
Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic MDPs

Supplementary Materials for “Near-Optimal Model-Free Reinforcement Learning
in Non-Stationary Episodic MDPs”

A. Applications to Sequential Transfer, Multi-Task, and Multi-Agent RL

One area that could benefit from non-stationary RL is sequential transfer in RL (Tirinzoni et al., 2020) or multi-
task RL (Brunskill & Li, 2013), which itself is conceptually related to continual RL (Kaplanis et al., 2018)
and life-long RL (Abel et al., 2018). In the setting of sequential transfer/multi-task RL, the agent encounters
a sequence of tasks over time with different system dynamics, and seeks to bootstrap learning by transferring
knowledge from previously-solved tasks. Typical solutions in this area (Brunskill & Li, 2013; Tirinzoni et al.,
2020; Sun et al., 2020) need to assume that there are finitely many candidate tasks, and every task should be
sufficiently different from the others5. Only under this assumption can the agent quickly identify the current task
it is operating on, by essentially comparing the system dynamics it observes with the dynamics it has memorized
for each candidate task. After identifying the current task with high confidence, the agent then invokes the policy
that it learned through previous interactions with this specific task. This transfer learning paradigm in turn
causes another problem—it “cold switches” between policies that are most likely very different, which might
lead to unstable and inconsistent behaviors of the agent over time. Fortunately, non-stationary RL can help
alleviate both the finite-task assumption and the cold-switching problem. First, non-stationary RL algorithms
do not need the candidate tasks to be sufficiently different in order to correctly identify each of them, because
the algorithm itself can tolerate some variations in the task environment. There will also be no need to assume
the finiteness of the candidate task set anymore, and the candidate tasks can be drawn from a continuous space.
Second, since we are running the same non-stationary RL algorithm for a series of tasks, it improves its policy
gradually over time, instead of cold-switching to a completely independent policy for each task. This could
largely help with the unstable behavior issues.

Multi-agent reinforcement learning (MARL) (Littman, 1994) studies the problem where a set of agents collab-
orate or compete in a shared environment. In MARL, since the transition and reward functions of the agents
are coupled, the environment is non-stationary from each agent’s own perspective, especially when the agents
learn and update their policies simultaneously. See Zhang et al. (2019) for a more detailed discussion. The non-
stationarity in MARL is a setting where non-stationary RL can play a role. As advocated earlier in Bowling &
Veloso (2001); Busoniu et al. (2008), a good MARL algorithm should be both rational and convergent, where
the former means that the algorithm converges to its opponent’s best response if its opponent converges to a
stationary policy, and the latter means that if all agents use the same algorithm, the algorithm converges to a
stationary policy. As such, a non-stationary RL algorithm can be viewed as a rational MARL algorithm, thanks
to its dynamic regret guarantees, although its convergence property in MARL settings is still worth further in-
vestigation. In fact, developing algorithms that are both rational and convergent in general MARL settings is
still relatively open. In addition, non-stationary RL algorithms also apply to the MARL setting to achieve low
regret against slowly-changing opponents (Lee et al., 2020), which is discussed in detail in our Section 7. Fi-
nally, dynamic regret is also pertinent to the notion of exploitability of strategies in two-player zero-sum games
(Davis et al., 2014).

5Needless to say, this assumption itself also to some extent contradicts the primary motivation of transfer learning. After all, we only
want to transfer knowledge among tasks that are essentially similar to each other.
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B. Proofs of the Technical Lemmas
B.1. Proof of Lemma 1

Proof. For each d ∈ [D], define ∆
(d)
r to be the local variation of the mean reward function within epoch d. By

definition, we have
∑D

d=1 ∆
(d)
r ≤ ∆r. Further, for each d ∈ [D] and h ∈ [H], define ∆

(d)
r,h to be the variation of

the mean reward at step h in epoch d, i.e.,

∆
(d)
r,h

def
=

min{dK,M}−1∑
m=(d−1)K+1

sup
s,a

∣∣rmh (s, a)− rm+1
h (s, a)

∣∣ .
It also holds that

∑H
h=1 ∆

(d)
r,h = ∆

(d)
r by definition. Define ∆

(d)
p and ∆

(d)
p,h analogously.

In the following, we will prove a stronger statement:
∣∣∣Qk1,?

h (s, a)−Qk2,?
h (s, a)

∣∣∣ ≤ ∑H
h′=h ∆

(1)
r,h′ +

H
∑H

h′=h ∆
(1)
p,h′ , which implies the statement of the lemma because

∑H
h′=h ∆

(1)
r,h′ ≤ ∆

(1)
r and

∑H
h′=h ∆

(1)
p,h′ ≤

∆
(1)
p by definition. Our proof relies on backward induction on h. First, the statement holds for h = H because

for any (s, a), by definition

∣∣∣Qk1,?
H (s, a)−Qk2,?

H (s, a)
∣∣∣ =

∣∣∣rk1

H (s, a)− rk2

H (s, a)
∣∣∣ ≤ k2−1∑

k=k1

∣∣∣rk+1
H (s, a)− rkH(s, a)

∣∣∣
≤

K−1∑
k=1

∣∣∣rk+1
H (s, a)− rkH(s, a)

∣∣∣ ≤ ∆
(1)
r,H , (2)

where we have used the triangle inequality. Now suppose the statement holds for h + 1; by the Bellman
optimality equation,

Qk1,?
h (s, a)−Qk2,?

h (s, a)

=P k1

h V k1,?
h+1 (s, a)− P k2

h V k2,?
h+1 (s, a) + rk1

h (s, a)− rk2

h (s, a)

≤P k1

h V k1,?
h+1 (s, a)− P k2

h V k2,?
h+1 (s, a) + ∆

(1)
r,h (3)

=
∑
s′∈S

P k1

h (s′ | s, a)V k1,?
h+1 (s′)−

∑
s′∈S

P k2

h (s′ | s, a)V k2,?
h+1 (s′) + ∆

(1)
r,h

=
∑
s′∈S

(
P k1

h (s′ | s, a)Qk1,?
h+1(s′, πk1,?

h+1(s′))− P k2

h (s′ | s, a)Qk2,?
h+1(s′, πk2,?

h+1(s′))
)

+ ∆
(1)
r,h, (4)

where inequality (3) holds due to a similar reasoning as in (2), and in (4) πk1,? and πk2,? denote the optimal
policy in episode k1 and k2, respectively. Then by our induction hypothesis on h+ 1, for any s′ ∈ S,

Qk1,?
h+1(s′, πk1,?

h+1(s′)) ≤Qk2,?
h+1(s′, πk1,?

h+1(s′)) +

H∑
h′=h+1

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′

≤Qk2,?
h+1(s′, πk2,?

h+1(s′)) +

H∑
h′=h+1

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′ , (5)

where inequality (5) is due to the optimality of the policy πk2,? in episode k2 over πk1,?. Then,

Qk1,?
h (s, a)−Qk2,?

h (s, a)
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≤
∑
s′∈S

(P k1

h (s′ | s, a)− P k2

h (s′ | s, a))Qk2,?
h+1(s′, πk2,?

h+1(s′)) +

H∑
h′=h

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′

≤
∥∥∥P k1

h (·|s, a)− P k2

h (·|s, a)
∥∥∥

1

∥∥∥Qk2,?
h+1(·, πk2,?

h+1(·))
∥∥∥
∞

+

H∑
h′=h

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′ (6)

≤∆
(1)
p,h(H − h) +

H∑
h′=h

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′ (7)

≤
H∑

h′=h

∆
(1)
r,h′ +H

H∑
h′=h

∆
(1)
p,h′ ,

where (6) is by Hölder’s inequality, and (7) is by the definition of ∆
(1)
p,h and by the definition of optimalQ-values

that Qk2,?
h+1(s, a) ≤ H − h,∀(s, a) ∈ S × A. Repeating a similar process gives us Qk2,?

h (s, a) − Qk1,?
h (s, a) ≤∑H

h′=h ∆
(1)
r,h′ +H

∑H
h′=h ∆

(1)
p,h′ . This completes our proof.

B.2. Proof of Lemma 2

Proof. It should be clear from the way we update Qh(s, a) that Qkh(s, a) is monotonically decreasing in k.
We now prove Qk,?h (s, a) ≤ Qk+1

h (s, a) for all s, a, h, k by induction on k. First, it holds for k = 1 by our
initialization of Qh(s, a). For k ≥ 2, now suppose Qj,?h (s, a) ≤ Qj+1

h (s, a) ≤ Qjh(s, a) for all s, a, h and
1 ≤ j ≤ k. For a fixed triple (s, a, h), we consider the following two cases.

Case 1: Qh(s, a) is updated in episode k. Then with probability at least 1− 2δ

Qk+1
h (s, a) =

řh(s, a)

Ňk
h (s, a)

+
v̌h(s, a)

Ňk
h (s, a)

+ bkh + 2b∆

≥ řh(s, a)

ň
+

1

ň

ň∑
i=1

V ľi,?
h+1(sľih+1) +

√
H2

ň
ι+

√
ι

ň
+ 2b∆ (8)

≥ řh(s, a)

ň
+

1

ň

ň∑
i=1

P ľih V
ľi,?
h+1(s, a) +

√
ι

ň
+ 2b∆ (9)

=
řh(s, a)

ň
+

1

ň

ň∑
i=1

(
Qľi,?h (s, a)− rľih (s, a)

)
+

√
ι

ň
+ 2b∆ (10)

≥Qk,?h (s, a) + b∆. (11)

Inequality (8) is by the induction hypothesis that Qľih+1(sľih+1, a) ≥ Qľi,?h+1(sľih+1, a), ∀a ∈ A, and hence

V ľi
h+1(sľih+1) ≥ V ľi,?

h+1(sľih+1). Inequality (9) follows from the Azuma-Hoeffding inequality. (10) uses the Bellman

optimality equation. Inequality (11) is by the Hoeffding’s inequality that 1
ň

(∑ň
i=1 r

ľi
h (s, a)− řh(s, a)

)
≤
√

ι
ň

with high probability, and by Lemma 1 that Qľi,?h (s, a) + b∆ ≥ Qk,?h (s, a). According to the monotonicity of
Qkh(s, a), we know that Qk,?h (s, a) ≤ Qk+1

h (s, a) ≤ Qkh(s, a). In fact, we have proved the stronger statement
Qk+1
h (s, a) ≥ Qk,?h (s, a) + b∆ that will be useful in Case 2 below.

Case 2: Qh(s, a) is not updated in episode k. Then there are two possibilities:

1. If Qh(s, a) has never been updated from episode 1 to episode k: It is easy to see that Qk+1
h (s, a) =

Qkh(s, a) = · · · = Q1
h(s, a) = H − h+ 1 ≥ Qk,?h (s, a) holds.
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2. If Qh(s, a) has been updated at least once from episode 1 to episode k: Let j be the index of the lat-
est episode that Qh(s, a) was updated. Then, from our induction hypothesis and Case 1, we know that
Qj+1
h (s, a) ≥ Qj,?h (s, a) + b∆. Since Qh(s, a) has not been updated from episode j + 1 to episode k, we

know that Qk+1
h (s, a) = Qkh(s, a) = · · · = Qj+1

h (s, a) ≥ Qj,?h (s, a) + b∆ ≥ Qk,?h (s, a), where the last
inequality holds because of Lemma 1.

A union bound over all time steps completes our proof.

B.3. Proof of Lemma 7

Proof. It holds that

K∑
k=1

1

ňkh

ňkh∑
i=1

δ
ľkh,i
h+1 =

K∑
k=1

K∑
j=1

1

ňkh
δjh+1

ňkh∑
i=1

I
[
ľkh,i = j

]
=

K∑
j=1

δjh+1

K∑
k=1

1

ňkh

ňkh∑
i=1

I
[
ľkh,i = j

]
. (12)

For a fixed episode j, notice that
∑ňkh

i=1 I[ľkh,i = j] ≤ 1, and that
∑ňkh

i=1 I[ľkh,i = j] = 1 happens if and only
if (skh, a

k
h) = (sjh, a

j
h) and (j, h) lies in the previous stage of (k, h) with respect to the triple (skh, a

k
h, h). Let

K def
= {k ∈ [K] :

∑ňkh
i=1 I[ľkh,i = j] = 1}; then, we know that every element k ∈ K has the same value of ňkh,

i.e., there exists an integer Nj > 0, such that ňkh = Nj ,∀k ∈ K. Further, by our definition of the stages, we
know that |K| ≤ (1 + 1

H )Nj , because the current stage is at most (1 + 1
H ) times longer than the previous stage.

Therefore, for every j, we know that

K∑
k=1

1

ňkh

ňkh∑
i=1

I
[
ľkh,i = j

]
≤ 1 +

1

H
. (13)

Combining (12) and (13) completes the proof of
∑K

k=1
1
ňkh

∑ňkh
i=1 δ

ľkh,i
h+1 ≤ (1 + 1

H )
∑K

k=1 δ
k
h+1.

B.4. Proof of Proposition 2

In the following, we will bound each term in Λkh+1 separately in a series of lemmas.

Lemma 4. With probability 1, we have that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1(3bkh + 5b∆) ≤ O(

√
SAKH5ι+KH∆(1)

r +KH2∆(1)
p ).

Proof. First, by the definition of b∆, it is easy to see that
∑H

h=1

∑K
k=1(1+ 1

H )h−15b∆ ≤
∑H

h=1

∑K
k=1O(∆

(1)
r +

H∆
(1)
p ) ≤ O(KH∆

(1)
r + KH2∆

(1)
p ). Recall our definition that e1 = H and ei+1 =

⌊
(1 + 1

H )ei
⌋
, i ≥ 1. For

a fixed h ∈ [H], since H2 ≥ 1,

K∑
k=1

(1 +
1

H
)h−13bkh ≤

K∑
k=1

(1 +
1

H
)h−112

√
H2

Ňk
h (skh, a

k
h)
ι

=12H
√
ι
∑
s,a

∑
j≥1

(1 +
1

H
)h−1

√
1

ej

K∑
k=1

I
[
(skh, a

k
h) = (s, a), Ňk

h (skh, a
k
h) = ej

]

=12H
√
ι
∑
s,a

∑
j≥1

(1 +
1

H
)h−1w(s, a, j)

√
1

ej
,
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where w(s, a, j)
def
=
∑K

k=1 I
[
(skh, a

k
h) = (s, a), Ňk

h (skh, a
k
h) = ej

]
, and w(s, a)

def
=
∑

j≥1w(s, a, j). We then
know that

∑
s,aw(s, a) = K. For a fixed (s, a), let us now find an upper bound of j, denoted as J .

Since each stage is (1 + 1
H ) times longer than the previous stage, we know for 1 ≤ j ≤ J , w(s, a, j) =∑K

k=1 I
[
(skh, a

k
h) = (s, a), Ňk

h (skh, a
k
h) = ej

]
=
⌊
(1 + 1

H )ej
⌋
. From

∑J
j=1w(s, a, j) = w(s, a), we get

eJ ≤ (1 + 1
H )J−1 ≤ 10

1+ 1

H

w(s,a)
H . Therefore,

∑
j≥1

(1 +
1

H
)h−1w(s, a, j)

√
1

ej
≤ O

 J∑
j=1

√
ej

 ≤ O (√w(s, a)H
)
.

Finally, by the Cauchy-Schwartz inequality, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−13bkh = O

H2√ι
∑
s,a

∑
j≥1

w(s, a, j)

√
1

ej

 ≤ √SAKH5ι.

Combining the bounds for bkh and b∆ completes the proof.

Lemma 5. With probability at least 1− δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1φkh+1 ≤ O(

√
KH3ι+KH∆(1)

r +KH2∆(1)
p ).

Proof. We have that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1φkh+1

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − eskh+1

)(
V ľi,?
h+1 − V

k,π
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − eskh+1

)(
V ľi,?
h+1 − V

k,?
h+1 + V k,?

h+1 − V
k,π
h+1

)
(skh, a

k
h)

≤
H∑
h=1

K∑
k=1

(1 +
1

H
)h−12b∆ +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1

(
P kh − eskh+1

)(
V k,?
h+1 − V

k,π
h+1

)
(skh, a

k
h),

where the last inequality follows from Lemma 1 and the definition of b∆. From the proof of Lemma 4, we know
that the first term can be bounded as

H∑
h=1

K∑
k=1

(1 +
1

H
)h−12b∆ ≤ O(KH∆(1)

r +KH2∆(1)
p ).

Further, the second term is bounded by the Azuma-Hoeffding inequality as

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1

(
P kh − eskh+1

)(
V k,?
h+1 − V

k,π
h+1

)
(skh, a

k
h) ≤ O(

√
KH3ι).

Combining the two terms completes the proof.
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Lemma 6. With probability at least 1− (KH + 1)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1 ≤ O(

√
SAKH3ι+KH2∆(1)

p ).

Proof. We have that
H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − e

s
ľi
h+1

)(
V ľi
h+1 − V

ľi,?
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − P

ľi
h + P ľih − e

s
ľi
h+1

)(
V ľi
h+1 − V

ľi,?
h+1

)
(skh, a

k
h)

≤O(KH2∆(1)
p ) +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P ľih − e

s
ľi
h+1

)(
V ľi
h+1 − V

ľi,?
h+1

)
(skh, a

k
h), (14)

where the last step is by the fact that V ľi
h+1(skh, a

k
h) ≥ V ľi,?

h+1(skh, a
k
h) from Lemma 2, and then by Hölder’s

inequality and the triangle inequality. The following proof is analogous to the proof of Lemma 15 in Zhang
et al. (2020). For completeness we reproduce it here. We have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P ľih − e

s
ľi
h+1

)(
V ľi
h+1 − V

ľi,?
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

K∑
j=1

(1 +
1

H
)h−1 1

ňkh

ňkh∑
i=1

I
[
ľkh,i = j

] (
P jh − esjh+1

)(
V j
h+1 − V

j,?
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

K∑
j=1

(1 +
1

H
)h−1 1

ňkh

ňkh∑
i=1

I
[
ľkh,i = j

] (
P jh − esjh+1

)(
V j
h+1 − V

j,?
h+1

)
(sjh, a

j
h), (15)

where (15) holds because ľkh,i(s
k
h, a

k
h) = j if and only if j is in the previous stage of k and (skh, a

k
h) = (sjh, a

j
h).

For simplicity of notations, we define θkh+1
def
= (1 + 1

H )h−1
∑K

j=1
1
ňjh

∑ňjh
i=1 I

[
ľjh,i = k

]
. Then we further have

(note that we have swapped the notation of j and k)

(15) =

H∑
h=1

K∑
k=1

θkh+1

(
P kh − eskh+1

)(
V k
h+1 − V

k,?
h+1

)
(skh, a

k
h).

For (k, h) ∈ [K] × [H], let xkh denote the number of occurrences of the triple (skh, a
k
h, h) in the current stage.

Define θ̃kh+1
def
= (1+ 1

H )h−1 b(1+ 1

H
)xkhc

xkh
≤ 3. DefineK def

= {(k, h) : θkh+1 = θ̃kh+1}, and K̄ def
= {(k, h) ∈ [K]×[H] :

θkh+1 6= θ̃kh+1}. Then, we have that

(15) =

H∑
h=1

K∑
k=1

θ̃kh+1

(
P kh − eskh+1

)(
V k
h+1 − V

k,?
h+1

)
(skh, a

k
h)

+

H∑
h=1

K∑
k=1

(θkh+1 − θ̃kh+1)
(
P kh − eskh+1

)(
V k
h+1 − V

k,?
h+1

)
(skh, a

k
h).
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Since θ̃kh+1 is independent of skh+1, by the Azuma-Hoeffding inequality, it holds with probability at least 1− δ
that

H∑
h=1

K∑
k=1

θ̃kh+1

(
P kh − eskh+1

)(
V k
h+1 − V

k,?
h+1

)
(skh, a

k
h) ≤ O(

√
KH3ι). (16)

It is easy to see that if k is in a stage that is before the second last stage of the triple
(skh, a

k
h, h), then (k, h) ∈ K. For a triple (s, a, h), define K⊥h (s, a)

def
= {k ∈ [K] :

k is in the second last stage of the triple (s, a, h), (skh, a
k
h) = (s, a)}. We have that

H∑
h=1

K∑
k=1

(θkh+1 − θ̃kh+1)
(
P kh − eskh+1

)(
V k
h+1 − V

k,?
h+1

)
(skh, a

k
h)

=
∑
s,a,h

∑
k:(k,h)∈K̄

I
[
(skh, a

k
h) = (s, a)

]
(θkh+1 − θ̃kh+1)

(
P kh − eskh+1

)(
V k
h+1 − V

k,?
h+1

)
(s, a)

=
∑
s,a,h

(θh+1(s, a)− θ̃h+1(s, a))
∑

k∈K⊥
h (s,a)

(
P kh − eskh+1

)(
V k
h+1 − V

k,?
h+1

)
(s, a), (17)

where for a fixed triple (s, a, h), we have defined θh+1(s, a)
def
= θkh+1, for any k ∈ K⊥h (s, a). Note that θh+1(s, a)

is well-defined, because θk1

h+1 = θk2

h+1, ∀k1, k2 ∈ K⊥h (s, a). Similarly, let θ̃h+1(s, a)
def
= θ̃kh+1 for any k ∈

K⊥h (s, a), and θ̃h+1(s, a) is also well-defined. By the Azuma-Hoeffding inequality and a union bound, it holds
with probability at least 1−KHδ that

(17) ≤
∑
s,a,h

O

(√
H2
∣∣K⊥h (s, a)

∣∣ ι)

=
∑
s,a,h

O

(√
H2ŇK+1

h (s, a)ι

)

≤O
(√

SAH3ι
∑
s,a,h

ŇK+1
h (s, a)

)
(18)

≤O
(√

SAKH3ι
)

(19)

where ŇK+1
h (s, a) is defined to be the total number of visitations to the triple (s, a, h) over the entireK episodes.

(18) is by the Cauchy-Schwartz inequality. (19) holds because by the way stages are defined, for each triple
(s, a, h), the length of its last two stages is at most an O(1/H) fraction of the total number of visitations.

Combining (14), (16) and (19) completes the proof.

B.5. Proof of Lemma 3

Proof. This proof follows a similar structure as the proof of Lemma 2. It should be clear from the way we
update Qh(s, a) that Qkh(s, a) is monotonically decreasing in k. We now prove Qk,?h (s, a)− 2(H −h+ 1)b∆ ≤
Qk+1
h (s, a) for all s, a, h, k by induction on k. First, it holds for k = 1 by our initialization of Qh(s, a). For

k ≥ 2, now suppose Qj,?h (s, a)− 2(H − h+ 1)b∆ ≤ Qj+1
h (s, a) ≤ Qjh(s, a) for all s, a, h and 1 ≤ j ≤ k. For

a fixed triple (s, a, h), we consider the following two cases.

Case 1: Qh(s, a) is updated in episode k. Then with probability at least 1− 2δ

Qk+1
h (s, a) =

řh(s, a)

Ňk
h (s, a)

+
v̌h(s, a)

Ňk
h (s, a)

+ bkh
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≥ řh(s, a)

ň
+

1

ň

ň∑
i=1

V ľi,?
h+1(sľih+1)− 2(H − h)b∆ +

√
H2

ň
ι+

√
ι

ň
(20)

≥ řh(s, a)

ň
+

1

ň

ň∑
i=1

P ľih V
ľi,?
h+1(s, a) +

√
ι

ň
− 2(H − h)b∆ (21)

=
řh(s, a)

ň
+

1

ň

ň∑
i=1

(
Qľi,?h (s, a)− rľih (s, a)

)
+

√
ι

ň
− 2(H − h)b∆ (22)

≥Qk,?h (s, a)− b∆ − 2(H − h)b∆. (23)

Inequality (20) is by the induction hypothesis that Qľih+1(sľih+1, a) ≥ Qľi,?h+1(sľih+1, a) − 2(H − h)b∆, ∀a ∈ A,

and hence V ľi
h+1(sľih+1) ≥ V ľi,?

h+1(sľih+1) − 2(H − h)b∆. Inequality (21) follows from the Azuma-Hoeffding
inequality. (22) uses the Bellman optimality equation. Inequality (23) is by the Hoeffding’s inequality that
1
ň

(∑ň
i=1 r

ľi
h (s, a)− řh(s, a)

)
≤
√

ι
ň with high probability, and by Lemma 1 thatQľi,?h (s, a) ≥ Qk,?h (s, a)−b∆.

According to the monotonicity ofQkh(s, a), we know thatQk,?h (s, a)−2(H−h+1)b∆ ≤ Qk+1
h (s, a) ≤ Qkh(s, a).

In fact, we have proved the stronger statement Qk+1
h (s, a) ≥ Qk,?h (s, a)− b∆ − 2(H − h)b∆ that will be useful

in Case 2 below.

Case 2: Qh(s, a) is not updated in episode k. Then there are two possibilities:

1. If Qh(s, a) has never been updated from episode 1 to episode k: It is easy to see that Qk+1
h (s, a) =

Qkh(s, a) = · · · = Q1
h(s, a) = H − h+ 1 ≥ Qk,?h (s, a)− 2(H − h+ 1)b∆ holds.

2. If Qh(s, a) has been updated at least once from episode 1 to episode k: Let j be the index of the lat-
est episode that Qh(s, a) was updated. Then, from our induction hypothesis and Case 1, we know that
Qj+1
h (s, a) ≥ Qj,?h (s, a)− b∆ − 2(H − h)b∆. Since Qh(s, a) has not been updated from episode j + 1 to

episode k, we know that Qk+1
h (s, a) = Qkh(s, a) = · · · = Qj+1

h (s, a) ≥ Qj,?h (s, a)− b∆ − 2(H − h)b∆ ≥
Qk,?h (s, a)− 2(H − h+ 1)b∆, where the last inequality holds because of Lemma 1.

A union bound over all time steps completes our proof.

C. Proof of Theorem 1

We introduce a few terms to facilitate the analysis. Denote by skh and akh respectively the state and action
taken at step h of episode k. Let Nk

h (s, a), Ňk
h (s, a), Qkh(s, a) and V k

h (s) denote, respectively, the values of
Nh(s, a), Ňh(s, a), Qh(s, a) and Vh(s) at the beginning of the k-th episode in Algorithm 1. Further, for the
triple (skh, a

k
h, h), let nkh be the total number of episodes that this triple has been visited prior to the current stage,

and let lkh,i denote the index of the episode that this triple was visited the i-th time among the total nkh times.
Similarly, let ňkh denote the number of visits to the triple (skh, a

k
h, h) in the stage right before the current stage,

and let ľkh,i be the i-th episode among the ňkh episodes right before the current stage. For simplicity, we use li
and ľi to denote lkh,i and ľkh,i, and ň to denote ňkh, when h and k are clear from the context. We also use řh(s, a)

and v̌h(s, a) to denote the values of řh(skh, a
k
h) and v̌h(skh, a

k
h) when updating the Qh(skh, a

k
h) value in Line 12

of Algorithm 1.

We now proceed to analyze the dynamic regret in one epoch, and at the very end of this section, we will see
how to combine the dynamic regret over all the epochs to prove Theorem 1. The following analysis will be
conditioned on the successful event of Lemma 2.
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The dynamic regret of Algorithm 1 in epoch d = 1 can hence be expressed as

R(d)(π,K) =

K∑
k=1

(
V k,∗

1

(
sk1

)
− V k,π

1

(
sk1

))
≤

K∑
k=1

(
V k

1

(
sk1

)
− V k,π

1

(
sk1

))
. (24)

From the update rules of the value functions in Algorithm 1, we have

V k
h (skh)≤I

[
nkh = 0

]
H+

řh(skh, a
k
h)

Ňk
h (skh, a

k
h)

+
v̌h(skh, a

k
h)

Ňk
h (skh, a

k
h)

+bkh+2b∆

=I
[
nkh = 0

]
H+

řh(skh, a
k
h)

Ňk
h (skh, a

k
h)

+
1

ň

ň∑
i=1

V ľi
h+1(sľih+1)+bkh+2b∆.

For ease of exposition, we define the following terms:

δkh
def
= V k

h (skh)−V k,?
h (skh), ζkh

def
= V k

h (skh)−V k,π
h (skh). (25)

We further define r̃kh(skh, a
k
h)

def
= řh(skh,a

k
h)

Ňk
h (skh,a

k
h)
− rkh(skh, a

k
h). Then by the Hoeffding’s inequality, it holds with high

probability that

r̃kh(skh, a
k
h) ≤ 1

ň

ň∑
i=1

rľih (skh, a
k
h) +

√
ι

ň
− rkh(skh, a

k
h)

≤ bkh + b∆. (26)

By the Bellman equation V k,π
h (skh) = Qk,πh (skh, π(skh)) = rkh(skh, a

k
h) + P khV

k,π
h+1(skh, a

k
h), we have

ζkh ≤I
[
nkh = 0

]
H +

1

ň

ň∑
i=1

V ľi
h+1(sľih+1) + bkh + 2b∆ + r̃kh(skh, a

k
h)− P khV

k,π
h+1(skh, a

k
h)

≤I
[
nkh = 0

]
H +

1

ň

ň∑
i=1

P ľih V
ľi
h+1(skh, a

k
h)− P khV

k,π
h+1(skh, a

k
h) + 3bkh + 3b∆ (27)

=I
[
nkh = 0

]
H +

1

ň

ň∑
i=1

(
P ľih − P

k
h

)
V ľi
h+1(skh, a

k
h)︸ ︷︷ ︸

1

+
1

ň

ň∑
i=1

P kh

(
V ľi
h+1 − V

ľi,?
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

2

+3bkh + 3b∆

+
1

ň

ň∑
i=1

P kh

(
V ľi,?
h+1 − V

k,π
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

3

, (28)

where (27) is by the Azuma-Hoeffding inequality and by (26). In the following, we bound each term in (28)
separately. First, by Hölder’s inequality, we have

1 ≤ 1

ň

ň∑
i=1

∆(1)
p (H − h) ≤ b∆. (29)
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Let ej denote a standard basis vector of proper dimensions that has a 1 at the j-th entry and 0s at the others, in
the form of (0, . . . , 0, 1, 0, . . . , 0). Recall the definition of δkh in (25), and we have

2 =
1

ň

ň∑
i=1

(
P kh − e

s
ľi
h+1

)(
V ľi
h+1 − V

ľi,?
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

ξkh+1

+
1

ň

ň∑
i=1

δ ľih+1 = ξkh+1 +
1

ň

ň∑
i=1

δ ľih+1. (30)

Finally, recalling the definition of ζkh in (25), we have that

3 =
1

ň

ň∑
i=1

(
V ľi,?
h+1(skh+1)− V k,π

h+1(skh+1)
)

+
1

ň

ň∑
i=1

(
P kh − eskh+1

)(
V ľi,?
h+1 − V

k,π
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

φkh+1

=
1

ň

ň∑
i=1

(
V ľi,?
h+1(skh+1)−V k,?

h+1(skh+1)
)

+ζkh+1−δkh+1+φkh+1

≤b∆ + ζkh+1 − δkh+1 + φkh+1 (31)

where inequality (31) is by Lemma 1. Combining (28), (29), (30), and (31) leads to

ζkh ≤I
[
nkh = 0

]
H +

1

ň

ň∑
i=1

δ ľih+1 + ξkh+1 + ζkh+1 − δkh+1 + φkh+1 + 3bkh + 5b∆. (32)

To find an upper bound of
∑K

k=1 ζ
k
h , we proceed to upper bound each term on the RHS of (32) separately.

First, notice that
∑K

k=1 I
[
nkh = 0

]
≤ SAH , because each fixed triple (s, a, h) contributes at most 1 to∑K

k=1 I
[
nkh = 0

]
. The second term in (32) can be upper bounded by the following lemma:

Lemma 7.
∑K

k=1
1
ňkh

∑ňkh
i=1 δ

ľkh,i
h+1 ≤ (1 + 1

H )
∑K

k=1 δ
k
h+1.

Combining (32) and Lemma 7, we now have that

K∑
k=1

ζkh ≤SAH2 +
1

H

K∑
k=1

δkh+1 +

K∑
k=1

(
ξkh+1 + ζkh+1 + φkh+1 + 3bkh + 5b∆

)
≤SAH2 + (1 +

1

H
)

K∑
k=1

ζkh+1 +

K∑
k=1

(
ξkh+1 + φkh+1 + 3bkh + 5b∆

)
︸ ︷︷ ︸

Λkh+1

, (33)

where in (33) we have used the fact that δkh+1 ≤ ζkh+1, which in turn is due to the optimality that V k,?
h (skh) ≥

V k,π
h (skh). Notice that we have ζkh on the LHS of (33) and ζkh+1 on the RHS. By iterating (33) over h =
H,H − 1, . . . , 1, we conclude that

K∑
k=1

ζk1 ≤ O

(
SAH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1

)
. (34)

We bound
∑H

h=1

∑K
k=1(1 + 1

H )h−1Λkh+1 in the proposition below. Its proof relies on a series of lemmas in
Appendix B that upper bound each term in Λkh+1 separately.
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Proposition 2. With probability at least 1− (KH + 2)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1≤Õ(

√
SAKH5 +KH∆(1)

r +KH2∆(1)
p ).

Now we are ready to prove Theorem 1.

Proof. (of Theorem 1) By (24) and (34), and by replacing δ with δ
KH+2 in Proposition 2, we know that the

dynamic regret in epoch d = 1 can be upper bounded with probability at least 1− δ by:

R(d)(π,K) ≤ Õ(SAH3+
√
SAKH5+KH∆(1)

r +KH2∆(1)
p ),

and this holds for every epoch d ∈ [D]. Suppose T = Ω(SA∆H2); summing up the dynamic regret over
all the D epochs gives us an upper bound of Õ(D

√
SAKH5 +

∑D
d=1KH∆

(d)
r +

∑D
d=1KH

2∆
(d)
p ). Re-

call the definition that
∑D

d=1 ∆
(d)
r ≤ ∆r,

∑D
d=1 ∆

(d)
p ≤ ∆p, ∆ = ∆r + ∆p, and that K = Θ( T

DH ). By
setting D = S−

1

3A−
1

3 ∆
2

3H−
2

3T
1

3 , the dynamic regret over the entire T steps is bounded by R(π,M) ≤
Õ(S

1

3A
1

3 ∆
1

3H
5

3T
2

3 ), which completes the proof.

D. Proof Sketch of Theorem 2

Proof sketch. We only outline the difference with respect to the proof of Theorem 1 in the main text. The
reader should have no difficulty recovering the complete proof by following the same routine as Theorem 1.
Specifically, it suffices to investigate the steps that are involved with Lemma 2.

The dynamic regret of the new algorithm in epoch d = 1 now can be expressed as

R(d)(π,K) =

K∑
k=1

(
V k,∗

1

(
sk1

)
− V k,π

1

(
sk1

))
≤

K∑
k=1

(
V k

1

(
sk1

)
− V k,π

1

(
sk1

))
+ 2KHb∆, (35)

where we applied the results of Lemma 3 instead of Lemma 2. The reader should bear in mind that from the
new update rules of the value functions, we now have

V k
h (skh) ≤ I

[
nkh = 0

]
H +

řh(skh, a
k
h)

Ňk
h (skh, a

k
h)

+
v̌h(skh, a

k
h)

Ňk
h (skh, a

k
h)

+ bkh, (36)

where the RHS no longer has the additional bonus term b∆. If we define ζkh , ξ
k
h+1, and φkh+1 in the same way

as before, the reader can easily verify that all the derivations until Equation (34) still holds, although the value
of Λkh+1 should be re-defined as Λkh+1

def
= ξkh+1 + φkh+1 + 3bkh + 3b∆ due to the new upper bound in (36) that is

independent of b∆. Proposition 2 also follows analogously though some additional attention should be paid to
the proof of Lemma 6 where the results of Lemma 2 have been utilized. Finally, we obtain the dynamic regret
upper bound in epoch d = 1 as follows:

R(d)(π,K) ≤ Õ
(
SAH3 +

√
SAKH5 +KH∆(1)

r +KH2∆(1)
p

)
+ 2KHb∆,

where the additional term 2KHb∆ comes from (35). From our definition of b∆, we can easily see that
2KHb∆ ≤ O(KH∆

(1)
r + KH2∆

(1)
p ). Therefore, we can conclude that the dynamic regret upper bound in

one epoch remains the same order, which leaves the dynamic regret over the entire horizon also unchanged.
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Algorithm 2: RestartQ-UCB (Freedman)

1 for epoch d← 1 to D do
2 Initialize: Vh(s)← H − h+ 1, Qh(s, a)← H − h+ 1, Nh(s, a)← 0, Ňh(s, a)← 0,

řh(s, a)← 0, µ̌h(s, a)← 0, v̌h(s, a)← 0, σ̌h(s, a)← 0, µref
h (s, a)← 0, σref

h (s, a)← 0, V ref
h (s)← H, for all

(s, a, h) ∈ S ×A× [H];
3 for episode k ← (d− 1)K + 1 to min{dK,M} do
4 observe sk1 ;
5 for step h← 1 to H do
6 Take action akh ← arg maxaQh(skh, a), receive Rkh(skh, a

k
h), and observe skh+1;

7 ř ← ř +Rkh(skh, a
k
h), v̌ ← v̌ + Vh+1(skh+1);

8 µ̌← µ̌+ Vh+1(skh+1)− V ref
h+1(skh+1), σ̌ ← σ̌ +

(
Vh+1(skh+1)− V ref

h+1(skh+1)
)2

;
9 µref ← µref + V ref

h+1(skh+1), σref ← σref + (V ref
h+1(skh+1))2;

10 n← n+ 1, ň← ň+ 1;
11 if n ∈ L // Reaching the end of the stage
12 then

13 bkh ←
√

H2

ň ι+
√

1
ň ι, b∆ ← ∆

(d)
r +H∆

(d)
p ;

14 bkh←2
√

σref/n−(µref/n)2

n ι+ 2
√

σ̌/ň−(µ̌/ň)2

ň ι+ 5(Hιn +Hι
ň +Hι3/4

n3/4 +Hι3/4

ň3/4 )+
√

1
ň ι;

15 Qh(skh, a
k
h)← min

{
ř
ň+ v̌

ň+bkh+2b∆,
ř
ň+ µref

n + µ̌
ň+2bkh+4b∆, Qh(skh, a

k
h)
}

;

16 Vh(skh)← maxaQh(skh, a);
17 Ňh(skh, a

k
h), řh(skh, a

k
h), v̌h(skh, a

k
h), µ̌h(skh, a

k
h), σ̌h(skh, a

k
h)← 0;

18 if
∑
aNh(skh, a) = Ω(SAH6ι)// Learn the reference value

19 then
20 V ref

h (skh)← Vh(skh);

E. Algorithm: RestartQ-UCB (Freedman)

The algorithm Restarted Q-Learning with Freedman Upper Confidence Bounds (RestartQ-UCB Freedman)
is presented in Algorithm 2. For ease of exposition, we use ř, µ̌, v̌, σ̌, µref, σref, ň, and n to denote
řh(s, a), µ̌h(skh, a

k
h), v̌h(skh, a

k
h), σ̌h(skh, a

k
h), µref

h (skh, a
k
h), σref

h (skh, a
k
h), Ňh(skh, a

k
h), and Nh(skh, a

k
h) respec-

tively, when the values of (s, a, h, k) are clear from the context.

Compared with Algorithm 1, there are two major improvements in Algorithm 2. The first one is to replace the
Hoeffding-based bonus term bkh with a tighter term bkh. The latter term takes into account the second moment
information of the random variables, which allows sharper tail bounds that rely on second moments to come
into use (in our case, the Freedman’s inequality). The second improvement is a variance reduction technique, or
more specifically, the reference-advantage decomposition as coined in Zhang et al. (2020). The intuition is to
first learn a reference value function V ref that serves as a roughly accurate estimate of the optimal value function
V ?. The goal of learning the optimal value function V ? = V ref + (V ∗ − Vref) can hence be decomposed into
estimating two terms V ref and V ∗−Vref. The reference value V ref is a fixed term, and can be accurately estimated
using a large number of samples (in Algorithm 2, we estimate V ref only when we have cSAH6ι samples for a
large constant c). The advantage term V ∗ − V ref can also be accurately estimated due to the reduced variance.

F. Proof of Theorem 3

Similar to the proof of Theorem 1, we start with the dynamic regret in one epoch, and then extend to all epochs
in the end. The proof follows the same routine as in the proof of Theorem 1. Given that a rigorous analysis
on the Freedman-based bonus with variance reduction is present in Zhang et al. (2020), one should not find it
difficult to extend our Hoeffding-based algorithm to Algorithm 2. Therefore, rather than providing a complete
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proof of Theorem 3, in the following, we sketch the differences and highlight the additional analysis needed
that is not covered by the proof of Theorem 1 and Zhang et al. (2020).

To facilitate the analysis, first recall a few notations Nk
h , Ň

k
h , Q

k
h(s, a), V k

h (s), nkh, l
k
h,i, ň

k
h, ľ

k
h,i, li and ľi that we

have defined in Section 4. In addition, when (h, k) is clear from the context, we drop the time indices and
simply use µ̌, σ̌, µref, σref to denote their corresponding values in the computation of the Qh(skh, a

k
h) value in

Line 15 of Algorithm 2.

We start with the following lemma, which is an analogue of Lemma 2 but requires a more careful treatment of
variations accumulated in µref and µ̌h. It states that the optimistic Qkh(s, a) is an upper bound of the optimal
Qk,?h (s, a) with high probability.

Lemma 8. (Freedman) For δ ∈ (0, 1), with probability at least 1 − 2KHδ, it holds that Qk,?h (s, a) ≤
Qk+1
h (s, a) ≤ Qkh(s, a), ∀(s, a, h, k) ∈ S ×A× [H]× [K].

Proof. It should be clear from the way we update Qh(s, a) that Qkh(s, a) is monotonically decreasing in k.
We now prove Qk,?h (s, a) ≤ Qk+1

h (s, a) for all s, a, h, k by induction on k. First, it holds for k = 1 by our
initialization of Qh(s, a). For k ≥ 2, now suppose Qj,?h (s, a) ≤ Qjh(s, a) for all s, a, h and 1 ≤ j ≤ k. For a
fixed triple (s, a, h), we consider the following two cases.

Case 1: Qh(s, a) is updated in episode k. Notice that it suffices to analyze the case where Qh(s, a) is updated
using bkh, because the other case of bkh would be exactly the same as in Lemma 2. With probability at least 1− δ,

Qk+1
h (s, a) =

řh(s, a)

Ňk
h (s, a)

+
µref(s, a)

Nk
h (s, a)

+
µ̌h(s, a)

Ňk
h (s, a)

+ 2bkh + 4b∆

=
řh(s, a)

ň
+

1

n

n∑
i=1

(
V ref,li
h+1 (slih+1)− P lih V

ref,li
h+1 (s, a)

)
︸ ︷︷ ︸

χ1

+
1

ň

ň∑
i=1

[(
V ľi
h+1(sľih+1)− V ref,ľi

h+1 (sľih+1)
)
−
(
P ľih V

ľi
h+1 − P

ľi
h V

ref,ľi
h+1

)
(s, a)

]
︸ ︷︷ ︸

χ2

+
1

n

n∑
i=1

P lih V
ref,li
h+1 +

1

ň

ň∑
i=1

(
P ľih V

ľi
h+1 − P

ľi
h V

ref,ľi
h+1

)
(s, a)︸ ︷︷ ︸

χ3

+2bkh + 4b∆ (37)

In the following, we will bound each term in (37) separately. First, we have that

χ3 + 2b∆ =
1

n

n∑
i=1

(
P lih V

ref,li
h+1 − P

k
hV

ref,li
h+1

)
(s, a) + b∆ (38)

− 1

ň

ň∑
i=1

(
P ľih V

ref,ľi
h+1 − P

k
hV

ref,ľi
h+1

)
(s, a) + b∆ (39)

+
1

n

n∑
i=1

P khV
ref,li
h+1 (s, a)− 1

ň

ň∑
i=1

P khV
ref,ľi
h+1 (s, a) +

1

ň

ň∑
i=1

P ľih V
ľi
h+1(s, a) (40)

≥ 1

ň

ň∑
i=1

P ľih V
ľi
h+1(s, a), (41)
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where (38)≥ 0 and (39)≥ 0 by Hölder’s inequality and the definition of b∆. In (40), we have that
1
n

∑n
i=1 P

k
hV

ref,li
h+1 (s, a)− 1

ň

∑ň
i=1 P

k
hV

ref,ľi
h+1 (s, a) ≥ 0, because V ref,k

h+1 (s) is non-increasing in k.

Following a similar procedure as in Lemma 10, Lemma 12, and Lemma 13 in Zhang et al. (2020), we can
further bound |χ1| and |χ2| as follows:

|χ1| ≤ 2

√
νrefι

n
+

5Hι
3

4

n
3

4

+
2
√
ι

Tn
+

2Hι

n
, (42)

|χ2| ≤ 2

√
ν̌ι

ň
+

5Hι
3

4

ň
3

4

+
2
√
ι

T ň
+

2Hι

ň
, (43)

where νref def
= σref

n −
(
µref

n

)2
and ν̌ def

= σ̌
ň −

( µ̌
ň

)2
. These are the steps where Freedman’s inequality Freedman

(1975) come into use, and we omit these steps since they are essentially the same as the derivations in Zhang
et al. (2020). We can see from (42), (43), and the definition of bkh that |χ1|+ |χ2| ≤ bkh.

Substituting the results on χ1, χ2 and χ3 back to (37), it holds that with probability at least 1− δ,

Qk+1
h (s, a) =

řh(s, a)

ň
+ χ1 + χ2 + χ3 + 2bkh + 4b∆

≥ řh(s, a)

ň
+

1

ň

ň∑
i=1

P ľih V
ľi
h+1(s, a) + bkh + 2b∆ (44)

≥ řh(s, a)

ň
+

1

ň

ň∑
i=1

P ľih V
ľi,?
h+1(s, a) + bkh + 2b∆ (45)

=
řh(s, a)

ň
+

1

ň

ň∑
i=1

(
Qľi,?h (s, a)− rľih (s, a)

)
+ bkh + 2b∆

≥ 1

ň

ň∑
i=1

Qľi,?h (s, a) + 2b∆ ≥ Qk,?h (s, a) + b∆, (46)

where in (44) we used (41), (42), (43), and the definition of bkh in Algorithm 2. (45) is by the induction
hypothesis that Qľih+1(sľih+1, a) ≥ Qľi,?h+1(sľih+1, a), ∀a ∈ A, 1 ≤ ľi ≤ k. The second to last inequality holds due

to the Hofdding’s inequality that 1
ň

(∑ň
i=1 r

ľi
h (s, a)− řh(s, a)

)
≤
√

ι
ň ≤ b

k
h with high probability. Finally, the

last inequality follows from Lemma 1.

According to the monotonicity of Qkh(s, a), we can conclude from (46) that Qk,?h (s, a) ≤ Qk+1
h (s, a) ≤

Qkh(s, a). In fact, we have proved the stronger statement Qk+1
h (s, a) ≥ Qk,?h (s, a) + b∆ that will be useful

in Case 2 below.

Case 2: Qh(s, a) is not updated in episode k. Then, there are two possibilities:

1. If Qh(s, a) has never been updated from episode 1 to episode k: It is easy to see that Qk+1
h (s, a) =

Qkh(s, a) = · · · = Q1
h(s, a) = H − h+ 1 ≥ Qk,?h (s, a) holds.

2. If Qh(s, a) has been updated at least once from episode 1 to episode k: Let j be the index of the lat-
est episode that Qh(s, a) was updated. Then, from our induction hypothesis and Case 1, we know that
Qj+1
h (s, a) ≥ Qj,?h (s, a) + b∆. Since Qh(s, a) has not been updated from episode j + 1 to episode k, we

know that Qk+1
h (s, a) = Qkh(s, a) = · · · = Qj+1

h (s, a) ≥ Qj,?h (s, a) + b∆ ≥ Qk,?h (s, a), where the last
inequality holds because of Lemma 1.
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A union bound over all time steps completes our proof.

Conditional on the successful event of Lemma 8, the dynamic regret of Algorithm 2 in epoch d = 1 can hence
be expressed as

R(d)(π,K) =

K∑
k=1

(
V k,∗

1

(
sk1

)
− V k,π

1

(
sk1

))
≤

K∑
k=1

(
V k

1

(
sk1

)
− V k,π

1

(
sk1

))
. (47)

From the update rules of the value functions in Algorithm 2, we have

V k
h (skh) ≤ I

[
nkh = 0

]
H +

řh(skh, a
k
h)

ň
+
µref,k
h

n
+
µ̌kh
ň

+ 2bkh + 4b∆

=I
[
nkh = 0

]
H+

řh(skh, a
k
h)

ň
+

1

n

n∑
i=1

V ref,li
h+1 (slih+1)+

1

ň

ň∑
i=1

(V ľi
h+1(sľih+1)−V ref,ľi

h+1 (sľih+1))+2bkh+4b∆.

If we again define ζkh
def
= V k

h (skh) − V k,π
h (skh), we can follow a similar routine as in the proof of Theorem 1

(details can be found in Zhang et al. (2020)) and obtain

K∑
k=1

ζk1 ≤ O

(
SAH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1

)
,

where Λkh+1
def
= ψkh+1 + ξkh+1 + φkh+1 + 4bkh + 8b∆ with the following definitions:

ψkh+1
def
=

1

nkh

nkh∑
i=1

(
P khV

ref,li
h+1 − P

k
hV

ref,K+1
h+1

)
(skh, a

k
h),

ξkh+1
def
=

1

ňkh

ňkh∑
i=1

(
P kh − e

s
ľi
h+1

)(
V ľi
h+1 − V

ľi,?
h+1

)
(skh, a

k
h),

φkh+1
def
=
(
P kh − eskh+1

)(
V ľi,?
h+1 − V

k,π
h+1

)
(skh, a

k
h).

An upper bound on the first four terms in Λkh+1 is derived in the proof of Lemma 7 in Zhang et al. (2020) (There

is an extra term of
√

1
ň ι in our defnition of bkh compared to theirs, but it does not affect the leading term in the

upper bound). By further recalling the definition of b∆, we can obtain the following lemma.

Lemma 9. (Lemma 7 in Zhang et al. (2020)) With probability at least (1−O(H2T 4δ)), it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1 =O

(√
SAH2Tι+H

√
Tι log(T )+S2A

3

2H8T
1

4 ι+KH∆(1)
r +KH2∆(1)

p

)
.

Combined with (47) and the definition of ζkh , we obtain the dynamic regret bound in a single epoch:

R(d)(π,K) = O
(√

SAH2Tι+H
√
Tι log(T ) + S2A

3

2H8T
1

4 ι+KH∆(1)
r +KH2∆(1)

p

)
, ∀d ∈ [D].

Finally, suppose T is greater than a polynomial of S,A,∆ and H ,
√
SAH2Tι would be the leading term of

the dynamic regret in a single epoch. In this case, summing up the dynamic regret over all the D epochs gives
us an upper bound of Õ

(
D
√
SAH2T +

∑D
d=1KH∆

(d)
r +

∑D
d=1KH

2∆
(d)
p

)
. Recall that

∑D
d=1 ∆

(d)
r ≤ ∆r,
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Figure 2: The “JAO MDP” constructed in Jaksch et al. (2010). Dashed lines denote transitions related to the good action a?.

∑D
d=1 ∆

(d)
p ≤ ∆p, ∆ = ∆r + ∆p, and that K = Θ( T

DH ). By setting D = S−
1

3A−
1

3 ∆
2

3T
1

3 , the dynamic regret
over the entire T steps is bounded by

R(π,M) ≤ Õ
(
S

1

3A
1

3 ∆
1

3HT
2

3

)
.

This completes the proof of Theorem 3.

G. Proof of Theorem 4

The proof of our lower bound relies on the construction of a “hard instance” of non-stationary MDPs. The
instance we construct is essentially a switching-MDP: an MDP with piecewise constant dynamics on each
segment of the horizon, and its dynamics experience an abrupt change at the beginning of each new segment.
More specifically, we divide the horizon T into L segments6, where each segment has T0

def
=
⌊
T
L

⌋
steps and

contains M0
def
=
⌊
M
L

⌋
episodes, each episode having a length of H . Within each such segment, the system

dynamics of the MDP do not vary, and we construct the dynamics for each segment in a way such that the
instance is a hard instance of stationary MDPs on its own. The MDP within each segment is essentially similar to
the hard instances constructed in stationary RL problems (Osband & Van Roy, 2016; Jin et al., 2018). Between
two consecutive segments, the dynamics of the MDP change abruptly, and we let the dynamics vary in a way
such that no information learned from previous interactions with the MDP can be used in the new segment. In
this sense, the agent needs to learn a new hard stationary MDP in each segment. Finally, optimizing the value
of L and the variation magnitude between consecutive segments (subject to the constraints of the total variation
budget) leads to our lower bound.

We start with a simplified episodic setting where the transition kernels and reward functions are held constant
within each episode, i.e., Pm1 = · · · = Pmh = . . . PmH and rm1 = · · · = rmh = . . . rmH ,∀m ∈ [M ]. This is a
popular but less challenging episodic setting, and its stationary counterpart has been studied in Azar et al. (2017).
We further require that when the environment varies due to the non-stationarity, all steps in one episode should
vary simultaneously in the same way. This simplified setting is easier to analyze, and its analysis conveniently
leads to a lower bound for the un-discounted setting as a side result along the way. Later we will show how the
analysis can be naturally extended to the more general setting we introduced in Section 2, using techniques that
have also been utilized in Jin et al. (2018). For simplicity of notations, we temporarily drop the h indices and
use Pm and rm to denote the transition kernel and reward function whenever there is no ambiguity.

Consider a two-state MDP as depicted in Figure 2. This MDP was initially proposed in Jaksch et al. (2010) as a
hard instance of stationary MDPs, and following Jin et al. (2018) we will refer to this construction as the “JAO
MDP”. This MDP has 2 states S = {s◦, s} and SA actions A = {1, 2, . . . , SA}. The reward does not depend
on actions: state s always gives reward 1 whatever action is taken, and state s◦ always gives reward 0. Any
action taken at state s takes the agent to state s◦ with probability δ, and to state s with probability 1 − δ. At
state s◦, for all but a single “good” action a?, the agent is taken to state s with probability δ, and for the good

6The definition of segments is irrelevant to, and should not be confused with, the notion of epochs we previously defined.
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Figure 3: A chain withH copies of JAO MDPs correlated in time. At the end of an episode, the state should deterministically
transition from any state in the last copy to the s◦ state in the first copy of the chain, the arrows of which are not shown in
the figure. Also, the s state in the first copy is actually never reached and hence is redundant.

action a?, the agent is taken to state s with probability δ + ε for some 0 < ε < δ. The exact values of δ and ε
will be chosen later. Note that this is not an MDP with S states and A actions as we desire, but the extension to
an MDP with S states and A actions is routine (Jaksch et al., 2010), and is hence omitted here.

To apply the JAO MDP to the simplified episodic setting, we “concatenate” H copies of exactly the same JAO
MDP into a chain as depicted in Figure 3, denoting the H steps in an episode. The initial state of this MDP
is the s◦ state in the first copy of the chain, and after each episode the state is “reset” to the initial state. In
the following, we first show that the constructed MDP is a hard instance of stationary MDPs, without worrying
about the evolution of the system dynamics. The techniques that we will be using are essentially the same as
in the proofs of the lower bound in the multi-armed bandit problem (Auer et al., 2002) or the reinforcement
learning problem in the un-discounted setting (Jaksch et al., 2010).

The good action a? is chosen uniformly at random from the action space A, and we use E?[·] to denote the
expectation with respect to the random choice of a?. We write Ea[·] for the expectation conditioned on action
a being the good action a?. Finally, we use Eunif[·] to denote the expectation when there is no good action in
the MDP, i.e., every action in A takes the agent from state s◦ to s with probability δ. Define the probability
notations P?(·),Pa(·), and Punif(·) analogously.

Consider running a reinforcement learning algorithm on the constructed MDP for T0 steps, where T0 = M0H .
It has been shown in Auer et al. (2002) and Jaksch et al. (2010) that it is sufficient to consider deterministic
policies. Therefore, we assume that the algorithm maps deterministically from a sequence of observations to
an action at at time t. Define the random variables N,N◦ and N?

◦ to be the total number of visits to state s ,
the total number of visits to s◦, and the total number of times that a? is taken at state s◦, respectively. Let st
denote the state observed at time t, and at the action taken at time t. When there is no chance of ambiguity, we
sometimes also use smh to denote the state at step h of episode m, which should be interpreted as the state st
observed at time t = (m − 1) × H + h. The notation amh is used analogously. Since s◦ is assumed to be the
initial state, we have that

Ea[N ] =

T0∑
t=1

Pa(st = s) =

M0∑
m=1

H∑
h=2

Pa(smh = s)

=

M0∑
m=1

H∑
h=2

(
Pa(smh−1 = s◦) · Pa(smh = s | smh−1 = s◦) + Pa(smh−1 = s) · Pa(smh = s | smh−1 = s)

)
=

M0∑
m=1

H∑
h=2

(
δPa(smh−1 = s◦, a

m
h 6= a?) + (δ + ε)Pa(smh−1 = s◦, a

m
h = a?) + (1− δ)Pa(smh−1 = s)

)
≤δEa[N◦ −N?

◦ ] + (δ + ε)Ea[N?
◦ ] + (1− δ)Ea[N ],
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and rearranging the last inequality gives us Ea[N ] ≤ Ea[N◦ −N?
◦ ] + (1 + ε

δ )Ea[N?
◦ ].

For this proof only, define the random variable W (T0) to be the total reward of the algorithm over the horizon
T0, and define G(T0) to be the (static) regret with respect to the optimal policy. Since for any algorithm, the
probability of staying in state s◦ under Pa(·) is no larger than under Punif(·), it follows that

Ea[W (T0)] ≤ Ea[N ] ≤ Ea[N◦ −N?
◦ ] + (1 +

ε

δ
)Ea[N?

◦ ]

=Ea[N◦] +
ε

δ
Ea[N?

◦ ] ≤ Eunif[N◦] +
ε

δ
Ea[N?

◦ ]

=T0 − Eunif[N ] +
ε

δ
Ea[N?

◦ ]. (48)

Let τm◦ denote the first step that the state transits from state s◦ to s in the m-th episode, then

Eunif[N ] =

M0∑
m=1

H∑
h=1

Punif(τ
m
◦ = h)Eunif[N | τm◦ = h] =

M0∑
m=1

H∑
h=1

(1− δ)h−1δEunif[N | τm◦ = h]

≥
M0∑
m=1

H∑
h=1

(1− δ)h−1δ
H − h

2
=

M0∑
m=1

(
H

2
− 1

2δ
+

(1− δ)H

2δ

)
≥T0

2
− M0

2δ
. (49)

Since the algorithm is a deterministic mapping from the observation sequence to an action, the random variable
N?
◦ is also a function of the observations up to time T . In addition, since the immediate reward only depends on

the current state, N?
◦ can further be considered as a function of just the state sequence up to T . Therefore, the

following lemma from Jaksch et al. (2010), which in turn was adapted from Lemma A.1 in Auer et al. (2002),
also applies in our setting.
Lemma 10. (Lemma 13 in Jaksch et al. (2010)) For any finite constant B, let f : {s◦, s}T0+1 → [0, B] be any
function defined on the state sequence s ∈ {s◦, s}T0+1. Then, for any 0 < δ ≤ 1

2 , any 0 < ε ≤ 1− 2δ, and any
a ∈ A, it holds that

Ea[f(s)] ≤ Eunif[f(s)] +
B

2
· ε√

δ

√
2Eunif [N?

◦ ].

Since N?
◦ itself is a function from the state sequence to [0, T0], we can apply Lemma 10 and arrive at

Ea[N?
◦ ] ≤ Eunif [N?

◦ ] +
T0

2
· ε√

δ

√
2Eunif [N?

◦ ]. (50)

From (49), we have that
∑SA

a=1 Eunif [N?
◦ ] = T0 − Eunif [N ] ≤ T0

2 + M0

2δ . By the Cauchy-Schwarz inequality, we

further have that
∑SA

a=1

√
2Eunif [N?

◦ ] ≤
√
SA(T0 + M0

δ ). Therefore, from (50), we obtain

SA∑
a=1

Ea[N?
◦ ] ≤ T0

2
+
M0

2δ
+
T0

2
· ε√

δ

√
SA(T0 +

M0

δ
).

Together with (48) and (49), it holds that

E?[W (T0)] ≤ 1

SA

SA∑
a=1

Ea[W (T0)]

≤T0

2
+
M0

2δ
+
ε

δ

1

SA

(
T0

2
+
M0

2δ
+
T0

2
· ε√

δ

√
SA(T0 +

M0

δ
)

)
. (51)
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G.1. The Un-discounted Setting

Let us now momentarily deviate from the episodic setting and consider the un-discounted setting (with M0 =
1). This is the case of the JAO MDP in Figure 2 where there is not reset. We could calculate the stationary
distribution and find that the optimal average reward for the JAO MDP is δ+ε

2δ+ε . It is also easy to calculate that
the diameter of the JAO MDP is D = 1

δ . Therefore, the expected (static) regret with respect to the randomness
of a∗ can be lower bounded by

E?[G(T0)] =
δ + ε

2δ + ε
T0 − E?[W (T0)]

≥ εT0

4δ + 2ε
− D

2
− εD(T0 +D)

2SA
− ε2T0D

√
D

2
√
SA

(
√
T0 +

√
D).

By assuming T0 ≥ DSA (which in turn suggests D ≤
√

T0D
SA ) and setting ε = c

√
SA
T0D

for c = 3
40 , we further

have that

E?[G(T0)] ≥

(
c

6
− c

2SA
− cD

2SAT0
− c2

2
− c2

2

√
D

T0

)√
SAT0D −

D

2

≥
(

3

20
c− c2 − 1

200

)√
SAT0D =

1

1600

√
SAT0D.

It is easy to verify that our choice of δ and ε satisfies our assumption that 0 < ε < δ. So far, we have
recovered the (static) regret lower bound of Ω(

√
SAT0D) in the un-discounted setting, which was originally

proved in Jaksch et al. (2010).

Based on this result, let us now incorporate the non-stationarity of the MDP and derive a lower bound for the
dynamic regretR(T ). Recall that we are constructing the non-stationary environment as a switching-MDP. For
each segment of length T0, the environment is held constant, and the regret lower bound for each segment is
Ω(
√
SAT0D). At the beginning of each new segment, we uniformly sample a new action a∗ at random from

the action space A to be the good action for the new segment. In this case, the learning algorithm cannot use
the information it learned during its previous interactions with the environment, even if it knows the switching
structure of the environment. Therefore, the algorithm needs to learn a new (static) MDP in each segment,
which leads to a dynamic regret lower bound of Ω(L

√
SAT0D) = Ω(

√
SATLD), where let us recall that L

is the number of segments. Every time the good action a∗ varies, it will cause a variation of magnitude 2ε in

the transition kernel. The constraint of the overall variation budget requires that 2εL = 3
20

√
SA
T0D

L ≤ ∆, which

in turn requires L ≤ 4∆
2

3T
1

3D
1

3S−
1

3A−
1

3 . Finally, by assigning the largest possible value to L subject to the
variation budget, we obtain a dynamic regret lower bound of Ω

(
S

1

3A
1

3 ∆
1

3D
2

3T
2

3

)
. This completes the proof

of Proposition 1.

G.2. The Episodic Settings

Now let us go back to our simplified episodic setting, as depicted in Figure 3. One major difference with the
previous un-discounted setting is that we might not have time to mix between s◦ and s in H steps. (Note that
we only need to reach the stationary distribution over the (s◦, s) pair in each step h, rather than the stationary
distribution over the entire MDP. In fact, the latter case is never possible because the entire MDP is not aperi-
odic.) It can be shown that the optimal policy on this MDP has a mixing time of Θ

(
1
δ

)
(Jin et al., 2018), and

hence we can choose δ to be slightly larger than Θ( 1
H ) to guarantee sufficient time to mix. All the analysis up

to inequality (51) carries over to the episodic setting, and essentially we can set δ to be Θ
(

1
H

)
to get a (static)

regret lower bound of Ω(
√
SAT0H) in each segment. Another difference with the previous setting lies in the

usage of the variation budget. Since we require that all the steps in the same episode should vary simultane-
ously, it now takes a variation budget of 2εH each time we switch to a new action a∗ at the beginning of a new
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segment. Therefore, the overall variation budget now puts a constraint of 2εHL ≤ O(∆) on the magnitude

of each switch. Again, by choosing ε = Θ
(√

SA
T0H

)
and optimizing over possible values of L subject to the

budget constraint, we obtain a dynamic regret lower bound of Ω
(
S

1

3A
1

3 ∆
1

3H
1

3T
2

3

)
in the simplified episodic

setting.

Finally, we consider the standard episodic setting as introduced in Section 2. In this setting, we essentially will
be concatenating H distinct JAO MDPs, each with an independent good action a∗, into a chain like Figure 3.
The transition kernels in these JAO MDPs are also allowed to vary asynchronously in each step h, although our
construction of the lower bound does not make use of this property. As argued similarly in Jin et al. (2018),
the number of observations for each specific JAO MDP is only T0/H , instead of T0. Therefore, we can as-
sign a slightly larger value to ε and the learning algorithm would still not be able to identify the good action

given the fewer observations. Setting δ = Θ
(

1
H

)
and ε = Θ

(√
SA
T0

)
leads to a (static) regret lower bound

of Ω(H
√
SAT0) in the stationary RL problem. Again, the transition kernels in all the H JAO MDPs vary si-

multaneously at the beginning of each new segment. By optimizing L subject to the overall budget constraint
2εHL ≤ O(∆), we obtain a dynamic regret lower bound of Ω

(
S

1

3A
1

3 ∆
1

3H
2

3T
2

3

)
in the episodic setting. This

completes our proof of Theorem 4.

H. Supplementary Proofs for Section 7
H.1. Proof of Theorem 5

Proof. The proof follows easily from the following observation: From the perspective of agent 1, the environ-
ment is non-stationary due to the fact that agent 2 is changing its policy over time. Since the switching cost of
agent 2 is upper bounded by O(T β), by the definition of ∆r and ∆p in Section 2, we know that the variation of
the environment from the perspective of agent 1 is upper bounded by O(T β). Substituting the value of ∆ with
O(T β) in Theorem 2 or Theorem 3 leads to the desired result.

H.2. Proof of Theorem 6

Proof. From the (λ, µ)-smoothness of the MDP, it follows that

λ · V (π1?,π2?)
h (s)− µ · V (π1,π2)

h (s) ≤ V (π1?,π2)
h (s),∀s ∈ S, h ∈ [H].

Therefore, it holds that
M∑
m=1

(
λ · V (π1?,π2?)

1 (sm1 )− (1 + µ) · V (π1,π2)
1 (sm1 )

)
≤

M∑
m=1

(
V

(π1?,π2)
1 (sm1 )− V (π1,π2)

1 (sm1 )
)

≤
M∑
m=1

(
sup
π1?

V
(π1?,π2)

1 (sm1 )− V (π1,π2)
1 (sm1 )

)
=Rπ2

(π1,M) = Õ(T
β+2

3 ),

where the last step follows from Theorem 5. Rearranging the terms leads to the desired result.

I. Simulations Setup

We compare RestartQ-UCB with three baseline algorithms: LSVI-UCB-Restart (Zhou et al., 2020), Q-Learning
UCB, and Epsilon-Greedy (Watkins, 1989). LSVI-UCB-Restart is a state-of-the-art non-stationary RL algo-
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rithm that combines optimistic least-squares value iteration with periodic restarts. It is originally designed for
non-stationary RL in linear MDPs, but in our simulations we reduce it to the tabular case by setting the feature
map to be essentially an identity mapping, i.e., the feature dimension is set to be d = S × A. Q-Learning
UCB is simply our RestartQ-UCB algorithm with no restart. It is a Q-learning based algorithm that uses upper
confidence bounds to guide the exploration. Epsilon-Greedy is also a Q-learning based algorithm with restarts.
Compared with RestartQ-UCB, Epsilon-Greedy does not employ a UCB-based bonus term to explicitly force
exploration. Instead, it takes the greedy action according to the estimated Q function with a high probability
1− ε, and explores an action from the action set uniformly at random with probability ε.

We evaluate the cumulative rewards of the four algorithms on a variant of a reinforcement learning task named
Bidirectional Diabolical Combination Lock (Agarwal et al., 2020; Misra et al., 2020). This task is designed
to be particularly difficult for exploration. At the beginning of each episode, the agent starts at a fixed state.
According to its first action, the agent transitions to one of the two paths, or “combination locks”, each of length
H . Each path is a chain of H states, where the state at the endpoint of each path gives a high reward. At
each step on the path, there is only one “correct” action that leads the agent to the next state on the path, while
the other A − 1 actions lead it to a sinking state that yields a small per-step reward of 1

8H ever since. Since
we are considering a non-deterministic MDP, each intended transition “succeeds” with probability 0.98; that is,
even if the agent takes the correct action at a certain step, there is still a 0.02 probability that it will end in the
sinking state. The agent obtains a 0 reward when taking a correct action, and gets a 1

8H reward at the step when
it transitions to the sinking state. Finally, the endpoint state of one path gives a reward of 1, while the other
endpoint only gives a reward of 0.25. As argued in Agarwal et al. (2020), the following properties make this task
especially challenging: First, it has sparse high rewards, and uniform exploration only has a A−H probability
of reaching a high reward endpoint. Second, it has dense low rewards, and a locally optimal policy will lead to
the sinking state quickly. Third, there is no indication which path has the globally optimal reward, and the agent
must remember to still visit the other one. Interested readers can refer to Section 5.1 of Agarwal et al. (2020)
for detailed descriptions of the task.

We introduce two types of non-stationarity to the Bidirectional Diabolical Combination Lock task, namely
abrupt variations and gradual variations. For abrupt variations, we periodically switch the two high-reward
endpoints: One high-reward endpoint gives a reward of 1 at the beginning, and abruptly changes to a reward
of 0.25 after a certain number of episodes, and then switches back to the reward of 1 after the same number of
episodes. The other high-reward endpoint goes the other way around. For gradual changes, we gradually vary
the transition probability at the starting state: At the first episode, one action leads to the first path with 0.98
probability, and to the second path with 0.02 probability. We linearly decrease its probability of leading to the
first path, and increase its probability to the second path. As a result, at the last episode, this action would lead
to the first path with 0.02 probability, and to the second path with 0.98 probability instead. The same is true for
the other actions.

For simplicity, we use Hoeffding-based bonus terms in the simulations for RestartQ-UCB. We set M =
5000, H = 5, S = 10, and A = 2. For abrupt variations, we switch the two high-reward endpoints after
every 1000 episodes. The hyper-parameters for each algorithm are optimized individually. For RestartQ-UCB,
LSVI-UCB-Restart, and Epsilon-Greedy, we restart the algorithms after every 1000 episodes both for abrupt
variations and gradual variations. This is the same frequency as the abrupt variation of the environment (because
the restart frequency is optimized as a hyper-parameter), although it turns out that other restart frequencies lead
to very similar results. For Epsilon-Greedy, we set the exploration probability to be ε = 0.05. All results are
averaged over 30 runs on a laptop with an Intel Core i5-9300H CPU and 16 GB memory.


