Near-optimal Algorithms for Explainable £-Medians and £-Means

Konstantin Makarychev “! Liren Shan *

Abstract

We consider the problem of explainable k-
medians and k-means introduced by Dasgupta,
Frost, Moshkovitz, and Rashtchian (ICML 2020).
In this problem, our goal is to find a threshold de-
cision tree that partitions data into k clusters and
minimizes the k-medians or k-means objective.
The obtained clustering is easy to interpret be-
cause every decision node of a threshold tree splits
data based on a single feature into two groups. We
propose a new algorithm for this problem which
is O(log k) competitive with k-medians with ¢,
norm and O(k) competitive with k-means. This
is an improvement over the previous guarantees
of O(k) and O(k?) by Dasgupta et al (2020). We
also provide a new algorithm which is O(log™* k)
competitive for k-medians with /5 norm. Our first
algorithm is near-optimal: Dasgupta et al (2020)
showed a lower bound of Q(log k) for k-medians;
in this work, we prove a lower bound of Q(kz)
for k-means. We also provide a lower bound of
O(log k) for k-medians with ¢5 norm.

1. Introduction

In this paper, we investigate the problem of explainable
k-means and k-medians clustering which was recently in-
troduced by Dasgupta, Frost, Moshkovitz, and Rashtchian
(2020). Suppose, we have a data set which we need to par-
tition into k clusters. How can we do it? Of course, we
could use one of many standard algorithms for k-means or
k-medians clustering. However, we want to find an explain-
able clustering — clustering which can be easily understood
by a human being. Then, k-means or k-medians clustering
may not be the best options for us.

Note that though every cluster in a k-means and k-medians
clustering has a simple mathematical description, this de-

'"Northwestern University, Evanston,
Liren Shan <liren-

“Equal contribution
IL, USA. Correspondence to:
shan2023 @u.northwestern.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1

scription is not necessarily easy to interpret for a human.
Every k-medians or k-means clustering is defined by a set
of k centers c¢', ¢2, . .., c*, where each cluster is the set of
points located closer to a fixed center ¢! than to any other
center ¢/. That is, for points in cluster ¢, we must have
argmin; ||z — ¢/|| = 4. Thus, in order to determine to
which cluster a particular point belongs, we need to com-
pute distances from point z to all centers ¢?. Each distance
depends on all coordinates of the points. Hence, for a hu-
man, it is not even easy to figure out to which cluster in
k-means or k-medians clustering a particular point belongs
to; let alone interpret the entire clustering.

In every day life, we are surrounded by different types
of classifications. Consider the following examples from
Wikipedia: (1) Performance cars are capable of going from
0 to 60 mph in under 5 seconds; (2) Modern sources cur-
rently define skyscrapers as being at least 100 metres or 150
metres in height; (3) Very-low-calorie diets are diets of 800
kcal or less energy intake per day, whereas low-calorie diets
are between 1000-1200 kcal per day. Note that all these
definitions depend on a single feature which makes them
easy to understand.

The above discussion leads us to the idea of Dasgupta et al.
(2020), who proposed to use threshold (decision) trees to
describe clusters (see also Liu, Xia, and Yu (2005), Fraiman,
Ghattas, and Svarc (2013), Bertsimas, Orfanoudaki, and
Wiberg (2018), and Saisubramanian, Galhotra, and Zilber-
stein (2020)).

A threshold tree is a binary classification tree with k leaves.
Every internal node u of the tree splits the data into two
sets by comparing a single feature ¢, of each data point
with a threshold 6,,. The first set is the set of points with
x;, < 0,; the second set is the set of points with x;, > 0,,.
These two sets are then recursively partitioned by the left
and right children of . Thus, each point in the data set
is eventually assigned to one of k leaves of the threshold
tree T'. This gives us a partitioning of the data set X into
clusters P = (Py, ..., P;). We note that threshold decision
trees are special cases of binary space partitioning (BSP)
trees and similar to k-d trees (Bentley, 1975).

Dasgupta et al. (2020) suggested that we measure the qual-
ity of a threshold tree using the standard k-means and k-
medians objectives. Specifically, the k-medians in ¢; cost

Near-optimal Algorithms for Explainable £-Medians and k-Means

’ | k-medians in ¢/, | k-medians in /5 | k-means ‘
’ ‘ Lower ‘ Upper ‘ Lower ‘ Upper ‘ Lower ‘ Upper ‘
Our results O(log kloglogk) | Q(logk) | O(log™* k) | Q(k/logk) | O(klog kloglog k)
Dasgupta et al. (2020) | Q(log k) O(k) Q(log k) O(k?)

Figure 1. Summary of our results. The table shows known upper and lower bounds on the price of explainability for k-medians in £; and

{5, and for k-means.

of the threshold tree T equals (1), the k-medians in /5 cost
equals (2) and k-means cost equals (3):

costy, (X, T) Z Z |l — ¢ ||1, (1
i=1zeP;

costy, (X, T) Z Z lz — |z,)
i=1 xz€EP;

cost[z (X,T) Z Z lz — '3, 3)
=1 x€P;

where ¢ is the ¢;-median of cluster P; in (1), the £5-median
of cluster P; in (2), and the mean of cluster P; in (3).

This definition raises obvious questions: Can we actually
find a good explainable clustering? Moreover, how good can
it be comparing to a regular k-medians and k-means clus-
tering? Let OPTy, (X), OPTy,(X), and OPT2(X) be
the optimal solutions to (regular) k-medians with ¢; norm,
k-medians with {5 norm, and k-means, respectively. Das-
gupta et al. (2020) defined the price of explainability as
the ratio costy, (X, T)/OPTy, (X) for k-medians in ¢; and
costyz (X, T)/OPT3(X) for k-means. The price of ex-
plainability shows by how much the optimal unconstrained
solution is better than the best explainable solution for the
same data set.

In their paper, Dasgupta et al. (2020) gave upper and lower
bounds on the price of explainability. They proved that the
price of explainability is upper bounded by O (k) and O(k?)
for k-medians in ¢; and k-means, respectively. Furthermore,
they designed two algorithms that given a k-medians in /1
or k-means clustering, produce an explainable clustering
with cost at most O (k) and O(k?) times the cost of original
clustering (respectively). They also provided examples for
which the price of explainability of k-medians in ¢; and
k-means is at least ©(log k).

1.1. Our results

In this work, we give almost tight bounds on the price
of explainability for both k-medians in ¢; and k-means.
Specifically, we show how to transform any clustering to an
explainable clustering with cost at most O(log k log log k)

times the original cost for the k-medians ¢; objective and
O(klog kloglog k) for the k-means objective. Note that
we get an exponential improvement over previous results for
the k-medians ¢; objective. Furthermore, we present an al-
gorithm for k-medians in £5 with the price of explainability
bounded by O(log”? k). We complement these results with
an almost tight lower bound of Q(k/ log k) for the k-means
objective and an 2(log k) lower bound for k-medians in {5
objective. We summarise our results in Table 1.

Below, we formally state our main results. The costs of
threshold trees and clusterings are defined by formulas (1),
(2), 3), (4), (5), and (6).

Theorem 1.1. There exists a polynomial-time randomized
algorithm that given a data set X and a set of centers
C = {c',...,c*}, finds a threshold tree T with expected
k-medians in {1 cost at most

E[coste, (X, T)] < O(log kloglog k) - coste, (X, C).

Theorem 1.2. There exists a polynomial-time randomized
algorithm that given a data set X and a set of centers
C = {c',...,ck}, finds a threshold tree T with expected
k-means cost at most

E[costys (X, T)] < O(klog kloglog k) - costz (X, C).

‘We note that the algorithms by Dasgupta et al. (2020) also
produce trees based on the given set of “reference” cen-
ters ¢!, ..., c*. However, the approximation guarantees of
those algorithms are O(k) and O(k?), respectively. Our
upper bound of O(log k log log k) almost matches the lower
bound of Q(log k) given by Dasgupta et al. (2020). The up-
per bound of O(k log k log log k) almost matches the lower

bound of Q2(k/ log k) we show in Appendix D.

Theorem 1.3. There exists a polynomial-time randomized
algorithm that given a data set X and a set of centers
C = {c',...,c¥}, finds a threshold tree T with expected
k-medians in U5 cost at most

Elcosty, (X, T)] < O(log”? k) - costy, (X, C).

1.2. Related work

Dasgupta et al. (2020) introduced the explainable k-medians
and k-means clustering problems and developed Iterative

Near-optimal Algorithms for Explainable £-Medians and k-Means

Mistake Minimization (IMM) algorithms for these problems.
Later, Frost, Moshkovitz, and Rashtchian (2020) proposed
algorithms that construct threshold trees with more than &
leaves.

Decision trees have been used for interpretable classification
and clustering since 1980s. Breiman, Friedman, Olshen, and
Stone (1984) proposed a popular decision tree algorithm
called CART for supervised classification. For unsuper-
vised clustering, threshold decision trees are used in many
empirical methods based on different criteria such as infor-
mation gain (Liu et al., 2005), local 1-means cost (Fraiman
et al., 2013), Silhouette Metric (Bertsimas et al., 2018), and
interpretability score (Saisubramanian et al., 2020).

The k-means and k-medians clustering problems have been
extensively studied in the literature. The k-means++ algo-
rithm proposed by Arthur and Vassilvitskii (2006) is the
most widely used algorithm for k-means clustering. It pro-
vides an O(In k) approximation. Li and Svensson (2016)
provided a 1 4+ /3 + ¢ approximation for k-medians in
general metric spaces, which was improved to 2.611 + € by
Byrka, Pensyl, Rybicki, Srinivasan, and Trinh (2014). Ah-
madian, Norouzi-Fard, Svensson, and Ward (2019) gave
a 6.357 approximation algorithm for k-means. The k-
medians and k-means problems are NP-hard (Megiddo &
Supowit, 1984; Dasgupta, 2008; Aloise et al., 2009). Re-
cently, Awasthi, Charikar, Krishnaswamy, and Sinop (2015)
showed that it is also NP-hard to approximate the k-means
objective within a factor of (1 + €) for some positive con-
stant € (see also Lee et al. (2017)). Bhattacharya, Goyal,
and Jaiswal (2020) showed that the Euclidean k-medians
can not be approximated within a factor of (1 +) for some
constant € assuming the unique games conjecture.

Boutsidis et al. (2009), Boutsidis et al. (2014), Cohen et al.
(2015), Makarychev et al. (2019) and Becchetti et al. (2019)
showed how to reduce the dimensionality of a data set for
k-means clustering. Particularly, Makarychev et al. (2019)
proved that we can use the Johnson—Lindenstrauss trans-
form to reduce the dimensionality of k-medians in {5 and
k-means to d’ = O(log k). Note, however, that the Johnson—
Lindenstrauss transform cannot be used for the explainable
k-medians and k-means problems, because this transform
does not preserve the set of features. Instead, we can use a
feature selection algorithm by Boutsidis et al. (2014) or Co-
hen et al. (2015) to reduce the dimensionality to d’ = O(k).

Independently of our work, Laber and Murtinho (2021)
proposed new algorithms for explainable k-medians with
{1 and k-means objectives. Their competitive ratios are
O(dlog k) and O(dklog k), respectively. Note that these
competitive ratios depend on the dimension d of the space.

2. Preliminaries

Given a set of points X C R4 and an integer k > 1, the
regular k-medians and k-means clustering problems are to
find a set C' of k centers to minimize the corresponding
costs: k-medians with ¢; objective cost (4), k-medians with
{5 objective cost (5), and k-means cost (6).

costy, (X, C) Z m1n||33z —cll1, 4)
rzeX

costy, (X, C) Z m1n||xz —clla. %)
reX

costgz (X, C) Z mm||x7 —c||3. (6)
rzeX

Every coordinate cut is specified by the coordinate ¢ €
{1,...,d} and threshold 6. We denote the set of all possible

cuts by Q:
Q={1, -,

We define the standard product measure on €2 as follows:
The measure of set .S C 2 equals

d} x R.

d
- ZMR({Q : (i,0) € S}),

where u is the Lebesgue measure on R.

For every cut w = (i,6) € Q and point z € R?, we let
1, ifx; > 0;
ba(w) = 0,00, 0) =4 T
0, otherwise.
In other words, d,,(%, 0) is the indicator of the event {z; >
0}. Observe that z — J,, is an isometric embedding of ¢¢
(d-dimensional ¢; space) into L (£2) (the space of integrable
functions on §2). Specifically, for z,y € R4, we have

d
le =yl =3l — ui

=1
i,0)| o (7)
— 6,()] du(w) = 118, — 6,1

A map ¢ : R? — R? is coordinate cut preserving if for
every coordinate cut (z,6) € (, there exists a coordinate
cut (i',0") € Qsuch that {z € R? : 2y < '} = { € R?:
©(z); < 0} and vice versa. In the algorithm for explainable
k-means, we use a cut preserving terminal embeddings of
“¢3 distance” into /1.

Near-optimal Algorithms for Explainable £-Medians and k-Means

Algorithm 1 Threshold tree construction for k-medians in ¢,

Input: a data set X C R? and set of centers C' = {c!, c?,.

Output: a threshold tree T'

..,y cRY

Set S;j = {w € Q:0pi(w) # s (w)} forall i, j € {1,--- ,k}. Lett = 0.

Create a tree T containing a root vertex r. Assign set X, =

X U C to the root.

while 7} contains a leaf with at least two distinct centers ¢’ and ¢/ do
Let By = Ujeaves w1 (5, 7) : €', ¢? € X, } be the set of all not yet separated pairs of centers.
Let D; = max(; jyep, ||c’ — ¢’||1 be the maximum distance between two not separated centers.

Define two sets A;, By C Q as follows:

At = U Sij and

(i,7)EE:

B, = U Sij.

(i,§)EE:
stp(Si5) <Dy /K>

Let! Ry = A; \ By. Pick a pair w; = (i, #) uniformly at random from R;.

For every leaf node v in 7', split the set X, into two sets:

Left ={x € X, : x; <0}

and Right = {x € X, : x; > 0}.

If each of these sets contains at least one center from C, then create two children of w in tree 7" and assign sets Left and

Right to the left and right child, respectively.

Denote the updated tree by 77 ;.
Updatet =1t + 1.
end while

3. Algorithms Overview

We now give an overview of our algorithms.

k-medians in /;. We begin with the algorithm for k-
medians in ¢;. We show that its competitive ratio is
O(log? k) in Section 4 and then show an improved bound
of O(log k log log k) in Section 5.

As the algorithm by Dasgupta et al. (2020), our algorithm
(see Algorithm 1) builds a binary threshold tree 7" top-down.
It starts with a tree containing only the root node r. This
node is assigned the set of points X, that contains all points
in the data set X and all reference centers c'. At every
round, the algorithm picks some pair w = (7,0) € 2 (as
we discuss below) and then splits data points = assigned to
every leaf node v into two groups {x € X,, : z; < 0} and
{z € X, : z; > 0}. Here, X,, denotes the set of points
assigned to the node . If this partition separates at least two
centers ¢ and ¢/, then the algorithm attaches two children to
u and assigns the first group to the left child and the second
group to the right child. The algorithm terminates when all
leaves contain exactly one reference center ¢’. Then, we
assign the points in each leaf of 7' to its unique reference
center. Note that the unique reference center in each leaf
may not be the optimal center for points contained in that

leaf. Thus, the total cost by assigning each point to the
reference center in the same leaf of 7" is an upper bound of
the cost of threshold tree 7T'.

The algorithm by Dasgupta et al. (2020) picks splitting cuts
in a greedy way. Our algorithm chooses them at random.
Specifically, to pick a cut w; € €2 at round ¢, our algorithm
finds the maximum distance D; between two distinct centers
c', ¢ that belong to the same set X, assigned to a leaf node
ui.e.,
D; = max max | —¢c|;.
wis aleaf ¢i,ci € X,

Then, we let A; be the set of all w € (2 that separate at
least one pair of centers; and B; be the set of all w € (2 that
separate two centers at distance at most D; /k3. We pick w;

uniformly at random (with respect to measure p) from the
set Rt = At \ Bt.

Every w € R, is contained in A;, which means w separates
at least one pair of centers. Thus, our algorithm terminates in
at most k— 1 iterations. It is easy to see that the running time
of this algorithm is polynomial in the number of clusters k
and dimension of the space d. In Section E, we provide a

'As we discuss in Section E, we can also let R; = A;. How-
ever, this will make the analysis more involved.

Near-optimal Algorithms for Explainable £-Medians and k-Means

variant of this algorithm with running time O(kd).

k-medians in /5. Our algorithm for k-medians with /5
norm recursively partitions the data set X using the follow-
ing idea. It finds the median point m of all centers in X.
Then, it repeatedly makes cuts that separate centers from m.
To make a cut, the algorithm chooses a random coordinate
i € {1,...,d}, random number @ € [0, R?], and random
sign o € {£1}, where R is the largest distance from a cen-
ter in X to the median point m. It then makes a threshold
cut (i, m; + o\/0). After separating more than half centers
from m, the algorithm recursively calls itself for each of the
obtained parts. In Appendix C, we show that the price of
explainability for this algorithm is O (log”* k).

k-means. We now move to the algorithm for k-means. This
algorithm embeds the space ¢, into ¢; using a specially
crafted terminal embedding ¢ (the notion of terminal em-
beddings was formally defined by Elkin et al. (2017)). The
embedding satisfies the following property for every center
¢ (terminal) and every point x € {5, we have

le(@) = p(o)lr < llz = cll3 < 8k - [lo(x) = ¢(c)1-

Then, the algorithm partitions the data set ¢(X') with centers
o(ch), ..., o(cF) using Algorithm 1. The expected cost
of partitioning is at most the distortion of the embedding
(8k) times the competitive guarantee (O(log k log log k)) of
Algorithm 1. In Section D, we show an almost matching
lower bound of Q(k/log k) on the cost of explainability for
k-means. We also remark that the terminal embedding we
use in this algorithm cannot be improved. This follows from
the fact that the cost function ||z — c||3 does not satisfy the
triangle inequality; while the ¢; distance ||p(z) — ©(c)]1
does.

4. Algorithm for £-medians in ¢,

In this section, we analyse Algorithm 1 for k-medians in
¢1 and show that it provides an explainable clustering with
cost at most O(log® k) times the original cost. We improve
this bound to O(log k log log k) in Section 5.

Recall, all centers in C' are separated by the tree T returned
by the algorithm, and each leaf of T contains exactly one
center from C'. For each point z € X, we define its cost in
the threshold tree 7" as

algy, (z) = ||z — ¢l

where c is the center in the same leaf in 7" as . Then,
costy, (X, T) <> ¢ x alg,, () (note that the original cen-
ters ¢!, ..., c" used in the definition of alg, () are not
necessarily optimal for the tree T". Hence, the left hand side
is not always equal to the right hand side.). For every point
x € X, we also define costy, (z,C) = min.cc ||z — cl1.
Then, costy, (X, C) = >, oy costy, (z,C) (see (4)).

We prove the following theorem.

Theorem 4.1. Given a set of points X in R? and a set
of centers C = {c',...,c*} C RY Algorithm 1 finds a
threshold tree T with expected k-medians in {1 cost at most

E[costy, (X, T)] < O(log® k) - costy, (X, C).

Moreover, the same bound holds for the cost of every point
ze Xie,

E[costy, (z,T)] < O(log? k) - costy, (x, C).

Proof. Let T} be the threshold tree constructed by Algo-
rithm 1 before iteration ¢. Consider a point in X. If = is
separated from its original center in C' by the cut generated
at iteration ¢, then = will be eventually assigned to some
other center in the same leaf of 7. By the triangle inequality,
the new cost of x at the end of the algorithm will be at most
costy, (z, C') + Dy, where Dy is the maximum diameter of
any leaf in 7} (see Algorithm 1). Define a penalty function
¢+(x) as follows: ¢i(x) = Dy if x is separated from its
original center c at time t; ¢;(x) = 0, otherwise. Note that
¢¢(x) # 0 for at most one iteration ¢, and

alg,, (z) < costy, (z,C) + Z o (). (8)
t

The sum in the right hand side is over all iterations of the
algorithm. We bound the expected penalty ¢ (x) for each ¢.

Lemma 4.2. The expected penalty ¢.(x) is upper bounded

as follows:

']l{w c Rt}
p(Re)

where c is the closest center to the point x in C; 1{w € R}
is the indicator of the event w € Ry.

E[¢y(2)] sE[Df, /Q 16, ()6 () dp(w)|.,

Proof. 1f x is already separated from its original center c at
iteration ¢, then ¢, (x) = 0. Otherwise, and c are separated
at iteration ¢ if for the random pair w; = (i, #) chosen from
R; in Algorithm 1, we have §, (w;) # d.(w;). Write,

E[1 ()] < B[P, [(1) # de(w) | T D]

The probability that J, (w;) # d.(w;) given T} is bounded
as

Py, [0z (wi) # de(wr) | Tt] = w € Ryt 0s(w) # de(w)}

1(Re)
NS £ 13 3
= [100) # 0wy 22 e
. W) — w .]I{WERt} w
= [18u(e) = bt S o,
O

Near-optimal Algorithms for Explainable £-Medians and k-Means

Let D, 1 R}
- Lw € Iy
Wilw) = — my

Then, by Lemma 4.2 and inequality (8), we have
Elalg,, (x)] < costy, (z,C)+
B[[150(w) =6l W) df)].
t

The upper bound on the expected cost of x in tree 7' consists
of two terms: The first term is the original cost of z. The sec-
ond term is a bound on the expected penalty incurred by .
We now bound the second term as O(log? k) - costy, (z, C).

E[Z/Q |02 (w) = de(w)| - Wi(w) du(w)} =
_ /Q () — 6] - E[X Walw)] du(w).

By Holder’s inequality, the right hand side is upper bounded
by the following product:

16, — 0clh 'glgéxa[ztjwtw)}.

The first multiplier in the product exactly equals ||z — ¢||;
(see Equation 7), which, in turn, equals costy, (x, C'). Hence,
to finish the proof of Theorem 4.1, we need to upper bound
the second multiplier by O(log® k).

Lemma 4.3. Forall w €), we have

E[Z Wt(w)] < O(log? k).

Proof. Let t’ be the first iteration and ¢” be the last iteration
for which W;(w) > 0. First, we prove that Dy > Dy /k3,
where Dy and Dy are the maximum cluster diameters
at iterations ¢’ and ¢", respectively. Since Wy (w) > 0
and Wy (w) > 0, we have 1{w € Ry} # 0 and 1{w €
Ry} # 0. Hence,w € Ry and w € Ry». Since w € Ry,
there exists a pair (4, j) € Ey for which w € S;;. For this
pair, we have D;» > u(S;;). Observe that the pair (¢, j)
also belongs to Ey, since Ey» C Ey. Moreover, p(S;;) >
D/ k3, because otherwise, S;i; would be included in By
(see Algorithm 1) and, consequently, w would not belong to
Rt' = At' \ Bt/' Thus

Dy > pi(Sij) > Dy JK>. 9)

By the definition of ¢’ and ¢/, we have

¢

ZWt(w) = ZWt(w) < Z (DRtf)

t=t’ t=t’ K

Note that the largest distance D, is a non-increasing (ran-
dom) function of ¢. Thus, we can split the iterations of the
algorithm {#', ..., t"} into [3log k] phases. At phase s, the
maximum diameter D; is in the range (Dy /25", Dy /2].
Denote the set of all iterations in phase s by Phase(s).

Consider phase s. Let D = D, /2°. Phase s ends when
all sets S;; with u(S;;) > D/2 are removed from the set
E;. Let us estimate the probability that one such set .S;; is
removed from F} at iteration ¢. Set S;; is removed from F;
if the random threshold cut w; chosen at iteration ¢ separates
centers ¢; and c;, or, in other words, if wy € S;;. The
probability of this event equals:

(S N Ry) u(Siy) — p(Si; N By)
Flo € 8y | Ti] = u(Re) p(Ry)

>
B w(Ry)
Note that p(S;;) > D/2 > D, /2 and p(By) < (g) : % <

Dt (because By is the union of at most (%) sets of measure
at most D, /k® each). Hence,

Dy
4p(Ry)

P[L«)t € Sij ‘ Tt] > > Wt(w).

1
4
If W;(w) did not depend on ¢, then we would argue that
each set S;; (with 1u(S;;) > D/2) is removed from E} in at
most 4/W;(w) iterations, in expectation, and, consequently,
all sets .S;; are removed in at most O(logk) - 4/Wy(w)
iterations, in expectation (note that the number of sets S;;
is upper bounded by (£)). Therefore,

E[Y Wiw)| <0(ogh)- Wi(w)
tePhase(s)

4
Wt(W)
= O(logk).

However, we cannot assume that W;(w) is a constant. In-
stead, we use the following claim with E = {0,...,k —
and Pt = Wt (OJ)/4

Claim 4.4. Consider two stochastic processes Fy and py
adapted to filtration F;. The values of E, are subsets of
some finite non-empty set E. The values of p; are numbers
in [0,1]. Suppose that for every step t, Fy.1 C E; and
forevery e € E;, Prle ¢ Fyy1 | Ft] > pi. Let T be the
(stopping) time t when E, = &. Then,

5[0 <uisi 0.

t=0

We prove this claim in Appendix A.

Near-optimal Algorithms for Explainable £-Medians and k-Means

By Claim 4.4,

]E[3y Wt(w)}goaogk).

tePhase(s)

The expected sum of W, over all phases is upper bounded
by O(log2 k), since the number of phases is upper bounded
by O(log k). We note that if the number of phases is upper
bounded by L, then the expected sum of W, over all phases
is upper bounded by O(L log k). This concludes the proofs
of Lemma 4.3 and Theorem 4.1. O

5. Improved Analysis for £-medians in ¢,

In this section, we provide an improved analysis of our
algorithm for k-medians in ¢;.

Theorem 5.1. Given a set of points X in R? and set of cen-
ters C = {ct,...,c*} C RY, Algorithm 1 finds a threshold
tree T with expected k-medians {1 cost at most

E[costy, (X, T)] < O(log kloglog k) - costy, (X, C).

Proof. In the proof of Theorem 4.1, we used a pessimistic
estimate on the penalty a point € X incurs when it is sep-
arated from its original center c. Specifically, we bounded
the penalty by the maximum diameter of any leaf in the tree
T;. In the current proof, we will use an additional bound:
The distance from z to the closest center after separation.
Suppose, that x is separated from its original center c. Let
¢’ be the closest center to x after we make cut w; at step t.
That is, ¢ is the closest center to z in the same leaf of the
threshold tree T3 ;. Note that after we make additional cuts,
2 may be separated from its new center ¢’ as well, and the
cost of x may increase. However, as we already know, the
expected cost of - may increase in at most O(log? k) times
in expectation (by Theorem 4.1). Here, we formally apply
Theorem 4.1 to the leaf where x is located and treat ¢’ as
the original center of x. Therefore, if z is separated from c
by a cut wy at step ¢, then the expected cost of z in the end
of the algorithm is upper bounded by

Elalg,, (x) | Ty, we] < O(log* k) - || — z|1 (10)
= O(log? k) - DI™™ (z, wy).

In the formula above, we used the following definition:
D" (g, w) is the distance from x to the closest center ¢’ in
the same leaf of 7} as x which is not separated from x by
the cut w i.e., d;(w) = . (w). If there are no such centers
c (i.e., cut w separates = from all centers), then we let
D" (x,w) = 0. Note that in this case, our algorithm will
never make cut w, since it always makes sure that the both
parts of the cut contain at least one center from C'. Similarly
to D" (x, w), we define D" (z,w): D" (z,w) is the
distance from z to the farthest center ¢ in the same leaf

of T} as x which is not separated from z by the cut w.
We also let D***(z,w) = 0 if there is no such ¢”’. Note
that Dj"**(z,w) is an upper bound on the cost of z in the
eventual threshold tree T if cut w separated = from c at
step ¢.

‘We now have three bounds on the expected cost of x in the
final tree T' given that the algorithm separates = from its
original center c at step ¢ with cut w. The first bound is
D% (£, w); the second bound is O (log? k) - DI (z, w),
and the third bound is ||z — ¢||1 + D;. We use the first bound
if D" (z,w) < 2||x — ¢||1. We call such cuts w light cuts.
We use the second bound if D}"**(z,w) > 2||z — ¢||; but
DMin(z w) < Dy/log* k. We call such cuts w medium
cuts. We use the third bound if DJ*** (z,w) > 2||x — ¢||1
and D" (x,w) > D,/ log* k. We call such cuts w heavy
cuts.

Note that in the threshold tree returned by the algorithm, one
and only one of the following may occur: (1) x is separated
from the original center c by a light, medium, or heavy cut;
(2) z is not separated from c. We now estimate expected
penalties due to light, medium, or heavy cuts.

If the algorithm makes a light cut, then the maximum cost of
point z in T is at most 2||z — ¢||; = 2costy, (z, C). So we
should not worry about such cuts. If the algorithm makes
a medium cut, then the expected additional penalty for x is
upper bounded by

Dlni”(x7wt) . O(]Qg2 k‘) < O(¢t(m)/10g2 k)7

where ¢;(x) is the function from the proof of Theorem 4.1.
Thus, the total expected penalty due to a medium cut (added
up over all steps of the algorithm) is Q(log? k) times smaller
than the penalty we computed in the proof of Theorem 4.1.
Therefore, the expected penalty due to a medium cut is at
most O(||z — ¢||1)-

We now move to heavy cuts. Denote the set of possible
heavy cuts for z in R; by H;. That is, if = is not separated
from its original center c by step ¢, then

H, = {w € R, : D"™(z,w) > D;/log" k and
D% (z,w) > 2|z — c||1}.

Otherwise, let H, = . Define a density function W, (w)
similarly to W (w):
Dt .]l{w € Ht}

((Re) .

Then, the expected penalty due to a heavy cut is bounded,
similarly to Lemma 4.2, by

zt:]E

Wi(w) =

/0 ‘(535((4}) - (Sc(w)l . /V‘[;t du(w) .

Near-optimal Algorithms for Explainable £-Medians and k-Means

Therefore, to finish the proof of Theorem 1.1, we need to
prove the following analog of Lemma 4.3.

Lemma 5.2. Forall w € Q, we have

E [3 Wt(w)] < O(log kloglog k).

Proof. As in the proof of Lemma 4.3, consider the first
and last steps when W, (w) > 0. Denote these steps by t*
and t**, respectively. In the proof of Lemma 4.3, we had a
bound Dy > Dy / k3 (see inequality (9)). We now show a
stronger bound on t* and ¢**.

Claim 5.3. We have Dy« > Di*[210g* k.

This claim implies that the number of phases defined in
Lemma 4.3 is bounded by O(log log k), which immediately
implies Lemma 5.2. So, to complete the proof, it remains to
show Claim 5.3.

Proof of Claim 5.3 First, note that 1{w € H;-~} > 0 and,
consequently, cut w is heavy at step t**. Thus, D" (z, w)
is positive. Hence, this cut separates ¢ from at least one
other center ¢’ in the same leaf of the current threshold tree
T;+~. Let ¢” be the farthest such center from point 2. Then,
¢ — x|l = D4* (2, w). Since centers ¢ and ¢” are not
separated prior to step t**, we have

Dper 2 fle=c"|ln = [lo = "[ls = [z —]
Since w is a heavy cut and not a light cut, ||z — ¢’||; >
2||x — ¢||1. Thus,
< |l — "l _ D (p,w) _ DI(z,w)
- 2 2 - 2 ’
Now, observe that the random process D" (x, w) is non-

decreasing (for fixed x and w) since the distance from x to
the closest center ¢’ cannot decrease over time. Therefore,

Dmin(z,w) _ DR (z,w) < Dy
2

Do

>

Dy >

- 2 ~ 2log? k'
In the last inequality, we used that w is a heavy cut at time
t*. This finishes the proof of Claim 5.3. O

6. Terminal Embedding of /3 into ¢,

In this section, we show how to construct a coordinate cut
preserving terminal embedding of /3 (squared Euclidean
distances) into ¢; with distortion O(k) for every set of ter-
minals K C R? of size k.

Let K be a finite subset of points in R?. We say that ¢ :
x + (x) is a terminal embedding of ¢3 into ¢; with a set
of terminals K and distortion « if for every terminal y in K
and every point x in R%, we have

le(x) = o)l < lz —yll3 < a-lle(@) — o)l

Lemma 6.1. For every finite set of terminals K in RY, there
exists a coordinate cut preserving terminal embedding of (3
into £1 with distortion 8| K|.

Proof. We first prove a one dimensional analog of this the-
orem (which corresponds to the case when all points and
centers are in one dimensional space).

Lemma 6.2. For every finite set of real numbers K, there
exists a cut preserving embedding Vi : R — R such that
foreveryx € Randy € K, we have

[k (x) — Uk (y)| < |z —yl?
<8IK| - [r () — P (y)]-

(1)

Proof. Let k be the size of K and y1, . . ., yj, be the elements
of K sorted in increasing order. We first define i on
points in K and then extend this map to the entire real line
R. We map each y; to z; defined as follows: z; = 0 and for
1=2,...,k,

i—1

1
5= D Wi —yy)*.

j=1

Now consider an arbitrary number = in R. Let y; be the
closest point to x in K. Let ¢, = sign(x — y;). Then,
x = y; + €z|x — y;|. Note that ,, = 1 if z is on the right to
1, and e, = —1, otherwise. Let the function i x be

V() = 2 + ex(x — yi)>

For x = (y; + yi+1)/2, both y; and y;; are the closest
points to x in K. In this case, we have

zi+ex(x —yi)? = 2ig1 +ex(x — yiy1)?,

which means ¢ (x) is well-defined. An example of the ter-
minal embedding function ¢ i () is shown in Figure 2. We
show that this function ¥ i is a cut preserving embedding
satisfying inequality (11) in Lemma B.1. O

Using the above lemma, we can construct a terminal em-
bedding 1 from d-dimensional ¢3 into d-dimensional ¢,
as follows. For each coordinate ¢ € {1,2,---,d}, let
K; be the set of the i-th coordinates for all terminals in
K. Define one dimensional terminal embeddings 1; for
all coordinates 7. Then,) maps every point x € /3 to
Y(x) = (Y1(x), -+ ,vq(x)). We show that this terminal
embedding 1) is coordinate cut preserving in Lemma B.2.

O

For explainable k-means clustering, we first use the terminal
embedding of /3 into ¢;. Then, we apply Algorithm 1 to
the instance after the embedding. By using this terminal
embedding, we can get the following result.

Near-optimal Algorithms for Explainable £-Medians and k-Means

Vi ()

Figure 2. Terminal embedding function ¢ x (z) for K = {1, 3, 5}.

Theorem 6.3. Given a set of points X in R* and a set of
centers C in RY, Algorithm 1 with terminal embedding finds
a threshold tree T with expected k-means cost at most

E[costs (X, T)] < O(klog kloglog k) - costz (X, C).

Proof. Let be the terminal embedding of ¢3 into £; with
terminals C'. Let T” be the threshold tree returned by our al-
gorithm on the instance after embedding. Since the terminal
embedding ¢ is coordinate cut preserving, the threshold tree
T’ also provides a threshold tree T" on the original k-means
instance. Let ¢(C) be the set of centers after embedding.
For any point z € X, the expected cost of z is at most

Efcostyz (z, T)] < 8k - Elcosty, (p(x), T")]
< O(klogkloglogk) - costy, (¢(2), p(C))
< O(klogkloglogk) - costyz(x, C),
where the first and third inequality is from the terminal

embedding in Lemma 6.1 and the second inequality is due
to Theorem 5.1. O

Acknowledgements

Konstantin Makarychev and Liren Shan were supported by
NSF Awards CCF-1955351 and CCF-1934931.

References

Ahmadian, S., Norouzi-Fard, A., Svensson, O., and Ward,
J. Better guarantees for £-means and euclidean k-median
by primal-dual algorithms. SIAM Journal on Computing,
49(4):FOCS17-97, 2019.

Aloise, D., Deshpande, A., Hansen, P., and Popat, P. Np-
hardness of euclidean sum-of-squares clustering. Ma-
chine learning, 75(2):245-248, 2009.

Arthur, D. and Vassilvitskii, S. k-means++: The advantages
of careful seeding. Technical report, Stanford, 2006.

Awasthi, P., Charikar, M., Krishnaswamy, R., and Sinop,
A. K. The hardness of approximation of euclidean k-
means. arXiv preprint arXiv:1502.03316, 2015.

Becchetti, L., Bury, M., Cohen-Addad, V., Grandoni, F., and
Schwiegelshohn, C. Oblivious dimension reduction for k-
means: beyond subspaces and the johnson-lindenstrauss
lemma. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1039-1050,
2019.

Bentley, J. L. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18
(9):509-517, 1975.

Inter-
arXiv preprint

Bertsimas, D., Orfanoudaki, A., and Wiberg, H.
pretable clustering via optimal trees.
arXiv:1812.00539, 2018.

Bhattacharya, A., Goyal, D., and Jaiswal, R. Hardness of
approximation of euclidean k-median. arXiv preprint
arXiv:2011.04221, 2020.

Boutsidis, C., Mahoney, M. W., and Drineas, P. An im-
proved approximation algorithm for the column subset
selection problem. In Proceedings of the twentieth an-
nual ACM-SIAM symposium on Discrete algorithms, pp.
968-977. SIAM, 2009.

Boutsidis, C., Zouzias, A., Mahoney, M. W., and Drineas,
P. Randomized dimensionality reduction for k-means
clustering. IEEE Transactions on Information Theory, 61
(2):1045-1062, 2014.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classi-
fication and regression trees, 1984.

Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., and Trinh,
K. An improved approximation for k-median, and posi-
tive correlation in budgeted optimization. In Proceedings
of the twenty-sixth annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 737-756. SIAM, 2014.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,
M. Dimensionality reduction for k-means clustering and
low rank approximation. In Proceedings of the forty-

seventh annual ACM symposium on Theory of computing,
pp. 163-172, 2015.

Dasgupta, S. The hardness of k-means clustering. Depart-
ment of Computer Science and Engineering, University
of California, San Diego, 2008.

Dasgupta, S., Frost, N., Moshkovitz, M., and Rashtchian,
C. Explainable k-means and k-medians clustering. In

Near-optimal Algorithms for Explainable £-Medians and k-Means

International Conference on Machine Learning, pp. 7055—

7065. PMLR, 2020.

Elkin, M., Filtser, A., and Neiman, O. Terminal embeddings.
Theoretical Computer Science, 697:1-36, 2017.

Fraiman, R., Ghattas, B., and Svarc, M. Interpretable clus-
tering using unsupervised binary trees. Advances in Data
Analysis and Classification, 7(2):125-145, 2013.

Frost, N., Moshkovitz, M., and Rashtchian, C. Exkmc: Ex-
panding explainable k-means clustering. arXiv preprint
arXiv:2006.02399, 2020.

Laber, E. and Murtinho, L. On the price of explain-
ability for some clustering problems. arXiv preprint
arXiv:2101.01576, 2021.

Lee, E., Schmidt, M., and Wright, J. Improved and simpli-
fied inapproximability for k-means. Information Process-
ing Letters, 120:40-43, 2017.

Li, S. and Svensson, O. Approximating k-median via
pseudo-approximation. SIAM Journal on Computing,
45(2):530-547, 2016.

Liu, B, Xia, Y., and Yu, P. S. Clustering via decision
tree construction. In Foundations and advances in data
mining, pp. 97-124. Springer, 2005.

Makarycheyv, K., Makarycheyv, Y., and Razenshteyn, 1. Per-
formance of johnson-lindenstrauss transform for k-means
and k-medians clustering. In Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing,
pp- 1027-1038, 2019.

Megiddo, N. and Supowit, K. J. On the complexity of some
common geometric location problems. SIAM journal on
computing, 13(1):182—-196, 1984.

Saisubramanian, S., Galhotra, S., and Zilberstein, S. Bal-
ancing the tradeoff between clustering value and inter-
pretability. In Proceedings of the AAAI/ACM Conference
on Al, Ethics, and Society, pp. 351-357, 2020.

