied, the algorithm would fail to
account for the weight on such q′.

Other extensions and efficiency considerations We
have presented a version of NP-HMC that eschews run-
time efficiency in favour of clarity. An advantage of such
a presentation (in deliberately purified form) is that it be-
comes easy to see that the same method is just as applicable
to such HMC variants as reflective/refractive HMC (Afshar
& Domke, 2015) and discontinuous HMC (Nishimura et al.,
2020); we call the respective extensions NP-RHMC and
NP-DHMC. For details, see App. B.2.

Several efficiency improvements to NP-HMC are possible.
If the density function is given by a probabilistic program,
one can interleave its execution with extend, by gradually
extending q at every encountered sample statement. Simi-
larly, the truncations w≤n don’t require an expensive sum-
mation to compute. For details, see App. B.3.

Our implementation (Sec. 5) also improves the extend func-
tion (Alg. 3): it not only extends a trace q if necessary, it
also trims it to the unique prefix q′ of q with positive w(q′).
This version works better in our experiments. For details,
see App. B.3.

4. Correctness
The NP-HMC algorithm is correct in the sense that the
generated Markov chain converges to the target distribution
ν ∶ A ↦ 1

Z ∫A
w dµT with normalising constant Z. We

present an outline of our proof here. The full proof can be
found in App. C.

Invariant distribution By iterating Alg. 1, the NP-HMC
algorithm generates a Markov chain {q(i)}i∈N on the tar-
get space T. The first step to correctness is to show that
the invariant distribution of this chain is indeed the target
distribution.

This proof is non-trivial, since the length of the generated
sample depends on the values of the random samples drawn
in the extend subroutine (Alg. 3). To work around this,
we define an auxiliary algorithm, which induces the same



Nonparametric Hamiltonian Monte Carlo

Markov chain as NP-HMC, but does not increase the di-
mension dynamically. Instead, it finds the smallest N such
that all intermediate positions in the L leapfrog steps stay in
the domain of UN , and performs leapfrog steps as in stan-
dard HMC. In this algorithm, all stochastic primitives are
executed outside of the Hamiltonian dynamics simulation,
and the simulation has a fixed dimension. Hence we can
proceed to identify the invariant distribution. We then show
(in Lem. 28 and Thm. 4) that the Markov chain generated by
this auxiliary algorithm has the target distribution ν as its in-
variant distribution, and hence the same holds for NP-HMC
(Alg. 1).

Theorem 4. Given Assumptions 1, 2 and 3, the target dis-
tribution ν is the invariant distribution of the Markov chain
generated by iterating Alg. 1.

Convergence In App. C.4, we extend the proof of Can-
ces et al. (2007) to show that the chain converges for a
small enough step size ε, as long as the following additional
assumptions are met:

(C1) w is continuously differentiable on a non-null set A
with measure-zero boundary.

(C2) w∣Supp(w) is bounded below by a positive constant.
(C3) For each n, the function ∇w≤n

w≤n
is uniformly bounded

from above and below on Supp(w≤n) ∩A.
(C4) For each n, the function ∇w≤n

w≤n
is Lipschitz continuous

on Supp(w≤n) ∩A.

Theorem 5. If Assumptions (C1)–(C4) are satisfied in addi-
tion to Assumptions 1, 2 and 3, the Markov chain generated
by iterating Alg. 1 converges to the target distribution ν.

5. Experiments
We implemented the NP-HMC algorithm and its variants
(NP-RHMC and NP-DHMC) in Python, using PyTorch
(Paszke et al., 2019) for automatic differentiation. We imple-
mented it from scratch rather than in an existing system be-
cause NP-DHMC needs additional information about each
sample (does the density function depend discontinuously
on it?), so it requires a deeper integration in the proba-
bilistic programming system. In our empirical evaluation,
we focus on the NP-DHMC algorithm because it inherits
discontinuous HMC’s efficient handling of discontinuities:
contrary to NP-RHMC, it does not need to compute the
intersections of the particle’s trajectory with the regions of
discontinuity. Our implementation also uses the efficiency
improvements discussed in App. B.3. The code for our im-
plementation and experiments is available at https://
github.com/fzaiser/nonparametric-hmc and
archived as (Zaiser & Mak, 2021).

We compare our implementation with Anglican’s (Wood
et al., 2014) inference algorithms that are applicable out-of-

Table 1. Total variation distance from the ground truth for the ge-
ometric distribution, averaged over 10 runs. Each run: 103 NP-
DHMC samples with 102 burn-in, 5 leapfrog steps of size 0.1; and
5 × 103 LMH, PGibbs and RMH samples.

method ours LMH PGibbs RMH

TVD 0.0136 0.0224 0.0158 0.0196

the-box to nonparametric models: lightweight Metropolis-
Hastings (LMH), particle Gibbs (PGibbs) and random-walk
lightweight Metropolis-Hastings (RMH).7 NP-DHMC per-
forms more computation per sample than its competitors
because it evaluates the density function in each of the L
leapfrog steps, not just once like the other inference algo-
rithms. To equalise the computation budgets, we generate L
times as many samples for each competitor algorithm, and
apply thinning (taking every L-th sample) to get a compara-
ble sample size.

Geometric distribution A classic example to illustrate
recursion in a universal PPL is sampling from a geo-
metric distribution with parameter p by repeatedly flip-
ping a biased coin with probability p (see e.g. Ch. 5 in
(van de Meent et al., 2018)). The pseudocode for it is:

def geometric():
if sample(uniform(0, 1)) < p: return 1
else: return 1 + geometric()

We tested our algorithm on this problem with p = 0.2. Our
implementation works well on this example and has no trou-
ble jumping between traces of different length. To quantify
this, we computed the total variation distance to the ground
truth for each approach and report it in Table 1. The result is
perhaps surprising given that the odds are “stacked against”
NP-DHMC in this model: it is a discrete model, so there is
no gradient information, and there are no observations (only
sampling from the prior). These properties should favour
the competitors, making the performance of NP-DHMC
rather remarkable.

Random walk To better evaluate our algorithm on proba-
bilistic programs with unbounded loops (such as the ex-
ample from Sec. 2), we considered the one-sided ran-
dom walk on R≥0 described in (Mak et al., 2021): A
pedestrian starts from a random point in [0,3] and walks
a uniformly random distance of at most 1 in either
direction, until they pass 0. Given a (noisily) mea-
sured total distance of 1.1 travelled, what is the poste-
rior distribution of the starting point? As this process
has infinite expected running time, we need a stopping

7We also compared Interacting Particle MCMC (IPMCMC),
but it performed consistently worse than PGibbs in our experiments
and hence is omitted.

https://github.com/fzaiser/nonparametric-hmc
https://github.com/fzaiser/nonparametric-hmc


Nonparametric Hamiltonian Monte Carlo

0.0 0.5 1.0 1.5
starting point

0.0

0.2

0.4

0.6

0.8

1.0

po
st

er
io

r d
en

sit
y

method
ours
LMH
PGibbs
RMH
ground truth

method ours LMH PGibbs RMH

ESS 679 526 310 508

Figure 5. Kernel density estimate (top) averaged over 10 runs and
estimated effective sample size (bottom) averaged over 10 runs.
Each run: 103 NP-DHMC samples with 102 burn-in, 50 leapfrog
steps of size 0.1; and 5 × 104 LMH, PGibbs and RMH samples.

condition if the pedestrian is too far away from zero,
(distance < 10), as shown in the following pseudocode:

start = sample(uniform(0,3))
position = start; distance = 0
while position > 0 and distance < 10:
step = sample(uniform(−1, 1))
position += step; distance += abs(step)

observe(distance, normal(1.1, 0.1))
return start

This example is interesting and challenging because the
true posterior is difficult to determine precisely. Therefore
we took 107 importance samples (effective sample size ≈
4.4 × 105) and considered those as the ground truth. As one
can see from Fig. 5, NP-DHMC comes closest. Since it is
not clear what measure to use for the distance from these
“ground truth” samples, we instead computed the effective
sample size8 for each method (Fig. 5). Our method does
best in that regard as well.

The popular PPL Pyro accepts nonparametric models as
input. We therefore tried to ascertain the performance of
its HMC implementation on this example. We ran both
Pyro’s HMC sampler (with the same hyperparameters as

8We used the standard ESS estimator (based on weighted
samples) for the ground-truth importance samples, and an
autocorrelation-based MCMC ESS estimator (Sec. 11.5 in (Gel-
man et al., 2014)) for the rest.

0.0 0.5 1.0 1.5 2.0 2.5
starting point

0.0

0.2

0.4

0.6

0.8

1.0

1.2

po
st

er
io

r d
en

sit
y

method
ours
Pyro HMC
Pyro NUTS
ground truth

Figure 6. Kernel density estimate for the random walk example
compared to Pyro, averaged over 10 runs. Each run: 103 samples
with 102 burn-in, 50 leapfrog steps of size 0.1.

ours) and Pyro’s No-U-Turn sampler (NUTS) (Hoffman
& Gelman, 2014), which aims to automatically infer good
hyperparameter settings. The inferred posterior distributions
(Fig. 6) are far away from the ground truth, and clearly
wrong. Pyro’s inference was very slow, sometimes taking
almost a minute to produce a single sample. For this reason,
we didn’t run more experiments with it.

Gaussian mixture model We also considered the follow-
ing mixture model adapted from (Zhou et al., 2020), where
the number of mixture components K is unbounded.

K ∼ Poisson(10) + 1

µk ∼ Uniform([0,100]3) for k = 1, . . . ,K

xn ∼
1

K

K

∑

k=1

N3(µk,102I3) for n = 1, . . . ,N

This model samples parameters θ = (K ∈ N, µk ∈ [0,100]3)
and N data points X = {x1, . . . , xN} ⊆ R3. Note that this
model uses much higher standard deviations (10 instead
of 0.1) for the Gaussian mixture components compared to
(Zhou et al., 2020). This is to avoid typical problems of
MCMC algorithms with multimodal distributions, which is
an issue inherent to MCMC algorithms and tangential to
this work. We used this model to generate N = 200 training
data points for a fixed θ∗ = (K∗

= 9, µ∗1...K∗). We let our
inference algorithms sample from p(θ ∣X) and compared
the posterior on the number of mixture components K with
the other inference algorithms. The histogram (Fig. 7) shows



Nonparametric Hamiltonian Monte Carlo

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
number of mixture components

0.0

0.1

0.2

0.3

0.4

0.5
po

st
er

io
r d

en
sit

y
method

ours
LMH
PGibbs
RMH

Figure 7. Histogram of the no. of mixtures for the GMM example; correct posterior = 9, averaged over 10 runs. Each run: 103 NP-DHMC
samples with 102 burn-in, 50 leapfrog steps of size 0.05; and 5 × 104 LMH, PGibbs and RMH samples.

2000 4000 6000 8000 10000
number of samples

−679

−678

−677

−676

−675

lo
g 

po
in

tw
ise

 p
re

di
ct

iv
e 

de
ns

ity

method
ours
LMH
RMH
ground truth

Figure 8. LPPD for the GMM example, averaged over 10 runs.
Each run: 103 NP-DHMC samples with 102 burn-in, 50 leapfrog
steps of size 0.05; and 5 × 104 LMH, PGibbs and RMH samples.
The shaded area is one standard deviation. PGibbs (with final
LPPD −716.85 ± 0.64) is omitted to show the top contenders
clearly.

that NP-DHMC usually finds the correct number of mixture
components (K∗

= 9).

In addition, we computed the log pointwise predictive
density (LPPD) for a test set with N ′

= 50 data points
Y = {y1, . . . , yN ′}, generated from the same θ∗ as the train-
ing data. The LPPD is defined as ∑N

′

i=1 log ∫ p(yi ∣ θ)p(θ ∣

X)dθ and can be approximated by ∑N
′

i=1 log 1
M ∑

M
j=1 p(yi ∣

θj) where (θj)j=1...M are samples from p(θ ∣X) (Gelman
et al., 2014). The results (Fig. 8) include the “true” LPPD
of the test data under the point estimate θ∗. As we can
see, NP-DHMC outperforms the other methods and has the
lowest variance over multiple runs.

200 400 600 800 1000
number of samples

−688

−686

−684

−682

−680

−678

−676

lo
g 

po
in

tw
ise

 p
re

di
ct

iv
e 

de
ns

ity

method
ours
LMH
RMH
ground truth

Figure 9. LPPD for the DPMM example, averaged over 10 runs.
Each run: 102 NP-DHMC samples with 50 burn-in, 20 leapfrog
steps of size 0.05; and 2 × 103 LMH, PGibbs and RMH samples.
The shaded area is one standard deviation. PGibbs (with final
LPPD −725.96 ± 9.83) is omitted to show the top contenders
clearly.

Dirichlet process mixture model Finally, we consider
a classic example of nonparametric models: the Dirichlet
process DP(α,H) (Ferguson, 1973), which is a stochastic
process parametrised by concentration parameter α > 0 and
a probability distributionH . For practical purposes, one can
think of samples from DP(α,H) as an infinite sequence
(wk, hk)n∈N where wn are weights that sum to 1 and hn
are samples from H . Conceptually, a DP Gaussian mixture
model takes the form

(wk, hk)k∈N ∼ DP(α,H)

xn ∼
∞
∑

k=1

wk ⋅N (hk,Σ) for n = 1, . . . ,N

Sampling from a DP is usually implemented by the stick-
breaking method (Sethuraman, 1994). However, one can-



Nonparametric Hamiltonian Monte Carlo

not actually compute an infinite sequence. A practical
workaround is to cap the number of mixture components
by a fixed K and only consider (wk, hk)k=1,...,K .9 This
renders the model parametric, enabling the use of standard
HMC. However such a treatment is clearly unsatisfactory:
if the data actually requires more mixture components than
K, the model would be found wanting.

We propose a different approach. Instead of choosing a
fixed K, we allow it to depend on the weights wk: we pick
the minimal K ∈ N such that ∑Ki=1wi > 1 − ε for some
ε > 0. With this restriction, we only discard insignificant
mixture components (with a weight wk < ε) and allow as
many mixture components as necessary to model the data
accurately. This model is not parametric anymore, but still
tractable by our algorithm.

We implemented the above model with the parameters α = 5,
ε = 0.01, and the remaining parameters as chosen in the
previous GMM example, i.e. H = Uniform([0,100]3) and
Σ = 102I3. We used the same training and test data as in
the previous GMM example and present the LPPD results
in Fig. 9. As we can see, NP-DHMC outperforms the other
methods and has the lowest variance over multiple runs.

6. Related Work and Conclusion
The standard MCMC algorithm for PPLs that is widely im-
plemented (for example, in Anglican, Venture, and Web
PPL) is the Lightweight Metropolis-Hastings (LMH) algo-
rithm and its extensions (Yang et al., 2014; Tolpin et al.,
2015; Ritchie et al., 2016), which performs single-site up-
dates on the current sample and re-executes the program.
Unlike NP-HMC, where Hamiltonian motion is simulated
on the resulting extended trace, LMH suffers from a lack of
predictive accuracy in its proposal (as shown in Sec. 5).

The Reversible Jump Markov chain Monte Carlo (RJM-
CMC) algorithm (Green, 1995) is similar to NP-HMC in
that it is a trans-dimensional MCMC sampler. However,
NP-HMC is a general purpose inference algorithm that
works out-of-the-box when given an input density function,
whereas RJMCMC additionally requires the user to specify
a transition kernel. Various RJMCMC transition kernels
have been suggested for specific models, e.g. split-merge
proposal for infinite Gaussian mixture models.

Some PPLs such as Hakaru, Pyro and Gen give users the
flexibility to hand-code the proposal in a MCMC setting.
For instance, Cusumano-Towner et al. (2020) implement
the split-merge proposal (Richardson & Green, 1997) of
RJMCMC in Gen. Though this line of research is orthog-
onal to ours, PPLs such as Gen could play a useful role in

9For instance, see https://pyro.ai/examples/
dirichlet process mixture.html (accessed: 2021-06-
06), the Pyro tutorial on DP mixture models.

the implementation of NP-HMC and similar extensions of
inference algorithms to nonparametric models.

The HMC algorithm and its variants, notably the No-U-
Turn Sampler, are the workhorse inference methods in the
influential PPL Stan (Gelman et al., 2015). The challenges
posed by stochastic branching in PPLs are the focus of
reflective/refractive HMC (Afshar & Domke, 2015); discon-
tinuous HMC (Nishimura et al., 2020); mixed HMC (Zhou,
2020); and the first-order PPL in (Zhou et al., 2019) which
is equipped with an implementation of discontinuous HMC.
By contrast, our work is an attempt to tackle the language
constructs of branching and recursion.

Unlike Monte Carlo methods, variational inference (VI)
(Blei et al., 2017) solves the Bayesian inference problem
by treating it as an optimisation problem. When adapted
to models expressed as probabilistic programs, the score
function VI (Ranganath et al., 2014) can in principle be
applied to a large class of branching and recursive programs
because only the variational density functions need to be
differentiable. Existing implementations of VI algorithms
in probabilistic programming systems are however far from
automatic: in the main, the guide programs (that express
variational distributions) still need to be hand-coded.

Recently, Zhou et al. (2020) introduced the Divide, Conquer,
and Combine (DCC) algorithm, which is applicable to pro-
grams definable using branching and recursion. As a hybrid
algorithm, DCC solves the problem of designing a proposal
that can efficiently transition between configurations by per-
forming local inferences on submodels, and returning an
appropriately weighted combination of the respective sam-
ples. Thanks to a judicious resource allocation scheme, it
exhibits strong performance on multimodal distributions.

Conclusion

We have presented the NP-HMC algorithm, the first exten-
sion of the HMC algorithm to nonparametric models. We
have proved that NP-HMC is correct. We have also empir-
ically demonstrated that it enjoys significant performance
improvements over state-of-the-art MCMC algorithms for
universal PPLs on four nonparametric models, thereby il-
lustrating that the key advantage of HMC—the proposal of
moves to distant states with a high acceptance probability—
has been preserved by NP-HMC.

Acknowledgements We thank the reviewers for their in-
sightful feedback and pointing out important related work.
We are grateful to Hugo Paquet, Dominik Wagner and Yuan
Zhou, who gave detailed comments on an early draft, and
to Tom Rainforth and Arnaud Doucet for their helpful com-
ments and advice. We gratefully acknowledge support from
the EPSRC and the Croucher Foundation.

https://pyro.ai/examples/dirichlet_process_mixture.html
https://pyro.ai/examples/dirichlet_process_mixture.html


Nonparametric Hamiltonian Monte Carlo

References
Afshar, H. M. and Domke, J. Reflection, refraction, and

Hamiltonian Monte Carlo. In Cortes, C., Lawrence, N.,
Lee, D., Sugiyama, M., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems (NIPS 2015),
volume 28, pp. 3007–3015. Curran Associates, Inc., 2015.

Betancourt, M. A conceptual introduction to hamilto-
nian monte carlo. arXiv, 2018. URL https://
arxiv.org/abs/1701.02434.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F.,
Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Hors-
fall, P., and Goodman, N. D. Pyro: Deep universal prob-
abilistic programming. Journal of Machine Learning
Research, 20(28):1–6, 2019.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877,
2017.

Borgström, J., Dal Lago, U., Gordon, A. D., and Szymczak,
M. A lambda-calculus foundation for universal proba-
bilistic programming. In Garrigue, J., Keller, G., and
Sumii, E. (eds.), Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming
(ICFP 2016), pp. 33–46. Association for Computing Ma-
chinery, 2016.

Bou-Rabee, N. and Sanz-Serna, J. M. Geometric integra-
tors and the Hamiltonian Monte Carlo method. Acta
Numerica, 27:113–206, 2018.

Cances, E., Legoll, F., and Stoltz, G. Theoretical and numer-
ical comparison of some sampling methods for molecular
dynamics. ESAIM: Mathematical Modelling and Numer-
ical Analysis, 41(2):351–389, 2007.

Culpepper, R. and Cobb, A. Contextual Equivalence for
probabilistic programs with continuous Random Vari-
ables and scoring. In Yang, H. (ed.), Proceedings of
the 26th European Symposium on Programming (ESOP
2017), volume 10201 of Lecture Notes in Computer Sci-
ence, pp. 368–392. Springer, 2017.

Cusumano-Towner, M., Lew, A. K., and Mansinghka, V. K.
Automating involutive MCMC using probabilistic and
differentiable programming. arXiv, 2020. URL https:
//arxiv.org/abs/2007.09871.

Cusumano-Towner, M. F., Saad, F. A., Lew, A. K., and
Mansinghka, V. K. Gen: A general-purpose probabilistic
programming system with programmable inference. In
McKinley, K. S. and Fisher, K. (eds.), Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2019), pp.
221–236. Association for Computing Machinery, 2019.

Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D.
Hybrid Monte Carlo. Physics Letters B, 195(2):216–222,
1987.

Ferguson, T. S. A Bayesian analysis of some nonparametric
problems. The Annals of Statistics, 1(2):209 – 230, 1973.

Ge, H., Xu, K., and Ghahramani, Z. Turing: Compos-
able inference for probabilistic programming. In Storkey,
A. J. and Pérez-Cruz, F. (eds.), Proceedings of the 21st
International Conference on Artificial Intelligence and
Statistics (AISTATS 2018), volume 84, pp. 1682–1690.
PMLR, 2018.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B.,
Vehtari, A., and Rubin, D. B. Bayesian data analysis.
Texts in Statistical Science Series. CRC Press, 3rd edition,
2014.

Gelman, A., Lee, D., and Guo, J. Stan: A probabilistic pro-
gramming language for Bayesian inference and optimiza-
tion. Journal of Educational and Behavioral Statistics,
40(5):530–543, 2015.

Goodman, N. D. and Stuhlmüller, A. The Design and Im-
plementation of Probabilistic Programming Languages.
http://dippl.org, 2014. Accessed: 2021-5-24.

Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz,
K., and Tenenbaum, J. B. Church: A language for gen-
erative models. In McAllester, D. A. and Myllymäki, P.
(eds.), Proceedings of the 24th Conference in Uncertainty
in Artificial Intelligence (UAI 2008), pp. 220–229. AUAI
Press, 2008.

Green, P. J. Reversible jump Markov chain Monte
Carlo computation and Bayesian model determination.
Biometrika, 82(4):711–732, 1995.

Hoffman, M. D. and Gelman, A. The No-U-turn sampler:
adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research, 15(1):
1593–1623, 2014.

Hur, C., Nori, A. V., Rajamani, S. K., and Samuel, S.
A provably correct sampler for probabilistic programs.
In Harsha, P. and Ramalingam, G. (eds.), Proceedings
of the 35th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Sci-
ence, (FSTTCS 2015), volume 45 of LIPIcs, pp. 475–
488. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015.

Kudlicka, J., Murray, L. M., Ronquist, F., and Schön, T. B.
Probabilistic programming for birth-death models of evo-
lution using an alive particle filter with delayed sampling.
In Globerson, A. and Silva, R. (eds.), Proceedings of the
35th Conference on Uncertainty in Artificial Intelligence,
(UAI 2019, volume 115, pp. 679–689. AUAI Press, 2019.

https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/2007.09871
https://arxiv.org/abs/2007.09871
http://dippl.org


Nonparametric Hamiltonian Monte Carlo

Mak, C., Ong, C. L., Paquet, H., and Wagner, D. Densities
of almost surely Terminating probabilistic programs are
differentiable almost Everywhere. In Yoshida, N. (ed.),
Proceedings of the 30th European Symposium on Pro-
gramming (ESOP 2021), volume 12648 of Lecture Notes
in Computer Science, pp. 432–461. Springer, 2021.

Manning, C. and Schütze, H. Foundations of Statistical
Natural Language Processing. MIT Press, 1999.

Mansinghka, V. K., Selsam, D., and Perov, Y. N. Venture:
a higher-order probabilistic programming platform with
programmable inference. arXiv, 2014. URL http://
arxiv.org/abs/1404.0099.

Murray, L. M., Lundén, D., Kudlicka, J., Broman, D., and
Schön, T. B. Delayed sampling and automatic Rao-
blackwellization of probabilistic programs. In Storkey,
A. J. and Pérez-Cruz, F. (eds.), Proceedings of the Inter-
national Conference on Artificial Intelligence and Statis-
tics (AISTATS 2018), volume 84, pp. 1037–1046. PMLR,
2018.

Narayanan, P. and Shan, C.-c. Symbolic disintegration
with a variety of base measures. ACM Transactions on
Programming Languages and Systems, 42(2):1–60, 2020.

Neal, R. M. MCMC using Hamiltonian dynamics. In
Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (eds.),
Handbook of Markov Chain Monte Carlo, chapter 5, pp.
113–162. Chapman & Hall CRC Press, 2011.

Nishimura, A., Dunson, D. B., and Lu, J. Discontinuous
Hamiltonian Monte Carlo for discrete parameters and
discontinuous likelihoods. Biometrika, 107(2):365–380,
2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems (NeurIPS 2019), volume 32, pp.
8024–8035. Curran Associates, Inc., 2019.

Ranganath, R., Gerrish, S., and Blei, D. M. Black box vari-
ational inference. In Kaski, S. and Corander, J. (eds.),
Proceedings of the 17th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS 2014), vol-
ume 33, pp. 814–822. PMLR, 2014.

Ratner, B. Variable selection methods in regression: Ig-
norable problem, outing notable solution. Journal of
Targeting, Measurement and Analysis for Marketing, 18:
65–75, 2010.

Richardson, S. and Green, P. J. On Bayesian analysis of
mixtures with an unknown number of components (with
discussion). Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 59(4):731–792, 1997.

Ritchie, D., Stuhlmüller, A., and Goodman, N. D. C3:
lightweight incrementalized MCMC for probabilistic pro-
grams using continuations and callsite caching. In Gret-
ton, A. and Robert, C. C. (eds.), Proceedings of the 19th
International Conference on Artificial Intelligence and
Statistics (AISTATS 2016), volume 51, pp. 28–37. PMLR,
2016.

Ronquist, F., Kudlicka, J., Senderov, V., Borgström, J., Lar-
tillot, N., Lundén, D., Murray, L., Schön, T. B., and
Broman, D. Universal probabilistic programming offers
a powerful approach to statistical phylogenetics. Commu-
nications Biology, 4(244), 2021.

Schütte, C. Conformational dynamics: Modelling, theory,
algorithm, and application to biomolecules. Technical
report, Freie Universität Berlin, 1999.

Scott, D. S. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theoretical Computer Science, 121(1&2):411–
440, 1993.

Sethuraman, J. A constructive definition of Dirichlet priors.
Statistica Sinica, 4(2):639–650, 1994.

Sieber, K. Relating full abstraction Results for different
programming languages. In Nori, K. V. and Madhavan, C.
E. V. (eds.), Proceedings of the 10th Annual Conference
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 1990), volume 472 of Lec-
ture Notes in Computer Science, pp. 373–387. Springer,
1990.

Tierney, L. Markov Chains for exploring posterior distribu-
tions. The Annals of Statistics, 22(4):1701–1728, 1994.

Tolpin, D., van de Meent, J., Paige, B., and Wood, F. D.
Output-sensitive adaptive Metropolis-Hastings for proba-
bilistic programs. In Appice, A., Rodrigues, P. P., Costa,
V. S., Gama, J., Jorge, A., and Carlos Soares (eds.), Pro-
ceedings of Machine Learning and Knowledge Discov-
ery in Databases - European Conference Part II (ECML
PKDD 2015), volume 9285 of Lecture Notes in Computer
Science, pp. 311–326. Springer, 2015.

Vákár, M., Kammar, O., and Staton, S. A domain theory for
statistical probabilistic programming. Proceedings of the
ACM on Programming Languages, 3(36):1–29, 2019.

van de Meent, J., Paige, B., Yang, H., and Wood, F. An
introduction to probabilistic programming. arXiv, 2018.
URL http://arxiv.org/abs/1809.10756.

http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1809.10756


Nonparametric Hamiltonian Monte Carlo

Verlet, L. Computer “experiments” on classical fluids. i.
thermodynamical properties of lennard-jones molecules.
Physical Review, 159(1):98–103, 1967.

Wingate, D., Stuhlmüller, A., and Goodman, N. D.
Lightweight implementations of probabilistic program-
ming languages via transformational compilation. In Gor-
don, G. J., Dunson, D. B., and Dudı́k, M. (eds.), Proceed-
ings of the 14th International Conference on Artificial
Intelligence and Statistics (AISTATS 2011), volume 15,
pp. 770–778. PMLR, 2011.

Wood, F. D., van de Meent, J., and Mansinghka, V. A
new approach to probabilistic programming inference. In
Kaski, S. and Corander, J. (eds.), Proceedings of the 17th
International Conference on Artificial Intelligence and
Statistics (AISTATS 2014), volume 33, pp. 1024–1032.
PMLR, 2014.

Yang, L., Hanrahan, P., and Goodman, N. D. Generating
efficient MCMC kernels from probabilistic programs. In
Kaski, S. and Corander, J. (eds.), Proceedings of the 17th
International Conference on Artificial Intelligence and
Statistics (AISTATS 2014), volume 33, pp. 1068–1076.
PMLR, 2014.

Zaiser, F. and Mak, C. Artifact for ”Nonparametric Hamil-
tonian Monte Carlo” (ICML 2021), June 2021. URL
https://doi.org/10.5281/zenodo.4897900.

Zhou, G. Mixed Hamiltonian Monte Carlo for mixed
discrete and continuous variables. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems (NeurIPS 2020), volume 33, pp. 17094–17104. Cur-
ran Associates, Inc., 2020.

Zhou, Y., Gram-Hansen, B. J., Kohn, T., Rainforth, T., Yang,
H., and Wood, F. LF-PPL: a low-level first order prob-
abilistic programming language for non-differentiable
models. In Chaudhuri, K. and Sugiyama, M. (eds.), Pro-
ceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS 2019), vol-
ume 89, pp. 148–157. PMLR, 2019.

Zhou, Y., Yang, H., Teh, Y. W., and Rainforth, T. Divide,
conquer, and combine: a new inference strategy for proba-
bilistic programs with stochastic support. In Proceedings
of the 37th International Conference on Machine Learn-
ing, (ICML 2020), volume 119, pp. 11534–11545. PMLR,
2020.

https://doi.org/10.5281/zenodo.4897900

