
Inverse Constrained Reinforcement Learning

8. Appendix
This appendix should be read as a continuation of the main paper.

8.1. Gradient of log likelihood

The gradient of (5) is

∇θL(θ) =
1

N

M∑
i=1

[
0 +∇θ log ζθ(τ

(i))
]
− 1∫

exp(βr(τ))ζθ(τ)dτ

∫
exp(βr(τ))∇θζθ(τ)dτ

=
1

N

N∑
i=1

∇θ log ζθ(τ
(i))−

∫
exp(βr(τ))ζθ(τ)∫

exp(βr(τ ′))ζθ(τ ′)dτ ′
∇θ log ζθ(τ)dτ

=
1

N

N∑
i=1

∇θ log ζθ(τ
(i))−

∫
pMζ̄θ

(τ)∇θ log ζθ(τ)dτ

=
1

N

N∑
i=1

∇θ log ζθ(τ
(i))− Eτ∼πMζθ

[∇θ log ζθ(τ)] ,

(13)

where the second line follows from the identity ∇θζθ(τ) ≡ ζθ(τ)∇θ log ζθ(τ) and the fourth line from the MaxEnt
assumption.

8.2. Derivation of importance sampling weights

Suppose that at some iteration of our training procedure we are interested in approximating the gradient of the log of the
partition function∇θ logZθ (where θ are the current parameters of our classifier) using an older policy πζθ̄ (where θ̄ were
the parameters of the classifier which induced the constraint set that this policy respects). We can do so by noting that

Zθ =

∫
exp(r(τ))ζθ(τ)dτ

=

∫
πζθ̄ (τ)

[
exp(r(τ))ζθ(τ)

πζθ̄ (τ)

]
dτ

= Eτ∼πζθ̄

[
exp(r(τ))ζθ(τ)

πζθ̄ (τ)

]
= Zθ̄ · Eτ∼πζ

θ̄

[
ζθ(τ)

ζθ̄(τ)

]
.

(14)

where the fourth lines follows from our MaxEnt assumption, i.e., πζθ̄ (τ) = exp(r(τ))ζθ̄(τ)/Zθ̄.

Therefore

∇θ logZθ =
1

Zθ
∇θZθ

=
1

Zθ̄ · Eτ∼πζθ̄
[
ζθ(τ)
ζθ̄(τ)

] [Zθ̄ · Eτ∼πζθ̄
[
∇θζθ(τ)

ζθ̄(τ)

]]

=
1

Eτ∼πζθ̄
[
ζθ(τ)
ζθ̄(τ)

] [Eτ∼πζθ̄
[
ζθ(τ)

ζθ̄(τ)
∇θ log ζθ(τ)

]]
.

(15)

Inverse Constrained Reinforcement Learning

Note that Eτ∼πζ
θ̄

[
ζθ(τ)
ζθ̄(τ)

]
=
∫
πζθ (τ)dτ = 1. So

∇θ logZθ = Eπζ
θ̄

[
ζθ(τ)

ζθ̄(τ)
∇θ log ζθ(τ)

]
= Eπζθ̄

[
T∏
t=1

ζθ(st, at)

ζθ̄(st, at)
∇θ log

T∏
t′=1

ζθ(st′ , at′)

]

= Eπζ
θ̄

[
T∏
t=1

ζθ(st, at)

ζθ̄(st, at)

T∑
t′=1

∇θ log ζθ(st′ , at′)

]

=

T∑
t′=1

Eπζ
θ̄

[
T∏
t=1

ζθ(st, at)

ζθ̄(st, at)
∇θ log ζθ(st′ , at′)

]

=

T∑
t′=1

Eπζθ̄

 T∏
t=1
t 6=t′

ζθ(st, at)

ζθ̄(st, at)

(ζθ(st′ , at′)ζθ̄(st′ , at′)
∇θ log ζθ(st′ , at′)

)

=

T∑
t′=1

Eτ/(st′ ,at′)∼πζθ̄

 T∏
t=1
t 6=t′

ζθ(st, at)

ζθ̄(st, at)

Est′ ,at′∼πζθ̄

[
ζθ(st′ , at′)

ζθ̄(st′ , at′)
∇θ log ζθ(st′ , at′)

]

=

T∑
t′=1

Zθ
Zθ̄
· Eπζθ̄

[
ζθ(st′ , at′)

ζθ̄(st′ , at′)
∇θ log ζθ(st′ , at′)

]
.

≈
T∑
t′=1

Eπζ
θ̄

[
ζθ(st′ , at′)

ζθ̄(st′ , at′)
∇θ log ζθ(st′ , at′)

]
,

(16)

where the last step assumes that Zθ ≈ Zθ̄. This is justified since we restrict the extent to which ζθ can change via the early
stopping technique.

8.3. Forward and reverse KL divergences between two policies

Consider two policies πθ̄ and πθ. Using our MaxEnt assumption, we can write the forward KL divergence as

DKL(πθ̄||πθ) = Eτ∼πθ̄

[
log

πθ̄(τ)

πθ(τ)

]
= Eτ∼πθ̄

[
log

ζθ̄(τ)

ζθ(τ)

]
+ log

Zθ
Zθ̄
.

(17)

Let ω(τ) denote ζθ̄(τ)/ζθ(τ). Plugging in the expression for Zθ from (14) and using Jensen’s inequality gives

DKL(πθ̄||πθ) = Eτ∼πθ̄ [logω(τ)] + logEτ∼πθ̄ [ω(τ)]

≤ 2 logEτ∼πθ̄ [ω(τ)] .
(18)

Similarly, the reverse KL divergence is

DKL(πθ||πθ̄) = Eτ∼πθ
[
log

πθ(τ)

πθ̄(τ)

]
= Eτ∼πθ̄

[
πθ(τ)

πθ̄(τ)
log

πθ(τ)

πθ̄(τ)

]
= Eτ∼πθ̄

[
ω(τ)

Zθ̄
Zθ

logω(τ)
Zθ̄
Zθ

]
= Eτ∼πθ̄ [ω(τ) logω(τ)]

Zθ̄
Zθ

+ Eτ∼πθ̄ [ω(τ)]
Zθ̄
Zθ

log
Zθ̄
Zθ
.

(19)

Inverse Constrained Reinforcement Learning

From (14) we know that Zθ̄/Zθ = 1/Eτ∼πθ̄ω(τ). Using Jensen’s inequality we have

DKL(πθ||πθ̄) =
1

Eτ∼πθ̄ [ω(τ)]
Eτ∼πθ̄ [ω(τ) logω(τ)]− logEτ∼πθ̄ [ω(τ)]

≤ 1

Eτ∼πθ̄ [ω(τ)]
Eτ∼πθ̄ [ω(τ) logω(τ)]− Eτ∼πθ̄ [logω(τ)] .

(20)

Letting ω̄ denote Eτ∼πθ̄ [ω(τ)] gives us

DKL(πθ||πθ̄) ≤
Eτ∼πθ̄ [(ω(τ)− ω̄) logω(τ)]

ω̄
. (21)

8.4. Rationale for (9)

Consider a constrained MDPMC as defined in Section 2.2. We are interested in recovering the following policy

πMC (τ) =
exp(βr(τ))

ZMC
1C(τ) (22)

where ZMC =
∫

exp(βr(τ))1C(τ)dτ is the partition function and 1C is an indicator function that is 0 if τ ∈ C and 1
otherwise.

Lemma: The Boltzmann policy πB(τ) = exp(βr(τ))/Z maximizes L(π) = Eτ∼π[r(τ)] + 1
βH(π), where H(π) denotes

the entropy of π.

Proof: Note that the KL-divergence, DKL, between a policy π and πB can be written as

DKL(π||πB) = Eτ∼π[log π(τ)− log πB(τ)]

= Eτ∼π[log π(τ)− βr(τ) + logZ]

= −Eτ∼π[βr(τ)]−H(π) + logZ

= −βL(π) + logZ.

(23)

Since logZ is constant, minimizing DKL(π||πB) is equivalent to maximizing L(π). Also, we know that DKL(π||πB) is
minimized when π = πB . Therefore, πB maximizes L.

Proposition: The policy in (22) is a solution of

minimize
λ≥0

max
π

Eτ∼π[r(τ)] +
1

β
H(πφ)− λ(Eτ∼πφ [ζ̄θ(τ)]− α). (24)

Proof: Let us rewrite the inner optimization problem as

max
π

Eτ∼π[r(τ)− λ(ζ̄θ(τ)− α)] +
1

β
H(π). (25)

From the Lemma we know that the solution to this is

π(τ, λ) =
g(τ, λ)∫
g(τ ′, λ)dτ ′

, (26)

where g(τ, λ) = exp(β(r(τ)− λ(ζ̄θ(τ)− α))). To find π∗(τ) = minλ π(τ, λ), note that:

1. When ζ̄θ(τ) ≤ α, then λ∗ = 0 minimizes π. In this case g(τ, λ∗) = exp(βr(τ)).

2. When ζ̄θ(τ) > α, then λ∗ →∞ minimizes π. In this case g(τ, λ∗) = 0.

We can combine both of these cases by writing

π∗(τ) =
exp(r(τ))∫

exp(r(τ ′))1ζ̄θ (τ ′)dτ ′
1ζ̄θ (τ), (27)

where 1ζ̄θ (τ) is 1 if ζ̄θ(τ) ≤ α and 0 otherwise. (Note that the denominator is greater than 0 as long as we have at least one
τ for which ζ̄θ(τ) ≤ α, i.e., we have at least one feasible solution.)

Inverse Constrained Reinforcement Learning

8.5. Experimental settings

Our codebase is built on top of the stable-baselines codebase (Hill et al., 2018). We used W&B (Biewald, 2020) to manage
our experiments and conduct sweeps on hyperparameters. We used Adam (Kingma & Ba, 2015) to optimize all of our
networks. All important hyperparameters are listed in Table 1. For the ablation studies we used the same parameters as
listed in the table for HalfCheetah. Details on the environments can be found below.

8.5.1. LAPGRIDWORLD

Here, agents move on a 11× 11 grid by taking either clockwise or anti-clockwise actions. The agent is awarded a reward 3
each time it moves onto a bridge with a dollar (see Figure 2). The agent’s state is the number of the grid it is on.

8.5.2. HALFCHEETAH, ANT AND ANT-BROKEN

The original reward schemes for HalfCheetah and Ant in OpenAI Gym (Brockman et al., 2016), reward the agents
proportional to the distance they cover in the forward direction. We modify this and instead simply reward the agents
according to the amount of distance they cover (irrespective of the direction they move in). For Ant-Broken we simply
disable two of the legs of Ant by hard-coding a torque of 0 on their motors.

8.5.3. POINT

For the Point agent, the reward function at each timestep is defined as follows

r :=
ydx− xdx(

1 + |
√
x2 + y2 − 10)|

) (28)

where x, y are the position coordinates of the agent and dx and dy are the distances that the agent has moved in x and y
directions respectively in that timestep.

Inverse Constrained Reinforcement Learning

Table 1. List of hyperparameters. For neural network architectures we report the number of hidden units in each layer. All hidden layers
use the tanh activation function.

PARAMETER LAPGRIDWORLD HALFCHEETAH ANT POINT ANTBROKEN

POLICY, πφ
ARCHITECTURE

POLICY NETWORK 64, 64 64, 64 64, 64 64, 64 64, 64
VALUE NETWORK 64, 64 64, 64 64, 64 64, 64 64, 64
COST VALUE NETWORK 64, 64 64, 64 64, 64 64, 64 64, 64

BATCH SIZE 64 64 128 64 128
PPO TARGET KL 0.01 0.01 0.01 0.01 0.01
LEARNING RATE 3× 10−4 3× 10−4 3× 10−5 3× 10−4 3× 10−5

REWARD-GAE-γ 0.99 0.99 0.99 0.99 0.99
REWARD-GAE-λ 0.95 0.95 0.90 0.95 0.90
COST-GAE-γ 0.99 0.99 0.99 0.99 0.99
COST-GAE-λ 0.95 0.95 0.95 0.95 0.95
ENTROPY BONUS, 1/β 0.0 0.0 0.0 0.0 0.0

LAGRANGIAN, λ
INITIAL VALUE 1.0 1.0 0.1 1.0 0.1
LEARNING RATE 0.1 0.1 1.0 0.1 1.0
BUDGET 0.0 0.0 0.0 0.0 0.0

CONSTRAINT FUNCTION, ζθ
ARCHITECTURE 20 20 40,40 - -
LEARNING RATE 0.01 0.01 0.01 - -
BACKWARD ITERATIONS 10 10 10 - -
REGULARIZER WEIGHT 0.5 0.5 0.6 - -
MAX FORWARD KL, εF 10 10 10 - -
MAX BACKWARD KL, εB 2.5 2.5 2.5 - -

MISCELLANEOUS
EXPERT ROLLOUTS 1 10 45 - -
ROLLOUT LENGTH 200 1000 500 150 500

