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Abstract
We investigate the problem of best-policy identifi-
cation in discounted Markov Decision Processes
(MDPs) when the learner has access to a gener-
ative model. The objective is to devise a learn-
ing algorithm returning the best policy as early
as possible. We first derive a problem-specific
lower bound of the sample complexity satisfied
by any learning algorithm. This lower bound
corresponds to an optimal sample allocation that
solves a non-convex program, and hence, is hard
to exploit in the design of efficient algorithms.
We then provide a simple and tight upper bound
of the sample complexity lower bound, whose
corresponding nearly-optimal sample allocation
becomes explicit. The upper bound depends on
specific functionals of the MDP such as the sub-
optimality gaps and the variance of the next-state
value function, and thus really captures the hard-
ness of the MDP. Finally, we devise KLB-TS (KL
Ball Track-and-Stop), an algorithm tracking this
nearly-optimal allocation, and provide asymptotic
guarantees for its sample complexity (both almost
surely and in expectation). The advantages of
KLB-TS against state-of-the-art algorithms are
discussed and illustrated numerically.

1. Introduction
Reinforcement Learning (RL) algorithms are designed to
interact with an unknown stochastic dynamical system, and
through this interaction, to identify, as fast as possible, an
optimal control policy. The efficiency of these algorithms
is usually measured through their sample complexity, de-
fined as the number of samples (the number of times the
algorithm interacts with the system) required to identify an
optimal policy with some prescribed levels of accuracy and
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certainty. This paper, as most related work in this field, fo-
cuses on systems and control objectives that are modelled as
a standard discounted Markov Decision Processes (MDPs)
with finite state and action spaces. Various interaction mod-
els have been investigated, but sample complexity analyses
have been mainly conducted under the so-called generative
model, where in each step, the algorithm may sample a tran-
sition and a reward from any given (state, action) pair. We
also restrict our attention to this model.

We investigate the design of RL algorithms with minimal
sample complexity. This problem has attracted a lot of
attention over the last two decades. Most studies follow
a minimax approach. For example, it is known (Azar
et al., 2013) that for the worst possible MDP, identifying
an ε-optimal policy with probability 1− δ requires at least

SA
ε2(1−γ)3 log(SAδ ) samples, where S and A are the number
of states and actions, respectively, and γ is the discount
factor. Note that to obtain this sample complexity lower
bound, one needs to design a very specific worst-case MDP
(in particular, its transition probabilities must depend on ε
and γ). Since the aforementioned minimax lower bound
appeared, most researchers have been aiming at devising
algorithms matching this bound. In contrast, we are in-
terested in analyzing the minimal problem-specific sample
complexity. Specifically, we seek to understand the depen-
dence of the sample complexity on the MDP that has to
be learnt. Problem-specific performance metrics are much
more informative than their minimax counterparts, because
they encode and express the inherent hardness of the MDP.
Minimax metrics just represent the hardness of the worst
MDP. In particular, establishing that the sample complexity
of an algorithm does not exceed the minimax lower bound
just reveals that the algorithm performs well for this worst
MDP. However, it does not indicate whether the algorithm
adapts to the hardness of the MDP, i.e., whether the optimal
policy of a very easy MDP would be learnt very quickly.
As a matter of fact, an algorithm with sample complexity
matching the minimax lower bound just consists in sam-
pling (state, action) pairs uniformly at random, and is not
adapting to the MDP.

The problem-specific sample complexity of identifying the
best arm in stochastic Multi-Armed Bandit (MAB) prob-
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lems is now well understood (Garivier & Kaufmann, 2016).
In this work, we explore whether the methodology used in
(Garivier & Kaufmann, 2016) for MAB problems can be
extended to RL problems. This methodology consists in
first deriving a problem-specific sample complexity lower
bound which should reveal the sample allocation leading
to the minimal sample complexity. One may then devise
a track-and-stop algorithm that (i) tracks the optimal sam-
ple allocation identified in the lower bound, and (ii) stops
when the information gathered is judged sufficient to get
the desired PAC guarantees. As it turns out, extending this
methodology to RL problems raises fundamental issues,
mainly due to the difficulty of computing the sample al-
location leading to the minimal problem-specific sample
complexity. We propose a set of tools to solve these issues.
Our contributions are as follows:

1. We derive a problem-specific sample complexity lower
bound for identifying an optimal policy in a given MDP
φ. This bound is expressed as T ∗(φ) log(1/δ), where the
characteristic time T ∗(φ) encodes the hardness of the MDP
φ. T ∗(φ) is the value of a complex non-convex optimization
problem. This complexity makes the design of a track-
and-stop algorithm similar to that proposed in (Garivier
& Kaufmann, 2016) and achieving the sample complexity
lower bound elusive. To circumvent this difficulty, we derive
an explicit upper bound U(φ) of T ∗(φ). The advantage of
U(φ) is two-fold: (i) U(φ) remains problem-specific, and
explicitly depends on functionals of the MDP characterizing
its hardness. (ii) U(φ) corresponds to an explicit and simple
sample allocation. This allows us to devise a procedure that
tracks this allocation.

2. Based on our upper bound analysis, we devise KLB-TS
(KL Ball Track-and-Stop), an algorithm whose sample com-
plexity is at most U(φ) log(1/δ). Our algorithm relies on a
procedure tracking the sample allocation leading to U(φ),
and a stopping rule that we refer to as KL Ball Stopping
rule because of its analogy to the way we derive the upper
bound U(φ).

3. We highlight the differences of our design approach
compared to that leading to BESPOKE (Zanette et al., 2019),
a recently proposed adaptive algorithm. As it turns out, the
adaptive part of BESPOKE is very limited in practice (see
related work and Appendix H for details), and KLB-TS
exhibits a much better performance numerically.

2. Related Work
Most work on the best policy identification in MDPs adopt
a minimax approach (Kearns & Singh, 1999), (Kakade,
2003), (Even-Dar et al., 2006), (Azar et al., 2013), (Sidford
et al., 2018), (Agarwal et al., 2020), (Li et al., 2020). In
the most recent of these papers (Li et al., 2020), the authors

propose an algorithm whose sample complexity achieves
the minimax lower bound of (Azar et al., 2013) for a wide
range of values of ε, namely for ε ∈ (0, 1

1−γ ]. Refer to the
appendix for a detailed account on the minimax framework.

As far as we are aware, the only paper attempting to propose
a problem-specific analysis of the best policy identifica-
tion in MDPs with a generative model is (Zanette et al.,
2019). There, the authors proposed BESPOKE, an adaptive
algorithm designed to find ε-optimal policies. BESPOKE
starts by allocating an extremely large number of samples
nmin = 2×6252×γ2×S×log(1/δ)

(1−γ)2 to each (state, action) pair.
Then, at each iteration, BESPOKE solves a convex program
whose objective is an upper-bound of the sub-optimality
gap (in terms of the `∞-norm of the value function) of the
empirical optimal policy. The solution of this program cor-
responds to the sampling strategy that the algorithm uses to
halve the sub-optimality gap of the empirical policy in the
next iteration. Interestingly, BESPOKE is the first algorithm
with a problem-dependent sample complexity upper-bound.
Note however that BESPOKE has not been tested numeri-
cally in (Zanette et al., 2019); we fill this gap in this paper.
Because of its very long initialization phase, it turns out
that the part where BESPOKE actually adapts its sample
allocation is negligible in comparison of its total sample
complexity. In Appendix H, we provide a more detailed
discussion on BESPOKE, and further compare the sam-
ple complexity upper bounds of KLB-TS and BESPOKE.
Experiments in Section 7 show that KLB-TS significantly
outperforms BESPOKE numerically.

3. Preliminaries and Notation
3.1. Discounted MDPs

We investigate the optimal control of dynamical systems
modelled as an infinite time-horizon MDP with finite state
space S and finite action spaces As for any s ∈ S. Let
A = ∪s∈SAs. The MDP is defined by its kernels: φ =
(pφ, qφ), where pφ captures the system dynamics and qφ the
random collected rewards. Specifically, pφ(s′|s, a) denotes
the probability of the system to be in state s′ after taking
the action a ∈ As in state s. Let pφ(s, a) = (pφ(s′|s, a))s′ .
qφ(·|s, a) or simply qφ(s, a) is the density of the distribu-
tion of the reward collected in state s when action a is
selected, w.r.t. some positive measure λ with support in-
cluded in [0, 1]. Let rφ(s, a) denote the expected reward
collected in state s when action a is selected, rφ(s, a) =∫ 1

0
Rqφ(R|s, a)λ(dR).

The objective is to identify a control policy π :
S → A maximizing the long-term discounted reward
Eφ[
∑∞
t=0 γ

trφ(sπ(t), π(sπ(t))], where sπ(t) is the state of
the system at time t under the policy π and Eφ[·] represents
the expectation taken w.r.t. to the randomness induced by
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(pφ, qφ).

We denote by V πφ the value function of the MDP φ
when the control policy is π: for any s, V πφ (s) =

Eφ[
∑∞
t=0 γ

trφ(sπ(t), π(sπ(t))|sπ(0) = s]. V ?φ corre-
sponds to the value function when the policy π is optimal.
Note that since the rewards are lower and upper bounded by
0 and 1, respectively, we have for any s, V ?φ (s) ∈ [0, 1

1−γ ].
Similarly, the Q-function is denoted by Qπφ, and Q?φ when
π is optimal. The sub-optimality gap of action a in state s
is defined as ∆sa = V ?φ (s)−Q?φ(s, a). Finally, denote by
Π?
φ the set of optimal policies for φ.

Assumption 1. To simplify notation and the analysis, we
assume that φ admits a unique optimal control policy de-
noted by π?φ. This means that φ ∈ Φ, where Φ is defined as
Φ = {φ : |Π?

φ| = 1}.

3.2. Best-policy identification

We aim at devising an algorithm identifying π?φ as quickly as
possible in the fixed-confidence setting: when the algorithm
stops and returns an estimated optimal policy π̂, we should
have Pφ[π̂ 6= π?φ] ≤ δ, for some pre-defined confidence
parameter δ > 0. Such an algorithm consists of a sampling
rule, a stopping rule, and a decision rule. An algorithm χ
gathers information sequentially, and we denote by Fχt the
σ-algebra generated by all observations made under χ up to
and including round t.

Sampling rule. In round t, the algorithm χ selects a (state,
action) pair (st, at) to explore, depending on past obser-
vations. (st, at) is Fχt−1-measurable. χ observes the next
state denoted by s′t and a random reward Rt. Note that any
admissible (state, action) pair may be selected (we consider
a generative model).

Stopping and decision rules. After gathering enough in-
formation, χ may decide to stop sampling and to return
an estimated best policy. The algorithm stops after col-
lecting τ samples, and τ is a stopping time w.r.t. the fil-
tration (Fχt )t≥1. The estimated best policy π̂ is then Fχτ -
measurable. τ is referred to as the sample complexity of
χ.

δ-PC algorithms. An algorithm is δ-Probably Correct (δ-
PC) if it satisfies the two following conditions: for any MDP
φ ∈ Φ, (i) it stops in finite time almost surely, Pφ[τ <∞] =
1, and (ii) Pφ[π̂ 6= π?φ] ≤ δ.

3.3. Additional notation

1(s) denotes the canonical base vector in RS whose only
non-zero entry is at index s. Σ = {ω ∈ [0, 1]S×A :∑
s,a
wsa = 1} denotes the simplex in RS×A. The Kullback-

Leibler divergence between two probability distributions P
andQ on some discrete space S is defined as: KL(P‖Q) =∑
s∈S P (s) log(P (s)

Q(s) ). For Bernoulli distributions of re-
spective means p and q, the KL divergence is denoted by
kl(p, q). For distributions over R defined through their den-
sities p and q w.r.t. some positive measure λ, the KL di-
vergence is: KL(p‖q) =

∫∞
−∞ p(x) log

(
p(x)
q(x)

)
λ(dx). For

two MDPs φ and ψ, we say that φ � ψ if for all (s, a),
pφ(·|s, a)� pψ(·|s, a) and qφ(·|s, a)� qψ(·|s, a). In that
case, we define KLφ|ψ(s, a) as the KL divergence between
the distributions of the random observations made for the
(state, action) pair (s, a) under φ and ψ:

KLφ|ψ(s, a) = KL(pφ(s, a)‖pψ(s, a))

+KL(qφ(s, a)‖qψ(s, a)).

4. Problem-Specific Sample Complexity
Lower Bound

To derive a problem-specific sample complexity lower
bound, we use classical change-of-measure arguments as
those leveraged towards regret and sample complexity lower
bounds (Lai & Robbins, 1985; Garivier & Kaufmann, 2016)
in bandit problems. These arguments lead to constraints
on the expected numbers of times each (state, action) pair
should be explored under any δ-PC algorithm.

Definition 1. The set of alternative MDPs is defined as:
Alt(φ) = {ψ MDP : φ� ψ and Π?

φ ∩Π?
ψ = ∅}.

Let ψ ∈ Alt(φ) be an alternative MDP and consider a δ-PC
algorithm. We denote by Oτ the set of observations made
under the algorithm until it stops. Further consider Lτ the
log-likelihood ratio of Oτ under the MDPs φ and ψ. Using
similar techniques as those used in the proof of Wald’s first
lemma, we get (all proofs are detailed in the appendix):

Lemma 1. Let nt(s, a) be the number of times (s, a) has
been explored up to and including step t. For any φ ∈ Φ,
Eφ[Lτ ] =

∑
s,a Eφ[nτ (s, a)] KLφ|ψ(s, a).

From the above lemma, and using the same arguments as in
(Kaufmann et al., 2016), one may derive the following data
processing inequality, valid for any Fτ -measurable event
E: ∑

s,a

Eφ[nτ (s, a)] KLφ|ψ(s, a) ≥ kl(Pφ[E],Pψ[E]).

Next, we select the event E as {π̂ /∈ Π?(φ)}. Since
the algorithm is δ-PC, and since ψ ∈ Alt(φ), we have:
Pφ[E] ≤ δ and Pψ[E] ≥ Pψ[π̂ ∈ Π?(ψ)] ≥ 1 − δ. Us-
ing the monotonicity of the KL divergence, we deduce
that kl(Pφ[E],Pψ[E]) ≥ kl(δ, 1 − δ). We have estab-
lished that under any δ-PC algorithm, the numbers of times
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(nτ (s, a))s,a the different (state, action) pairs are explored
satisfy: for any MDP ψ ∈ Alt(φ),∑

s,a

Eφ[nτ (s, a)] KLφ|ψ(s, a) ≥ kl(δ, 1− δ). (1)

Combining the above constraints with the fact that τ =∑
s,a nτ (s, a), we obtain the following sample complexity

lower bound.

Proposition 1. The sample complexity of any δ-PC algo-
rithm satisfies: for any φ ∈ Φ,

Eφ[τ ] ≥ T ∗(φ)kl(δ, 1− δ), (2)

where T ∗(φ)−1 = sup
ω∈Σ

inf
ψ∈Alt(φ)

∑
s,a

ωsaKLφ|ψ(s, a). (3)

In the above proposition, ωsakl(δ, 1− δ) can be interpreted
as the expected proportion of times the pair (s, a) is explored
under the algorithm. Taking the supremum over ω then
corresponds to selecting an optimal sampling rule. In the
following, ω is referred to as the allocation vector.

Remark. In (Ok et al., 2018), the authors identify a similar
optimization problem as (3) leading to a problem-specific
regret lower bound satisfied by online learning algorithms
in generic structured MDP. Interestingly, we note that this
optimization problem is simpler than (3). This is due to
fact that when minimizing regret, confusing MDPs have the
same transitions and rewards as in the original MDP at
optimal (state, action) pairs. This considerably simplifies
the analysis, and explains why, in general, deriving problem-
specific sample complexity lower bound is much harder than
obtaining regret lower bounds.

4.1. Properties of the problem (3)

We now provide useful properties of the optimization prob-
lem (3). Additional properties of the problem are presented
in Appendix B.

(i) The set of alternative MDPs. To simplify the notation
we use π? instead of π?φ. Our first result concerns the set
Alt(φ) of alternative MDPs:

Lemma 2. Alt(φ) =
⋃

s,a6=π?(s)

Altsa(φ) where

Altsa(φ) = {ψ : Qπ
?

ψ (s, a) > V π
?

ψ (s)}.

The above lemma states that an alternative MDP ψ is such
that π?, the optimal policy of φ, can be improved under ψ
locally at some state s, by selecting in s some previously
sub-optimal action a, instead of π?(s). Using this lemma,

we can simplify the expression of the characteristic time
appearing in Proposition 1. Indeed, (3) is equivalent to:

sup
ω∈Σ

min
s,a6=π?(s)

inf
ψ∈Altsa(φ)

∑
s′,a′

ωs′,a′KLφ|ψ(s′, a′). (4)

Next, we rewrite the problem in an analytic manner. To
this aim, we parametrize ψ by its transition probabilities
and rewards u = (qψ(s, a), pψ(s, a))s,a∈S×A and intro-
duce the following notations: for all (s, a), dr(s, a) =
(rψ − rφ)(s, a) and dp(s, a) = (pψ − pφ)(s, a). Further

define dV π
?

=
(

[V π
?

ψ − V π?φ ](s)
)
s∈S

.

Combining the condition : Qπ
?

ψ (s, a) > V π
?

ψ (s) with the
fact that Qπ

?

φ (s, a) + ∆sa = V π
?

φ (s) we obtain that ψ ∈
Altsa(φ) if and only if:

∆sa < dr(s, a) + γdp(s, a)>V π
?

φ

+ [γpψ(s, a)− 1(s)]>dV π
?

. (5)

The above inequality states that for ψ to be in Altsa(φ), the
changes in the rewards and transitions between φ and ψ
should be greater than the sub-optimality gap of action a in
state s. Defining Usa = {u : (5) holds}, we conclude that
both the optimization problems (3) and (4) are equivalent
to:

sup
ω∈Σ

min
s,a6=π?(s)

inf
u∈Usa

∑
s′,a′

ωs′,a′KLφ|ψ(s′, a′). (6)

(ii) Non-convexity of the problem (3). The characteristic
time T ∗(φ), as well as the optimal sampling rule are char-
acterized by the solution of (3) or that of (4). If we think
of a track-and-stop algorithm to identify the best policy (as
proposed in (Garivier & Kaufmann, 2016) for the simple
MAB problem), one would need to repeatedly solve these
optimization problems. It is then important to be able to do
it in a computationally efficient way. Unfortunately, these
problems are probably very hard to solve. This is well il-
lustrated by the fact that the following sub-problem is not
convex:

T (φ, ω)−1 = inf
ψ∈Alt(φ)

∑
s,a

ωsaKLφ|ψ(s, a). (7)

Actually, in the example presented in Fig. 1, we can specify
φ such that the sets Alt(φ) and Altsa(φ) are not convex.

Consider φ, ψ, ψ belonging to the class of MDPs specified
in Fig. 1, each defined by the vector (r2, r1, p1) (all other
parameters values are fixed as in the figure):
ψ = (r2 = 0.25, r1 = 0.93, p1 = 0.7)

ψ = (r2 = 0.1, r1 = 0.47, p1 = 0.6)

φ = ψ+ψ
2 = (r2 = 0.175, r1 = 0.6925, p1 = 0.65)



Adaptive Sampling for Best Policy Identification in MDPs

Figure 1. A class of two-state MDPs, with γ = 0.9. Actions a1
and a2 are available in state s1. State s2 is absorbing. Dashed
(resp. full) arrows indicate the transitions when action a1 (resp.
a2) is chosen. Numbers above each arrow indicate the transition
probability and the average reward, e.g. p′2 = P[s2|s1, a2].

Then a simple calculation shows that the pair (s1, a1) is
optimal : r1

1−γp1 > r2
1−γp2 for both ψ and ψ, while it is

sub-optimal : r1
1−γp1 <

r2
1−γp2 for φ. In other words, both

ψ and ψ are in Alt(φ) and Alts1a1(φ) but their average is
not: ψ+ψ

2 = φ /∈ Alt(φ). Therefore the sets Alt(φ) and
Alts1a1(φ) are not convex. Observe that this non-convexity
does not arise in simple MAB problems. Indeed, there, the
set of parameters (e.g., the average reward vectors µ =
(µ1, . . . , µK)) such that a given arm is optimal is always
convex, i.e., {µ : µk > maxj 6=k µj} is convex.

Remark. Note that if we have access to an optimization
oracle that solves the problem (3) then we can simply apply
the classical Track-and-Stop algorithm and achieve asymp-
totically optimal sample complexity. In the absence of such
an oracle, we will devise an upper bound of T ∗(φ), which
we will use in our sampling rule as a proxy for the charac-
teristic time.

4.2. Upper bound of T ∗(φ)

We use the analytic version (6) of the optimization problem
that defines the sample complexity lower bound to derive
a simple (but still problem-specific) upper bound of the
characteristic time T ∗(φ). The upper bound actually corre-
sponds to a sampling rule that is explicit, i.e., we do not need
to solve any optimization problem to get it. Using this upper
bound and the corresponding sampling rule, we will be able
to devise a simple track-and-stop algorithm with provable
performance guarantees. In addition, the upper bound has
the right dependence in the sub-optimality gaps, and we also
prove that it remains smaller than existing minimax sample
complexity lower bounds.

Before we state the main result leading to our upper bound,
we introduce additional notations.
• ∆min = min

s,a6=π?(s)
∆sa denotes the minimum sub-

optimality gap in φ.

• Varpφ(s,a)[V
?
φ ] = Vars′∼pφ(.|s,a)[V

?
φ (s′)] is the variance

of the next-state value after taking state-action pair (s, a).
Similarly Var?max[V ?φ ] = max

s
Varpφ(s,π?(s))[V

?
φ ] is the

maximum variance of the next-state value after taking an
optimal action.
• sp[V ?φ ] = max

s,s′
V ?φ (s′) − V ?φ (s) is the span of the value

function.

Theorem 1. We have for all vectors ω in the simplex
T (φ, ω) ≤ U(φ, ω) where,

U(φ, ω) , max
s,a6=π?(s)

T1(s, a;φ) + T2(s, a;φ)

ωsa

+
T3(φ) + T4(φ)

min
s
ωs,π?(s)

, (8)

and

T1(s, a;φ) ,
2

∆2
sa

,

T2(s, a;φ) , max

(
16Varpφ(s,a)[V

?
φ ]

∆2
sa

,
6sp[V ?φ ]4/3

∆
4/3
sa

)
,

T3(φ) ,
2

[∆min(1− γ)]2
,

and

T4(φ) , min

(
27

∆2
min(1− γ)3

,

max

(
16Var?max[V ?φ ]

∆2
min(1− γ)2

,
6sp[V ?φ ]4/3

∆
4/3
min(1− γ)4/3

))
.

The proof of the theorem relies on writing each of the dif-
ference terms dr(s, a), dp(s, a), drπ

?

and dpπ
?

involved
in the constraint (5) as a proportion of the sub-optimality
gap ∆sa. Then, using classical f-divergences inequalities,
as well as a variance inequality from (Azar et al., 2013), we
relate each difference term to the KL divergences appearing
in the objective function of the problem (6). With this per-
spective in mind, the terms T1(s, a;φ) and T2(s, a;φ) can
be interpreted as the sample complexity costs to learn the
reward of (state,action) pair (s, a) and the corresponding
transition probabilities, respectively. Similarly, the terms
T3(φ) and T4(φ) are interpreted as the sample complexity
costs to estimate the future rewards collected from the next
state and the transitions from the next state.

Corollary 1. Let Hsa , T1(s, a;φ) + T2(s, a;φ) and
H? , S(T3(φ) + T4(φ)). Then the solution of the problem
inf
ω∈Σ

U(φ, ω) is given by the unique allocation vector ω ∈ Σ

defined by (∼ means proportional to): for all s ∈ S,{
ωs,π?(s) ∼ 1

S

√
H?(

∑
s,a6=π?(s)Hsa),

ωsa ∼ Hsa, for s, a 6= π?(s).
(9)
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This allocation yields the following upper bound:

T ∗(φ) ≤ U(φ) , 2(H? +
∑

s,a6=π?(s)

Hsa). (10)

In the previous corollary, ωsa is the optimal proportion of
times (s, a) should be sampled, and hence for s, a 6= π?(s),
Hsa corresponds to the hardness of learning that (s, a) is
sub-optimal. It scales as the inverse of the square of the gap
∆sa and is proportional to the variance of future rewards
after taking (s, a).

Further observe that since the rewards are normalized, we
always have: for all (s, a), Varpφ(s,a)[V

?
φ ] ≤ 1

(1−γ)2 and
sp[V ?φ ] ≤ 1

(1−γ) . In addition, we show in Lemma 7 (see
Appendix E) that ∆min is always smaller than 1. These ob-
servations allow us to upper bound T1(s, a;φ), T2(s, a;φ),
T3(φ) and T4(φ), and to prove the following corollary.

Corollary 2. We have: U(φ) = O
(

SA
∆2

min(1−γ)3

)
.

The above result is obtained by plugging the uniform al-
location ωsa = 1/SA in (8). Hence this naive uniform
allocation yields an upper bound scaling as the known min-
imax sample complexity lower bound SA

∆2
min(1−γ)3

. This
result also implies that a track-and-stop algorithm sampling
the pairs (s, a) according to ω will perform better than the
minimax bound. This algorithm will become strictly better
when Var?max[V ?φ ] = o(1/(1− γ)), i.e., when the variance
of the next-state value after taking the optimal action is
small.

5. Algorithm
In this section, we present KLB-TS (KL-Ball Track-and-
Stop), an algorithm that selects the successive (state, action)
pairs so as to track the allocation ω, the problem-specific
allocation (9) that leads to the upper bound (10). The al-
gorithm is a track-and-stop, whose stopping rule does not
follow a generic Generalized Likelihood Ratio Test as that
used (Garivier & Kaufmann, 2016) for MAB problems (re-
fer to Subsection 5.2 for detail).

The algorithm takes as input the confidence parameter δ and
any black-box planner MDP-SOLVER. The latter takes as
input an MDP φ, and returns an optimal policy π?φ ∈ Π?

φ.
For practical implementations, we use the Policy Iteration
algorithm.

KLB-TS starts exploring each (state, action) pair once, to
construct an initial estimate φ̂ of the true MDP φ. The algo-
rithm maintains, after t collected observations, an estimate
φ̂t of the true MDP. Based on this estimate, KLB-TS com-
putes an estimate of the allocation ω, and selects the next
(state, action) pair to track it. After each observation, the es-

timated MDP φ̂t is updated. Finally, the algorithm checks if
a stopping condition is satisfied, in which case the algorithm
stops and returns the empirical optimal policy π̂?τ . The stop-
ping condition is referred to as the KL-Ball stopping rule
since it is inspired by the derivation of the upper bound of
T ∗(φ). There, the various terms involved in the exploration
constraints are upper bounded by KL divergences, i.e., are
in a KL ball.

The pseudo-code of KLB-TS is presented in Algorithm 1.
Its sampling and stopping rule are described in detail in the
next two sub-sections.

Algorithm 1 KLB-TS
input Black-box planner MDP-SOLVER(), Confidence pa-

rameter δ.
Collect one sample from each (s,a) in S ×A.
Set t← SA and nt(s, a)← 1, for all (s,a).
Initialize empirical estimate φ̂t of φ.
π̂?t ← MDP-SOLVER(φ̂t).
while Stopping condition (14) is not satisfied do

Compute allocation vector ω(φ̂t) of equation (9).
Sample from (st+1, at+1) determined by equation
(11).
For all (s,a) set:

nt+1(s, a)←

{
nt(s, a) + 1 if (s, a) = (st+1, at+1)

nt(s, a) Otherwise

t← t+ 1.
Update empirical estimate φ̂t of φ.
π̂?t ← MDP-SOLVER(φ̂t).

end while
output Empirical optimal policy π̂?τ

5.1. Sampling rule

To build an algorithm with sample complexity matching
the upper-bound of Corollary 1, the sampling proportions
of (state,action) pairs should be as close as possible to the
near-optimal weights defined in (9). To this aim, we simply
use the C-tracking rule defined in (Garivier & Kaufmann,
2016), which we recall below.

Define ωε(φ) as the L∞ projection of ω(φ) onto
Σε = {ω ∈ [ε, 1]SA :

∑
s,a

ωsa = 1}. Further define

εt = (S2A2 + t)−1/2/2. Then the (state, action) pair to be
sampled in round t+ 1 is defined as:

(st+1, at+1) ∈ arg max
(s,a)∈S×A

t∑
k=1

ωεksa(φ̂k)− nt(s, a) (11)

with ties broken arbitrarily. The projection onto Σε forces a
minimal amount of exploration so that no pair is left under-
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explored because of bad initial estimates. The same analysis
of the sampling rule given in (Garivier & Kaufmann, 2016)
holds in the MDP case and guarantees that:

Pφ
(
∀(s, a) ∈ S ×A, lim

t→∞

nt(s, a)

t
= ωsa(φ)

)
= 1.

5.2. Stopping rule

It is first worth noting that the proposed stopping condition
constitutes the first stopping rule for best-policy identifi-
cation in the MDP setting. Previous stopping rules in the
literature are designed to identify ε-optimal policies. Unless
we have access to an oracle that reveals the minimal gap
between the best policy and a sub-optimal policy (in which
case we can set ε smaller than this gap), we cannot identify
the best-policy using these rules.
A good stopping rule determines when the set of samples
collected so far is just enough to declare that π̂?t = π? with
probability 1 − δ. The design of our stopping rule is in-
spired by the proof of the upper-bound U(φ), which uses
the following fact (refer to the inequalities (19)-(20)-(21)-
(24)-(23) in the appendix): For all ψ ∈ Alt(φ), there exists
s, a 6= π?(s) and a vector α in the simplex of R4 (which
we denote Σ4) such that the four following conditions are
verified:

α2
1

T1(s,a;φ) ≤ kl (rφ(s, a), rψ(s, a)) ,
α2

2

T2(s,a;φ) ≤ KL (pφ(s, a)‖pψ(s, a)) ,
α2

3

T3(φ) ≤ max
s∈S

kl
(
rφ(s, π?φ(s)), rψ(s, π?φ(s))

)
,

α2
4

T4(φ) ≤ max
s∈S

KL
(
pφ(s, π?φ(s))‖pψ(s, π?φ(s))

)
.

(12)
Then defining the quantities
ρ1(φ, ψ)(s, a) = T1(s, a;φ)kl (rφ(s, a), rψ(s, a)) ,

ρ2(φ, ψ)(s, a) = T2(s, a;φ)KL (pφ(s, a)‖pψ(s, a)) ,

ρ3(φ, ψ) = max
s∈S

T3(φ)kl(rφ(s, π?φ(s)), rψ(s, π?φ(s))),

ρ4(φ, ψ) = max
s∈S

T4(φ)KL(pφ(s, π?φ(s))‖pψ(s, π?φ(s))),

(13)
(12) suggests that to design a PAC stopping condition, it is
sufficient to check that the event

E =
(
∀α ∈ Σ4 ∀s, a 6= π̂?t (s), ρ1(φ̂t, φ)(s, a) < α2

1 or

ρ2(φ̂t, φ)(s, a) < α2
2 or ρ3(φ̂t, φ) < α2

3 or ρ4(φ̂t, φ) < α2
4

)
or equivalently1:

E =
(
∀s, a 6= π̂?t (s),√

ρ1(φ̂t, φ)(s, a) +

√
ρ2(φ̂t, φ)(s, a) +

√
ρ3(φ̂t, φ) +

√
ρ4(φ̂t, φ) < 1

)
1Hence the name KL-Ball stopping rule.

holds with probability 1 − δ. Indeed, if E holds, then by
contraposition of (12), we have φ /∈ Alt(φ̂t), which means
that π̂?t = π?. To define our stopping rule, we further
introduce the threshold function:

x(δ, n,m) = log(1/δ) + (m− 1)[1 + log
(
1 + n/(m− 1)

)
].

We finally define T̂1(s, a) = T1(s, a; φ̂t), T̂2(s, a) =

T2(s, a; φ̂t), T̂3 = T3(φ̂t), T̂4 = T4(φ̂t) and δ′ = δ
4S3A .

The KL-Ball stopping condition, which guarantees that the
event E above holds with probability 1− δ, is:

max
s,a6=π̂?t (s)

√
T̂1(s,a)x(δ′,nt(s,a),2)+

√
T̂2(s,a)x(δ′,nt(s,a),S)√

nt(s,a)

+ max
s∈S

√
T̂3x(δ′,nt(s,π̂?t (s)),2)+

√
T̂4x(δ′,nt(s,π̂?t (s)),S)√

nt(s,π̂?t (s))
≤ 1

(14)

More precisely: τδ = inf{t ∈ N : (14) holds}.
Theorem 2. Under the KL-Ball stopping rule, we have:
Pφ(τδ <∞, π̂?τδ 6= π?φ) ≤ δ.

6. Sample Complexity Analysis
6.1. Main Results

Our main results take the form of asymptotic (when δ goes
to 0) upper bounds on the sample complexity of KLB-TS.
These bounds are proved as follows. First, the use of the
C-tracking rule makes it possible to establish the conver-
gence of the vector (nt(s, a))s,a/t (the (state, action) pair
visit frequencies) to the nearly-optimal allocation vector ω,
as well as the convergence of the empirical MDP φ̂t to the
true MDP φ. Then, plugging these convergence results in
the definition of the stopping rule (14), and combining the
obtained results with the asymptotic shape of the thresh-
old function x(δ′, n,m) ∼

δ→0
log(1/δ), we obtain (refer to

Appendix G for a detailed description of these arguments):

τδ ∼
δ→0

inf

{
t ∈ N :

√
log(1/δ)

(
max

s,a6=π?(s)

√
T1(s,a;φ)+

√
T2(s,a;φ)√

t×ωsa

+ max
s∈S

√
T3(φ)+

√
T4(φ)√

t×ωs,π?(s)

)
≤ 1

}
.

Finally, we show that the condition in the ’inf’ above holds
as soon as t ≥ 4U(φ) log(1/δ) (see Lemma 11). The above
arguments lead to an upper bound of the sample complex-
ity of KLB-TS, valid almost surely (Proposition 2) and in
expectation (Theorem 3).
Proposition 2. The KL-Ball stopping rule, coupled with any
sampling rule ensuring that for every state-action pair (s, a),
nt(s, a)/t converges almost surely to the nearly-optimal
allocations ωsa of Corollary 1, yields a sample complexity
τδ satisfying for all δ ∈ (0, 1) : Pφ(τδ < ∞) = 1 and

Pφ
(

lim supδ→0
τδ

log(1/δ) ≤ 4U(φ)
)

= 1.
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Figure 2. KLB-TS vs. BESPOKE. Left and center: S=A=2, γ = 0.5, right: S = 5, A = 10, γ = 0.7.

Theorem 3. The KL-Ball stopping rule, coupled with the
C-tracking rule defined in (11), yields a sample complex-
ity τδ satisfying: for all δ ∈ (0, 1), Eφ[τδ] is finite and
lim supδ→0

Eφ[τδ]
log(1/δ) ≤ 4U(φ).

The proof of the theorem above is similar to that of The-
orem 14 in (Garivier & Kaufmann, 2016) with a few no-
table differences. First, we defined a distance on MDPs
through the L∞-norm of their reward and transition kernels.
Then, we adapted Lemma 19 from (Garivier & Kaufmann,
2016), which gives a concentration inequality of the em-
pirical average-rewards in the MAB setting, to include the
concentration of transition probabilities of the empirical
MDP.

6.2. Interpretation of the bound U(φ)

The bound U(φ) is the sum of two interpretable compo-
nents. The first term U1 = 2

∑
s,a6=π?(s)Hsa represents

the number of samples needed to estimate and identify sub-
optimal pairs (s, a). It is proportional to the variance of the
value function Varp(s,a)[V

?
φ ] and inversely proportional to

the squared gap ∆2
sa:

U1 = O
( ∑
s,a6=π?(s)

max

{
1 + Varp(s,a)[V

?
φ ]

∆2
sa

,
sp[V ?φ ]4/3

∆
4/3
sa

})
.

The second term 2H? represents the samples needed to
estimate and identify the optimal (state, action) pairs. It is
proportional to Var∗max[V ?φ ] the maximum variance of the
value function across the trajectory of the optimal policy and
inversely proportional to the squared minimum gap ∆2

min

and to (1− γ)3:

H? =O
(

S

(1− γ)2∆2
min

+ min

{
S

(1− γ)3∆2
min

,

max

{
SVar∗max[V ?φ ]

(1− γ)2∆2
min

,
Ssp[V ?φ ]4/3

(1− γ)4/3∆
4/3
min

}})
.

These dependencies were intuitively expected: The larger
the variances are, the more samples we need to accurately

estimate the value function. Similarly, the smaller the gaps
are, the harder it is to distinguish optimal (state, action) pairs
from sub-optimal ones. Finally, as γ gets closer to one, it
is natural to require more samples, as a small error in esti-
mating rewards or transitions can induce a large change in
the total discounted reward, thereby modifying the optimal
policy.

7. Experiments
In this section, we run numerical experiments to compare
the performances of KLB-TS and BESPOKE (these are so
far the two algorithms with problem-specific sample com-
plexity guarantees). We refer the reader to Appendix H for a
detailed description of the differences between KLB-TS and
BESPOKE, as well as a comparison of their theoretical guar-
antees. To compare the two algorithms, we generated two
MDPs randomly: a first small MDP with two states and two
actions, and a second larger and more realistic MDP with
five states and ten actions per state. We used BESPOKE
with an accuracy parameter ε = 0.9∆min (note that ∆min

is revealed to BESPOKE). For each value of the confidence
level δ, we run 10 simulations for the first MDP under both
algorithms. To save computation time in the case of the
second MDP, we run 5 simulations for each δ and only com-
pare KLB-TS’s sample complexity with BESPOKE’s initial
number of samples nmin which, as noted in Appendix H,
contributed for more than 99% of its sample complexity.

Figure 2 shows the mean sample complexity along with
its 2-standard-deviations interval (which seems very small
due to the use of a log-scale). The red curve (referred to as
’asymptotic bound’) shows the upper bound 4U(φ) log(1/δ)
guaranteed by Theorem 3. Note that KLB-TS sample com-
plexity is greater than 4U(φ) log(1/δ) for moderate values
of δ and only matches it for δ = 10−14. For both MDPs,
KLB-TS clearly outperforms BESPOKE.
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8. Conclusion
In this work, we have investigated the design of RL algo-
rithms with minimal problem-specific sample complexity.
To this aim, we first derived the information-theoretical
sample complexity limit (a lower bound on the sample com-
plexity satisfied by any algorithm) and the corresponding
optimal sample allocation. Our hope was that, as for the
MAB problem, this allocation would be easy to compute
and could then lead to a simple and optimal track-and-stop
algorithm. Unfortunately, for RL problems, it turns out
that the optimal allocation solves an involved non-convex
program. Approaching the fundamental sample complexity
limit seems possible only if one could solve this program.
To circumvent this issue, we derived a tight upper bound of
the characteristic time. Remarkably, this bound corresponds
to a sample allocation that is explicit, and hence can be
easily plugged in into a track-and-stop algorithm. Based
on this upper bound, we proposed KLB-TS, an algorithm
whose sample complexity matches this upper bound.

This work opens up interesting research directions. First, the
computational complexity of the sample complexity lower
bound strongly suggests the existence of a fundamental
trade-off between sample and computational complexities.
Investigating this trade-off is intriguing. Then, we restricted
our attention to the generative model, where one can sample
any (state, action) pair at any step. In most practical cases
however, one needs to learn an optimal policy by observing a
single trajectory of the system. Hence, the numbers of times
one observes the various (state, action) pairs are correlated,
inducing some additional constraints in the optimization
problem leading to the sample complexity lower bound. It
is worth studying the impact of these navigation constraints
on the sample complexity. Finally, we plan to extend our
results to the framework of RL with function approximation.

Acknowledgments: The authors would like to thank the
reviewers whose comments and questions helped improve
the clarity of the paper.
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A. Related work: The minimax approach
One of the first works on best-policy identification in discounted MDPs is (Kearns & Singh, 1999). There, the authors
introduce a model referred to as parallel sampling, where the agent can sample transitions from all (state,action) pairs
simultaneously (instead of following a trajectory determined by the MDP dynamics). They proposed Phased Q-Learning
and showed that it requires Õ

(
SA log(SA/δ)

ε2

)
samples2 to find an ε-optimal value function. Later on, (Kakade, 2003)(Chap-

ter 2.5) proposed the generative model as a variant of the parallel sampling model. Both (Kearns & Singh, 1999) and (Kakade,
2003) proved upper-bounds on the sample complexity of model-based Q-Value-Iteration (QVI) byO

(
SA log(SA/δ)
ε2(1−γ)4

)
. Using

a variance trick, (Azar et al., 2013) improved their analysis and showed that when ε ∈ (0, 1√
(1−γ)S

], both model-based QVI

along and Policy Iteration (PI) can find an ε-optimal policy after collectingO
(
SA log(SA/δ)
ε2(1−γ)3

)
samples. They also proved that

the latter quantity is the minimax lower bound of sample complexity required to find an ε-optimal policy. (Even-Dar et al.,
2006) used Action-Elimination techniques from the Multi-Armed Bandit setting(MAB) to devise MAB-Phased-Q-Learning,
an algorithm for MDPs with a generative model which finds an ε-optimal policy using Õ(

SAV 2
max

(1−γ)5ε2 ) samples, where Vmax

is the maximum range of the value function. (Sidford et al., 2018) proposed Variance-Reduced-Q-Value-Iteration (vQVI)
which matches the minimax bound for a wider range of ε ∈ (0, 1]. The same bound was derived by (Agarwal et al., 2020)
for ε ∈ (0, 1√

1−γ ] using a model-based approach. Finally, (Li et al., 2020) used a reward perturbation technique to widen
the set of ε where their algorithm is minimax optimal to the full range of accuracy levels: (0, 1

1−γ ]. It is worth noting that,
except for (Even-Dar et al., 2006), the aforementioned papers only sample transitions and assume a reward function known
in advance by the agent.

2Their analysis ignored the dependency on the horizon H = 1
1−γ , treating γ as a constant.
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B. Additional Proprerties of the lower bound program
Most alternative MDPs. We refer to an MDP ψ ∈ Alt(φ)3 solving the problem (7) as most alternative, since for a given
allocation ω, the sample complexity lower bound is determined by the number of samples needed to distinguish φ from ψ.

Observe that the condition (5) involves transition probabilities and rewards of the (state, action) pairs (s, a) and (s′, π?(s′))
for all s′, only. Hence ψ ∈ Altsa(φ) can be obtained from φ by changing at most the transition probabilities and rewards of
these (state, action) pairs. Next, let ψ ∈ Altsa(φ) solve (7). Then we can verify that the constraint (5) is active and that we
have:

∆sa = dr(s, a) + γdp(s, a)>V π
?

φ + [γpψ(s, a)− 1(s)]>dV π
?

.

This means that to design a most alternative MDP, one should change the rewards and transitions of optimal (state, action)
pairs and only one sub-optimal pair (s, a) and those changes should be just enough to fill sub-optimality gap ∆sa. The next
lemma formalizes these findings.

Lemma 3. Denote by O(φ) = {(s, a) : Q?φ(s, a) = V ?φ (s)} the set of optimal (state,action) pairs in the MDP φ and let
ψ ∈ Alt(φ) solve (7). Then:
(i) For all (s, a) ∈ S ×A, (pψ(.|s, a), qψ(.|s, a)) 6= (pφ(.|s, a), qφ(.|s, a)) =⇒ (s, a) ∈ O(ψ) \ O(φ) or a = π?(s);
(ii) O(φ) ⊂ O(ψ).

Proof. First we recall the following facts which we will make use of.

Fact 1. Q? is Liptschitz w.r.t rewards and transitions (by simple bounds on Bellman operator):

∥∥Q?φ −Q?ψ∥∥∞ ≤ (1 +
1

1− γ

)(
‖rφ − rψ‖∞ +

γ

(1− γ)
‖pφ − pψ‖1,∞

)
.

Fact 2. If we change only the kernels (pφ(s, a), qφ(s, a))→ (pψ(s, a), qψ(s, a)) of some sub-optimal (state, action) pair
s, a 6= π?(s) and the action a doesn’t become strictly optimal (s, a) /∈ O(ψ), then the value function remains unchanged
V ?ψ = V ?φ .

This is because there exists (π1, π2) ∈ Π?
φ ×Π?

ψ such that π2(a|s) = π1(a|s) = 0 (where we recall that π(a|s) denotes the
probability that π selects a in state s) which implies:


(
Pπ1

ψ , rπ1

ψ

)
=
(
Pπ1

φ , rπ1

φ

)
(
Pπ2

ψ , rπ2

ψ

)
=
(
Pπ2

φ , rπ2

φ

) =⇒


V ?ψ ≥ V

π1

ψ =
(
I − γPπ1

ψ

)−1

rπ1

ψ =
(
I − γPπ1

φ

)−1

rπ1

φ = V ?φ

V ?φ ≥ V
π2

φ =
(
I − γPπ2

φ

)−1

rπ2

φ =
(
I − γPπ2

ψ

)−1

rπ1

ψ = V ?ψ

Fact 3: We can restrict our attention to allocation vectors ω with zero-null entries: ∀(s, a) ∈ S ×A : ωsa > 0.

In fact, any allocation vector ω such that ωsa = 0 is suboptimal. Indeed, consider ψ obtained from φ by changing the kernels
in (s, a) so that they become equal to the kernels in (s, π?(s)), while keeping everything else unchanged. Then by definition
of ψ:

∑
s′,a′

ωs′,a′KLφ|ψ(s′, a′) = 0. Furthermore one can easily show that ψ ∈ Alt(φ) which implies that K(φ, ω)−1 = 0.

We are now ready to prove the lemma. Let ψ ∈ Alt(φ) solving (7). We can write: ψ = lim
n→∞

ψn, where (ψn)n≥1 ∈ Alt(φ)N

and lim
n→∞

∑
s,a ωsaKLφ|ψn(s, a) = inf

ψ∈Alt(φ)

∑
s,a ωsaKLφ|ψ(s, a). Therefore, by continuity of the KL function:

∑
s,a

ωsaKLφ|ψ(s, a) = inf
ψ∈Alt(φ)

∑
s,a

ωsaKLφ|ψ(s, a) (15)

3We use E to denote the closure of a set E.
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Proof of (i): (pψ(.|s, a), qψ(.|s, a)) 6= (pφ(.|s, a), qφ(.|s, a)) =⇒ (s, a) ∈ O(ψ) \ O(φ) or a = π?(s)

By contradiction: Suppose there exists (s, a) such that: (pψ(s, a), qψ(s, a)) 6= (pφ(s, a), qφ(s, a)) and
(s, a) ∈ O(ψ)c ∪ O(φ) and a 6= π?(s). Combined together, the latter two conditions imply that:

(s, a) ∈ O(ψ)c. (16)

We will use the following operator (ε-transform) where we move the rewards and transitions of ψ at (s, a) in the direction of
φ by ε ≥ 0: T s,aφ,ε (ψ) , ψε where

(pψε(s
′, a′), qψε(s

′, a′)) =

{
(1− ε) (pψ(s, a), qψ(s, a)) + ε (pφ(s, a), qφ(s, a)) , if (s′, a′) = (s, a),

(pψ(s′, a′), qψ(s′, a′)) otherwise.
(17)

Note that the objective function of the infimum problem takes a smaller value at ψε than at ψ:∑
s′,a′

ωs′,a′KLφ|ψε(s
′, a′) ≤

[
(1− ε) ωsaKLφ|ψ(s, a) + ε ωsaKLφ|φ(s, a)

]
+

∑
(s′,a′) 6=(s,a)

ωs′,a′KLφ|ψ(s′, a′)

<
∑
s′,a′

ωs′,a′KLφ|ψ(s′, a′)

where the first inequality stems from the convexity of KL-function and the second from the property p 6= q =⇒
KL(p‖q) > 0. We will prove that there exists ε > 0 such that ψε is the limit of a sequence of elements in Alt(φ), which
clearly contradicts the optimality of ψ (see equation 15).

Consider a? an optimal action at state s in ψ, ie such (s, a?) ∈ O(ψ). Since (s, a) /∈ O(ψ) (16), then for ε = 0, we have:
ψ0 = ψ and δ , δψ(s, a) = Q?ψ(s, a?) − Q?ψ(s, a) > 0. By continuity of Q? w.r.t the rewards and transitions (Fact 1),
there exists ε > 0 small enough such that:

Q?ψε(s, a
?)−Q?ψε(s, a) > δ/2 > 0.

Fix such ε and define (θn)n≥1 =
(
T s,aφ,ε (ψn)

)
n≥1

where (ψn)n≥1 is any sequence converging to ψ. By continuity of the

operator T s,aφ,ε , we have: lim
n→∞

θn = ψε. It remains to show that (θn)n≥1 ∈ Alt(φ)N. Using the continuity of Q? another
time, we get:  lim

n→∞
ψn = ψ

lim
n→∞

θn = ψε
=⇒

 lim
n→∞

Q?ψn(s, a?)−Q?ψn(s, a) = Q?ψ(s, a?)−Q?ψ(s, a) > δ/2

lim
n→∞

Q?θn(s, a?)−Q?θn(s, a) = Q?ψε(s, a
?)−Q?ψε(s, a) > δ/2

=⇒ ∃N0 ∈ N ∀n ≥ N0

{
Q?ψn(s, a?)−Q?ψn(s, a) > δ/2

Q?θn(s, a?)−Q?θn(s, a) > δ/2

=⇒ ∀n ≥ N0 (s,a) is sub-optimal in both ψn and θn.

This implies, by Fact 2 on ψn and θn, that: ∀n ≥ N0 V
?
θn

= V ?ψn . Since, we only changed kernels of ψn at (s, a) to obtain
θn, then this also implies that for all n ≥ N0:{
∀(s′, a′) 6= (s, a), Q?ψn(s′, a′) = rψn(s′, a′) + γpψn(s′, a′)TV ?ψn = rθn(s′, a′) + γpθn(s′, a′)TV ?θn = Q?θn(s′, a′)

(s,a) is sub-optimal in both ψn and θn

Therefore, ∀n ≥ N0, Π∗θn = Π∗ψn , and consequently θn ∈ Alt(φ).
To sum up, modulo a reindexing of the sequence: ∃(θn)n≥1 ∈ Alt(φ)N : lim

n→∞
θn = ψε. This is a contradiction.

Proof of (ii): O(φ) ⊂ O(ψ)
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We proceed in the same way, i.e., we suppose that there exists (s, a) ∈ O(φ) \ O(ψ). Only this time, we con-
sider ψε ,

∏
s′,a′

T s
′,a′

φ,ε (ψ) where the product sign stands for composition of operators. It’s straightforward to show, using

continuity of Q? w.r.t rewards and transitions, that there exists ε > 0 such that (s, a) is still not optimal: a /∈ O(ψε). Hence
ψε ∈ Alt(φ), which contradicts the optimality of ψ.
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C. Lower Bound T ∗(φ)

C.1. Proof of Lemma 1

Proof. Let τ be a stopping time w.r.t. the filtration (Ft)t≥1. The observations made up to the beginning of round t are
Ot = (s1, a1, R1, s

′
1 . . . , st, at, Rt, s

′
t). Let p(·) denote the distribution of the first state. We have:

Pφ(Ot) = p(s1)

t∏
k=1

pφ(s′k|sk, ak)×
t∏

k=1

qφ(Rk|sk, ak).

The log-likelihood ratio of the observations up to the end of round t under φ and ψ is then:

Lt =

t∑
k=1

(
log

pφ(s′k|sk, ak)

pψ(s′k|sk, ak)
+ log

qφ(Rk|ss, ak)

qψ(Rk|sk, ak)

)
=
∑
s,a

Ls,at ,

where

Ls,at =

t∑
k=1

1{sk=s,ak=a}

(
log

pφ(s′k|s, a)

pψ(s′k|s, a)
+ log

qφ(Rk|s, a)

qψ(Rk|s, a)

)
.

Next we study Ls,at for a given pair (s, a). Introduce the following random variables: Yk and Zk denote the next state and
the collected reward after the k-th time (s, a) has been visited. We can re-write Ls,at as:

Ls,at =

Nt(s,a)∑
k=1

(
log

pφ(Yk|s, a)

pψ(Yk|s, a)
+ log

qφ(Zk|s, a)

qψ(Zk|s, a)

)

Observe that ξk := log
pφ(Yk|s,a)
pψ(Yk|s,a)+log

qφ(Zk|s,a)
qψ(Zk|s,a) and 1{Nτ (s,a)>k−1} are independent, because under the event {Nτ (s, a) ≤

k − 1}, Ys and Zs have not been observed yet. Further notice that Eφ[ξk] = KLψ|φ(s, a). We deduce that:

Eφ[Ls,aτ ] = Eφ

[ ∞∑
k=1

ξk1{Nτ (s,a)>k−1}

]

=

∞∑
k=1

Pφ[Nτ (s, a) > k − 1] KLψ|φ(s, a)

= Eφ[Nτ (s, a)] KLψ|φ(s, a).

Summing over all pairs (s, a) completes the proof.
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D. Main properties of the problem (3)
D.1. Proof of Lemma 2

Proof. To simplify the notation, we denote π = π?φ.

First part: Alt(φ) ⊂
⋃

s,a6=π?(s)

{ψ : Qπψ(s, a) > V πψ (s)}

By contradiction: Suppose there exists ψ ∈ Alt(φ) such that ∀s, a 6= π?(s), Qπψ(s, a) ≤ V πψ (s). Since
Qπψ(s, π(s)) = V πψ (s) then the inequality is valid for all pairs:

∀(s, a) ∈ S ×A, Qπψ(s, a) ≤ V πψ (s)

Let π?ψ be an optimal policy under ψ. Then:

∀s ∈ S, Qπψ(s, , π?ψ(s)) ≤ V πψ (s)

Define the Bellman operator of π under ψ as Bπψ : RS → RS and for all s ∈ S,

(BπψV )(s) = rψ(s, π(s)) + γpψ(s, π(s))>V.

Using the Bellman operator of the policy π?ψ under ψ, we rewrite the inequalities above:

Bπ
?
ψ

ψ V πψ ≤ V πψ .

By monotonicity of Bellman operator, this implies that: ∀n ≥ 1,

(
Bπ

?
ψ

ψ

)n
V πψ ≤ V πψ . Hence:

V ?ψ = lim
n→∞

(
Bπ

?
ψ

ψ

)n
V πψ ≤ V πψ ,

i.e., the policy π is optimal under ψ. This is a contradiction.

Second part:
⋃

s,a6=π?(s)

{ψ : Qπψ(s, a) > V πψ (s)} ⊂ Alt(φ)

By contradiction: Let s, a 6= π?(s) and suppose there exists ψ ∈ {ψ : Qπψ(s, a) > V πψ (s)} such that π = π?φ is
optimal under ψ. Define the modified policy π1 as:

π1(s′) =

{
a if s′ = s,
π(s′) otherwise.

Then the fact that Qπψ(s, a) > V πψ (s) translates to:

Bπ1

ψ V
?
ψ = Bπ1

ψ V
π
ψ > V πψ = V ?ψ

where the equality comes from the assumption that π is an optimal policy in ψ. Therefore, by monotonicity of Bellman
operator, we have:

V π1

ψ = lim
n→∞

(
Bπ1

ψ

)n
V ?ψ > V ?ψ .

We got a a contradiction.
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E. Upper bound U(φ) and the near-optimal sampling allocation ω
E.1. First technical lemma

We will need the following technical lemma which relates the change in the future discounted rewards between φ and ψ due
to different transitions dp(s, a)>V ?φ to the Kullback-Leibler divergence of the transition kernels as well as the variance and
maximum-deviation of the next-state value.

Lemma 4. Using the notations of Sections 4.1 and 4.2, we have:

|dp(s, a)>V ?φ |2 ≤ 8KL(pφ(s, a)‖pψ(s, a))Varpφ(s,a)[V
?
φ ] + 4

√
2KL(pφ(s, a)‖pψ(s, a))3/2sp[V ?φ ]2.

Proof. We have:

dp(s, a)>V ?φ =
∑
s′

(pψ(s′|s, a)− pφ(s′|s, a))
[
V ?φ (s′)− Es̃∼pφ(.|s,a)[V

?
φ (s̃)]

]
=
∑
s′

(√
pψ(s′|s, a)−

√
pφ(s′|s, a)

)
×
[(√

pψ(s′|s, a) +
√
pφ(s′|s, a)

)(
V ?φ (s′)− Es̃∼pφ(.|s,a)[V

?
φ (s̃))]

)]
.

Thus, by Cauchy-Schwartz inequality:

|dp(s, a)>V ?φ |2 ≤2dH(pφ(s′|s, a), pψ(s′|s, a))2×[∑
s′

(√
pψ(s′|s, a) +

√
pφ(s′|s, a)

)2 (
V ?φ (s′)− Epφ(.|s,a)[V

?
φ (s̃))]

)2 ]

≤ 4dH(pφ(s′|s, a), pψ(s′|s, a))2

[∑
s′

(pψ(s′|s, a) + pφ(s′|s, a))
(
V ?φ (s′)− Epφ(.|s,a)[V

?
φ (s̃))]

)2 ]
,

where we have used (a+ b)2 ≤ 2(a2 + b2) and dH(p, q) =
[

1
2

∑
i(
√
pi −

√
qi)

2
]1/2

is the Hellinger distance between two
probability distributions. Therefore:

|dp(s, a)>V ?φ |2 ≤4dH(pφ(s′|s, a), pψ(s′|s, a))2

×
[
2Vars′∼pφ(.|s,a)[V

?
φ (s′)] + ‖pφ(s′|s, a)− pψ(s′|s, a)‖1 sp[V ?φ ]2

]
.

We conclude the proof using Pinsker’s inequality ‖p− q‖1 ≤
√

2KL(p‖q) along with the inequality dH(p, q)2 ≤ KL(p‖q)
(see (Reiss, 1989)).

E.2. Proof of Theorem 1

Proof. Consider the simplified problem (6). Note that the constraint (5) doesn’t involve the pairs (s̃, ã) ∈ S × A \
{(s, a), (s′, π?(s′))s′∈S}. One can easily show that any solution of the inf

u∈Usa
part of (6) must satisfy KLφ|ψ(s̃, ã) =

0 for these unconstrained pairs (s̃, ã) ∈ S × A \ {(s, a), (s̃, π?(s̃))s̃∈S} (a trivial way to do it is by setting(
pψ(.|s̃, ã), qψ(.|s̃, ã)

)
=

(
pφ(.|s̃, ã), qφ(.|s̃, ã)

)
). Therefore:

T (φ, ω)−1 = min
s,a6=π?(s)

inf
u∈Usa

ωsaKLφ|ψ(s, a) +
∑
s′

ωs′,π?φ(s′)KLφ|ψ(s′, π?φ(s′)). (18)
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We fix s, a 6= π?(s) and derive a lower bound of inf
u∈Usa

ωsaKLφ|ψ(s, a) +
∑
s′
ωs′,π?φ(s′)KLφ|ψ(s′, π?φ(s′)). To do so, we

rewrite the condition (5) by expanding the expression of dV π
?

as follows:

dr(s, a) + γdp(s, a)>V ?φ + [γpψ(s, a)− 1(s)]>
(
I − γPπ

?

ψ

)−1 [
rπ

?

ψ − rπ
?

φ

]
+ [γpψ(s, a)− 1(s)]>

[(
I − γPπ

?

ψ

)−1

−
(
I − γPπ

?

φ

)−1
]
rπ

?

φ > ∆sa.

We then write each of the four terms on the left-hand side as a ”fraction” of ∆sa:

dr(s, a) = α1∆sa

dp(s, a)>V ?φ = α2∆sa

[γpψ(s, a)− 1(s)]>
(
I − γPπ?ψ

)−1 [
rπ

?

ψ − rπ
?

φ

]
= α3∆sa

[γpψ(s, a)− 1(s)]>
[(
I − γPπ?ψ

)−1

−
(
I − γPπ?φ

)−1
]
rπ

?

φ = α4∆sa

α1 + α2 + α3 + α4 > 1

We use Pinsker’s inequality and Lemma 4 to lower bound each term.

1st term. By Pinsker’s inequality:

|dr(s, a)| =
∣∣∣∣∫ 1

0

u[qψ(u|s, a)− qφ(u|s, a)]λ(du)

∣∣∣∣ ≤ ∫ 1

0

|qψ(u|s, a)− qφ(u|s, a)| λ(du)

≤
√

2KL(qφ(.|s, a)‖qψ(.|s, a)).

Thus:
1

2
(α1∆sa)2 ≤ KL(qφ(.|s, a)‖qψ(.|s, a)) (19)

2nd term. By Lemma 4, we have:

(α2∆sa)2 ≤ 8KL(pφ(s, a)‖pψ(s, a))Vars′∼pφ(.|s,a)[V
?
φ (s′)] + 4

√
2KL(pφ(s, a)‖pψ(s, a))3/2sp[V ?φ ]2.

Thus either:
1

2
(α2∆sa)2 ≤ 8KL(pφ(s, a)‖pψ(s, a))Vars′∼pφ(.|s,a)[V

?
φ (s′)]

or
1

2
(α2∆sa)2 ≤ 4

√
2KL(pφ(s, a)‖pψ(s, a))3/2sp[V ?φ ]2.

Therefore, we obtain:

min

(
α2

2∆2
sa

16Varpφ(s,a)[V
?
φ ]
,

α
4/3
2 ∆

4/3
sa

27/3sp[V ?φ ]4/3

)
≤ KL (pφ(s, a)‖pψ(s, a)) (20)

3rd term. We have:

|α3|∆sa =

∥∥∥∥[γpψ(s, a)− 1(s)]>
(
I − γPπ

?

ψ

)−1 [
rπ

?

ψ − rπ
?

φ

]∥∥∥∥
≤ ‖γpψ(s, a)− 1(s)‖∞ ×

∥∥∥∥(I − γPπ?ψ )−1
∥∥∥∥
∞
×
∥∥∥rπ?ψ − rπ?φ ∥∥∥∞

≤ 1

1− γ

∥∥∥rπ?ψ − rπ?φ ∥∥∥∞ ,
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which, following the same reasoning as the first term, implies:

(α3∆sa(1− γ))2

2
≤ max

s∈S
KL (qφ(.|s, π?(s))‖qψ(.|s, π?(s))) (21)

4th term (first bound). We have:

|α4|∆sa =

∥∥∥∥[γpψ(s, a)− 1(s)]>
[(
I − γPπ

?

ψ

)−1

−
(
I − γPπ

?

φ

)−1
]
rπ

?

φ

∥∥∥∥ ≤ ‖B‖∞ , (22)

where B =

[(
I − γPπ?ψ

)−1

−
(
I − γPπ?φ

)−1
]
rπ

?

φ . Hence:

|α4|∆sa ≤ ‖B‖∞ = γ

∥∥∥∥(I − γPπ?ψ )−1 [
Pπ

?

ψ − Pπ
?

φ

]
V ?φ

∥∥∥∥
∞

≤
max
s′∈S

|dp(s′, π?(s′))>V ?φ |

1− γ
.

Therefore, applying Lemma 4, we get:

min

(
[α4∆sa(1− γ)]

2

16Var?max[V ?φ ]
,
α

4/3
4 ∆

4/3
sa (1− γ)4/3

27/3sp[V ?φ ]4/3

)
≤ max

s′∈S
KL

(
pφ(s′, π?φ(s′))‖pψ(s′, π?φ(s′))

) (23)

4th term (second bound): We will now derive a second bound for the 4th term. Using Lemma 5, we get:

|α4|∆sa ≤ ‖B‖∞ ≤
25/2 log(2)KL1/2

(1− γ)3/2
+

23 log(2)γKL
(1− γ)5/2

+
25/4KL3/4sp[V ?φ ]

1− γ

where KL = max
s∈S

KL(pφ

(
s, π?φ(s))‖pψ(s, π?φ(s))

)
. This means one of the three terms on the right-hand side is greater

than |α4|∆sa

3 , which implies:

min

(
α2

4∆2
sa(1− γ)3

288 log(2)2
,
|α4|∆sa(1− γ)5/2

24 log(2)
,
α

4/3
4 ∆

4/3
sa (1− γ)4/3

25/3 × 34/3sp[V ?φ ]4/3

)
≤ max

s∈S
KL

(
pφ(s, π?φ(s))‖pψ(s, π?φ(s))

) (24)

Putting the individual lower bounds together: Summing up all inequalities from (19), (20), (21), (24) and (23), we
deduce:

inf∑
αi>1

3∑
i=1

Bi + max(B4, B5) ≤ inf
u∈Usa

ωsaKLφ|ψ(s, a) +
∑
s′

ωs′,π?φ(s′)KLφ|ψ(s′, π?φ(s′))
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where 

B1 = 1
2ωsa(α1∆sa)2

B2 = ωsa min

(
α2

2∆2
sa

16Varpφ(s,a)[V
?
φ ] ,

α
4/3
2 ∆4/3

sa

27/3sp[V ?φ ]4/3

)

B3 = 1
2min

s
ωs,π?(s) (α3∆sa(1− γ))2

B4 = min
s
ωs,π?(s) min

(
α2

4∆2
sa(1−γ)3

288 log(2)2 , |α4|∆sa(1−γ)5/2

24 log(2) ,
α

4/3
4 ∆4/3

sa (1−γ)4/3

25/3×34/3sp[V ?φ ]4/3

)

B5 = min
s
ωs,π?(s) min

(
[α4∆sa(1−γ)]2

16Var?max[V ?φ ] ,
α

4/3
4 ∆4/3

sa (1−γ)4/3

27/3sp[V ?φ ]4/3

)

Notice that if α verifies the inequalities above, and
∑4
i=1 αi > 1, then the vector whose entries are

(
|αi|∑4
j=1 |αj |

)
1≤i≤4

also verifies these inequalities. Therefore we can restrict our attention to vectors α in the simplex Σ4. In particular, we have
α2
i ≤ α

4/3
i ≤ αi. Furthermore, we lower bound ∆sa by ∆min in the terms (Bj)3≤j≤5. This simplifies the bound to:

min
s,a6=π?(s)

inf
α∈Σ4

3∑
i=1

B′iα
2
i + max(B′4, B

′
5)α2

4 ≤ sup
ω∈Σ

min
s,a6=π?(s)

inf
u∈Usa

(
ωsaKLφ|ψ(s, a)

+
∑
s′

ωs′,π?φ(s′)KLφ|ψ(s′, π?φ(s′))

)
= T (φ, ω)−1

(25)

where 

B′1 = 1
2ωsa(∆2

sa

B′2 = ωsa min

(
∆2
sa

16Varpφ(s,a)[V
?
φ ] ,

∆4/3
sa

27/3sp[V ?φ ]4/3

)

B′3 = 1
2min

s
ωs,π?(s) (∆min(1− γ))2

B′4 = min
s
ωs,π?(s) min

(
∆2

min(1−γ)3

288 log(2)2 ,
∆min(1−γ)5/2

24 log(2) ,
∆

4/3
min(1−γ)4/3

25/3×34/3sp[V ?φ ]4/3

)

B′5 = min
s
ωs,π?(s) min

(
∆2

min(1−γ)2

16Var?max[V ?φ ] ,
∆

4/3
min(1−γ)4/3

27/3sp[V ?φ ]4/3

)

Solving the left-hand side problem above in α, we get:

min
s,a6=π?(s)

( 3∑
i=1

1

B′i
+ min(

1

B′4
,

1

B′5
)

)−1

≤ T (φ, ω)−1.

Therefore:

T (φ, ω) ≤ max
s,a6=π?(s)

T1(s, a;φ) + T2(s, a;φ)

ωsa
+
T3(φ) + T4(φ)

min
s
ωs,π?(s)

,
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where 

T1(s, a;φ) = 2
∆2
sa

T2(s, a;φ) = max

(
16Varpφ(s,a)[V

?
φ ]

∆2
sa

,
6sp[V ?φ ]4/3

∆
4/3
sa

)

T3(φ) =
2

∆2
min(1− γ)2

T4(φ) = min

(
V1(φ), V2(φ)

)
,

and

V1(φ) = max

(
27

∆2
min(1− γ)3

,
8

∆min(1− γ)5/2
,

14sp[V ?φ ]4/3

∆
4/3
min(1− γ)4/3

)
,

V2(φ) = max

(
16Var?max[V ?φ ]

∆2
min(1− γ)2

,
6sp[V ?φ ]4/3

∆
4/3
min(1− γ)4/3

)
.

By Lemma 7, we always have ∆min ≤ 1. In addition sp[V ?φ ] ≤ 1
1−γ , hence V1(φ) = 27

∆2
min(1−γ)3

, which simplifies the
expression of T4(φ):

T4(φ) = min

(
27

∆2
min(1− γ)3

,max

(
16Var?max[V ?φ ]

∆2
min(1− γ)2

,
6sp[V ?φ ]4/3

∆
4/3
min(1− γ)4/3

))
.

E.3. Second technical lemma: Contributions of transitions at optimal pairs to the sample complexity

Lemma 5. Define:

B =

[(
I − γPπ

?

ψ

)−1

−
(
I − γPπ

?

φ

)−1
]
rπ

?

φ and KL = max
s∈S

KL (pφ(s, π?(s))‖pψ(s, π?(s))) .

Then we have:

‖B‖∞ ≤
25/2 log(2)KL1/2

(1− γ)3/2
+

23 log(2)γKL
(1− γ)5/2

+
25/4KL3/4sp[V ?φ ]

1− γ
. (26)

Proof. Let us further develop the expression of B:

B =

[(
I − γPπ

?

ψ

)−1

−
(
I − γPπ

?

φ

)−1
]
rπ

?

φ

=
(
I − γPπ

?

ψ

)−1 [
γPπ

?

ψ − γPπ
?

φ

] (
I − γPπ

?

φ

)−1

rπ
?

φ

= γ
(
I − γPπ

?

ψ

)−1 [
Pπ

?

ψ − Pπ
?

φ

]
V ?φ

= γ

[(
I − γPπ

?

ψ

)−1 (
I − γPπ

?

φ

)](
I − γPπ

?

φ

)−1 [
Pπ

?

ψ − Pπ
?

φ

]
V ?φ

, γ Mψ,φ

(
I − γPπ

?

φ

)−1 [
Pπ

?

ψ − Pπ
?

φ

]
V ?φ .

(27)

Notice that the quantity γ
(
I − γPπ?φ

)−1 [
Pπ

?

ψ − Pπ
?

φ

]
V ?φ is similar to the one that appears in Lemma 3 of (Azar et al.,

2013), with ψ playing the role of φ̂ in this case. We will try to relate it to the variances of the value function in the φ. Define:
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
Mψ,φ =

(
I − γPπ?ψ

)−1 (
I − γPπ?φ

)
,

KL = max
s∈S

KL (pφ(s, π?(s))‖pψ(s, π?(s))) ,

vπ(s) = γ2V ars′∼pφ(.|s,π(s))[V
π
φ (s′)],

σπ(s) = γ2V ar(s′,a′)∼pφ(.|s,π(s))⊗π(.|s′)[Q
π
φ(s′, a′)].

Using Lemma 4 and
√
a+ b ≤

√
a+
√
b, we can write: ∀s ∈ S,∣∣∣γ ([Pπ

?

ψ − Pπ
?

φ ]V ?φ

)
(s)
∣∣∣ =

∣∣γdp(s, π?(s))>V ?φ ∣∣
≤ γ

√
8KL(pφ(s, π?(s))‖pψ(s, π?(s))) Vars′∼pφ(.|s,π?(s))[V

?
φ (s′)]

+ γ
√

4
√

2KL( pφ(s, π?(s)) || pψ(s, π?(s)) )3/2MDpφ(s,π?(s))[V
?
φ ]2

≤ 23/2KL1/2
√
vπ?(s) + 25/4KL3/4sp[V ?φ ]

≤ 23/2KL1/2
√
σπ?(s) + 25/4KL3/4sp[V ?φ ],

(28)

where the last inequality comes from Total Variance theorem:

σπ(s) = γ2V ar(s′,a′)∼pφ(.|s,π(s))⊗π(.|s′)[Q
π
φ(s′, a′)]

= γ2V ars′∼pφ(.|s,π(s))

[
Ea′∼π(.|s′)[Q

π
φ(s′, a′)]

]
+ γ2Es′∼pφ(.|s,π(s))

[
V ara′∼π(.|s′)[Q

π
φ(s′, a′)]

]
= vπ(s) + γ2Es′∼pφ(.|s,π(s))

[
V ara′∼π(.|s′)[Q

π
φ(s′, a′)]

]
≥ vπ(s).

Denote
√
σπ? ,

(√
σπ?(s)

)
s∈S

. Then from (27) and (28), we deduce:

‖B‖∞ =

∥∥∥∥Mψ,φ

(
I − γPπ

?

φ

)−1

γ[Pπ
?

ψ − Pπ
?

φ ]V ?φ

∥∥∥∥
∞

≤
∥∥∥∥Mψ,φ

(
I − γPπ

?

φ

)−1
[
23/2KL1/2

√
σπ? + 25/4KL3/4sp[V ?φ ]1

]∥∥∥∥
∞

≤ 23/2KL1/2 ‖Mψ,φ‖∞

∥∥∥∥(I − γPπ?φ )−1√
σπ?
∥∥∥∥
∞

+ 25/4KL3/4sp[V ?φ ]

∥∥∥∥Mψ,φ

(
I − γPπ

?

φ

)−1

1

∥∥∥∥
∞

= 23/2KL1/2 ‖Mψ,φ‖∞

∥∥∥∥(I − γPπ?φ )−1√
σπ?
∥∥∥∥
∞

+ 25/4KL3/4sp[V ?φ ]

∥∥∥∥(I − γPπ?ψ )−1

1

∥∥∥∥
∞

≤ 23/2KL1/2 ‖Mψ,φ‖∞

∥∥∥∥(I − γPπ?φ )−1√
σπ?
∥∥∥∥
∞

+
25/4

1− γ
KL3/4sp[V ?φ ].

(29)

Now observe that:

‖Mψ,φ‖∞ =

∥∥∥∥(I − γPπ?ψ )−1 (
I − γPπ

?

φ

)∥∥∥∥
∞

=

∥∥∥∥I − γ (I − γPπ?ψ )−1 (
Pπ

?

φ − Pπ
?

ψ

)∥∥∥∥
∞

≤ 1 +
γ
∥∥∥Pπ?φ − Pπ?ψ ∥∥∥∞

1− γ

≤ 1 +
γ(2KL)1/2

1− γ
,

(30)

where the last inequality stems from Pinsker’s inequality. Next we recall a variance inequality from (Azar et al., 2013):
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Lemma 6. (Lemma 8, (Azar et al., 2013))∥∥∥∥(I − γPπ?φ )−1√
σπ?
∥∥∥∥
∞
≤ 2 log(2)

(1− γ)3/2
.

Summing up equations (29), (30) and Lemma 6, we get:

‖B‖∞ ≤
25/2 log(2)KL1/2

(1− γ)3/2
+

23 log(2)γKL
(1− γ)5/2

+
25/4KL3/4sp[V ?φ ]

1− γ
. (31)

E.4. Third technical lemma: The minimum gap is smaller than 1

Lemma 7. ∆min ≤ 1.

Proof. By contradiction, suppose ∆min > 1, then:

∀s, a 6= π?(s), ∆sa = V ?φ (s)−Q?φ(s, a) > 1.

This means that for all policies π ∈ {π ∀s ∈ S, π(s) 6= π?(s)}, we have:

∀s ∈ S, Q?φ(s, π(s)) < V ?φ (s)− 1.

Using Bellman operator, the above inequality becomes:

BπφV ?φ < V ?φ − 1.

By induction, using that the monotonicity of Bellman operator:

∀n ≥ 1,

(
Bπφ
)n
V ?φ < V ?φ − (

n−1∑
i=0

γi)1.

Therefore:

∀π ∈ {π ∀s ∈ S, π(s) 6= π?(s)}, V πφ = lim
n→∞

(
Bπφ
)n+1

V ?φ

≤ lim
n→∞

(
Bπφ
)[
V ?φ − (

n−1∑
i=0

γi)1

]

=

(
Bπφ
)
V ?φ − lim

n→∞
(

n∑
i=1

γi)1

=

(
Bπφ
)
V ?φ −

γ

1− γ
1

< V ?φ −
1

1− γ
< 0.

We obtained a contradiction. Thus, ∆min ≤ 1.
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E.5. Proof of Corollary1

Proof. The ω solving the problem in the right-hand side of (8) clearly verifies:

∀s ∈ S, ωs,π?(s) = min
s′

ωs′,π?(s′) , ω0.

The problem of Theorem 1 then rewrites as:

inf
ω0

max
s,a6=π?(s)

Hsa

ωsa
+

H?

Sω0
(32)

(ωs̃,ã)s̃,ã6=π?(s̃) (33)

where Hsa = T1(s, a;φ) + T2(s, a;φ) and H? = S(T3(φ) + T4(φ)). We reformulate (33) as a convex program:

inf
t,ω0

t+
H?

Sω0

(ωsa)s,a6=π?(s)

s.t. ω>1 = 1,

t ≥ Hsa

ωsa
,∀s, a 6= π?(s)

Using KKT conditions, one can easily derive the expression of the solution:

ωs,a = Hsa∑
s,a 6=π?(s)

Hsa +

√√√√H?

( ∑
s,a 6=π?(s)

Hsa

) ∀s, a 6= π?(s),

ωs,π?(s) = 1
S ×

√√√√H?

( ∑
s,a 6=π?(s)

Hsa

)

∑
s,a 6=π?(s)

Hsa +

√√√√H?

( ∑
s,a 6=π?(s)

Hsa

) ∀s ∈ S.

(34)

The value VP of the program is:

VP =
∑

s,a6=π?(s)

Hsa +H? + 2

√√√√√H?

 ∑
s,a6=π?(s)

Hsa

 ≤ 2

( ∑
s,a6=π?(s)

Hsa +H?

)
, U(φ).
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F. PAC Guarantee:
F.1. Proof of Theorem 2

First we recall two concentration inequalities and a technical lemma that we will be using. The first two lemmas are taken
from (Jonsson et al., 2020). The third lemma is immediate.

Define the threshold function x(n, δ,m) = log(1/δ) + (m− 1) log

(
e(1 + n/(m− 1))

)
Lemma 8. (Proposition 2, (Jonsson et al., 2020)) For all distributions q of mean r supported on the unit interval, for all
δ ∈ [0, 1]:

P
(
∃n ∈ N nkl(r̂n, r) > x(δ, n, 2)

)
≤ δ.

Lemma 9. (Proposition 1, (Jonsson et al., 2020)) Let P be a distribution over a finite set S , and (Xi)i∈N be i.i.d. variables
with distribution P . For s ∈ S, denote by P̂n = (p̂n(s))s∈S the empirical estimate of P from the first n samples. Then for
all δ ∈ [0, 1] :

P
(
∃n ∈ N nKL(P̂n || P ) > x(δ, n, S)

)
≤ δ,

where we used S as a shorthand for |S|.

Lemma 10. Let (ρi)1≤i≤4 ∈ R4
+. Then:

∀α ∈ Σ4 ∃i ∈ [|0, 4|], ρi < α2
i ⇐⇒

4∑
i=0

√
ρi < 1.

We are now ready to prove Theorem 2 :

Proof. Recall the definition of the ”correctness” event:

Et =

(
∀α ∈ Σ4 ∀s, a 6= π̂?t (s), ρ1(φ̂t, φ)(s, a) < α2

1 or ρ2(φ̂t, φ)(s, a) < α2
2 or ρ3(φ̂t, φ) < α2

3 or ρ4(φ̂t, φ) < α2
4

)
where: 

ρ1(φ, ψ)(s, a) , T1(s, a;φ)KL(rφ(s, a)||rψ(s, a)),

ρ2(φ, ψ)(s, a) , T2(s, a;φ)KL(pφ(s, a)||pψ(s, a)),

ρ3(φ, ψ)(s) , T3(φ)KL

(
rφ(s, π?φ(s)) || rψ(s, π?φ(s))

)
,

ρ4(φ, ψ)(s) , T4(φ)KL

(
pφ(s, π?φ(s)) || pψ(s, π?φ(s))

)
,

ρ3(φ, ψ) , max
s∈S

ρ3(φ, ψ)(s),

ρ4(φ, ψ) , max
s∈S

ρ4(φ, ψ)(s).

Applying Lemma 10, we can simplify the event Et:

Et =
⋂

s,a6=π̂?t (s)

(√
ρ1(φ̂t, φ)(s, a) +

√
ρ2(φ̂t, φ)(s, a) +

√
ρ3(φ̂t, φ) +

√
ρ4(φ̂t, φ) < 1

)
(35)

=
⋂

s,a6=π̂?t (s)

⋂
s′,s”∈S

(√
ρ1(φ̂t, φ)(s, a) +

√
ρ2(φ̂t, φ)(s, a) +

√
ρ3(φ̂t, φ)(s′) +

√
ρ4(φ̂t, φ)(s”) < 1

)
. (36)
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Define the stopping event:

STOPt =

{
max

s,a6=π̂?t (s)

√
T̂1(s, a)x(δ′, nt(s, a), 2) +

√
T̂2(s, a)x(δ′, nt(s, a), S)√

nt(s, a)

+ max
s∈S

√
T̂3x(δ′, nt(s, π̂∗t (s)), 2) +

√
T̂4x(δ′, nt(s, π̂∗t (s)), S)√

nt(s, π̂∗t (s))
< 1

}

=

{
max

s,a6=π̂?t (s)

√
T̂1(s, a)x(δ′, nt(s, a), 2) +

√
T̂2(s, a)x(δ′, nt(s, a), S)√

nt(s, a)

+ max
s∈S

√
T̂3x(δ′, nt(s, π̂∗t (s)), 2)√

nt(s, π̂∗t (s))
+ max

s∈S

√
T̂4x(δ′, nt(s, π̂∗t (s)), S)√

nt(s, π̂∗t (s))
< 1

}
(37)

where the last equality stems from the fact that both n →
√
T̂3x(δ′,n,2)√

n
and n →

√
T̂4x(δ′,n,S)√

n
are decreasing as soon as

n ≥ 7(S − 1), therefore reaching their maximum at the same point. From the proof of Theorem 1 (refer to Equations
(19)-(20)-(21)-(24)-(23)), we have the following ”correctness’ property:

(
φ ∈ Alt(φ̂t)

)
⊂ Ect , (38)

where Ect stands for the complement of event E . Therefore:

(τδ <∞) ∩ (π̂?τδ 6= π?) =
(
∃t ≥ 1, STOPt and φ ∈ Alt(φ̂t)

)
⊂
(
∃t ≥ 1, STOPt ∩ Ect

)
=

(
∃t ≥ 1,

⋃
s,a6=π̂?t (s)

⋃
s′,s”∈S

((√
ρ1(φ̂t, φ)(s, a) +

√
ρ2(φ̂t, φ)(s, a) +

√
ρ3(φ̂t, φ)(s′) +

√
ρ4(φ̂t, φ)(s”) ≥ 1

)

∩ STOPt

))

⊂
(
∃t ≥ 1,

⋃
s,a6=π̂?t (s)

⋃
s′,s”∈S

(
E1,t(s, a) ∪ E2,t(s, a) ∪ E3,t(s′) ∪ E4,t(s”)

))

⊂ ⋃
(s,a)∈S×A

⋃
s′,s”∈S

((
∃t ≥ 1, E1,t(s, a) ∩

(
a = π̂?t (s)

))
∪
(
∃t ≥ 1, E2,t(s, a) ∩

(
a = π̂?t (s)

))

∪
(
∃t ≥ 1, E3,t(s′)

)
∪
(
∃t ≥ 1, E4,t(s”)

))
,



Adaptive Sampling for Best Policy Identification in MDPs

where 

E1,t(s, a) ,

{√
ρ1(φ̂t, φ)(s, a) >

√
T̂1(s, a)x(δ′, nt(s, a), 2)√

nt(s, a)

}
, ∀(s, a) /∈ O(φ̂t),

E2,t(s, a) ,

{√
ρ2(φ̂t, φ)(s, a) >

√
T̂2(s, a)x(δ′, nt(s, a), S)√

nt(s, a)

}
, ∀(s, a) /∈ O(φ̂t),

E3,t(s) ,
{√

ρ3(φ̂t, φ)(s) >

√
T̂3x(δ′, nt(s, π̂∗t (s)), 2)√

nt(s, π̂∗t (s))

}
, ∀s ∈ S,

E4,t(s) ,
{√

ρ4(φ̂t, φ)(s) >

√
T̂4x(δ′, nt(s, π̂∗t (s)), S)√

nt(s, π̂∗t (s))

}
, ∀s ∈ S.

Therefore:

Pφ(τδ <∞, π̂?τδ 6= π?φ) ≤
∑

(s,a)∈S×A

∑
s′,s”∈S

[
P
(
∃t ≥ 1, E1,t(s, a) ∩

(
a = π̂?t (s)

))

+ P
(
∃t ≥ 1, E2,t(s, a) ∩

(
a = π̂?t (s)

))
+ P

(
∃t ≥ 1, E3,t(s′)

)
+ P

(
∃t ≥ 1, E4,t(s”)

)]
≤

∑
(s,a)∈S×A

∑
s′,s”∈S

4δ′

= 4S3Aδ′ , δ,

where in the second inequality we have used the concentration inequalities (39), (40), (41) and (42). We detail the derivation
of this second inequality below:

First term. Using Lemma 8, for δ′ = δ
4S3A , we have:

P

∃t ≥ 1,

√
ρ1(φ̂t, φ)(s, a) >

√
T̂1(s, a)x(δ′, nt(s, a), 2)√

nt(s, a)


= P

(
∃t ≥ 1, nt(s, a)kl(r̂nt(s,a)(s, a), r(s, a)) > x (δ′, nt(s, a), 2)

)
≤ P

(
∃n ∈ N, nkl(r̂n(s, a), r(s, a)) > x (δ′, n, 2)

)
≤ δ′.

(39)

Second term. Using Lemma 9, we get:

P
(
∃t ≥ 1,

√
ρ2(φ̂t, φ)(s, a) >

√
T̂2(s, a)x(δ′, nt(s, a), S)√

nt(s, a)

)
= P

(
∃t ≥ 1, nt(s, a)KL

(
p̂nt(s,a)(s, a)‖p(s, a)

)
> x (δ′, nt(s, a), S)

)
≤ P

(
∃n ∈ N, KL (p̂n(s, a)‖p(s, a)) > x (δ′, n, S)

)
≤ δ′.

(40)
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Third term. Following the same reasoning as in the first term we get:

∀s ∈ S, P

∃t ≥ 1,

√
ρ3(φ̂t, φ)(s) >

√
T̂3,tx(δ′, nt(s, π̂t(s)), 2)√

nt(s, π̂∗(s))

 ≤ δ′. (41)

Fourth term. Following the same reasoning as in the second term we get:

∀s ∈ S, P

∃t ≥ 1,

√
ρ4(φ̂t, φ)(s) >

√
T̂4,tx(δ′, nt(s, π̂t(s)), S)

)
√
nt(s, π̂∗(s))

 ≤ δ′. (42)
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G. Sample complexity of KLB-TS
In the following, we use the notation: y(n,m) , (m− 1) + (m− 1) log(1 + n/(m− 1)). Hence the threshold function
can be rewritten as: x(δ, n,m) = log(1/δ) + y(n,m).

We start this section by a technical lemma that is later used in the proof of Proposition 2 and Theorem 3.
Lemma 11. For all φ in Φ,(

max
s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
+ max

s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2

≤ 4U(φ).

Proof. Denote by LHS the left-hand side term above. Using (A+B)2 ≤ 2(A2 +B2) twice, and (max
x
f(x))2 = max

x
f(x)2

for non-negative f , we write:

LHS ≤ 2

((
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a

)2

+

(
max
s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2
)

= 2

(
max

s,a6=π?(s)

(√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a

)2

+ max
s∈S

(√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2
)

≤ 4

(
max

s,a6=π?(s)

T1(s, a;φ) + T2(s, a;φ)

ωs,a
+ max

s∈S

T3(φ) + T4(φ)

ωs,π?(s)

)
≤ 4U(φ),

where the last inequality comes from Corollary 1.

G.1. Proof of Proposition 2

Proof. Recall the stopping condition:

τδ = inf

{
t ∈ N : max

s,a6=π̂?t (s)

√
T̂1(s, a)x(δ′, nt(s, a), 2) +

√
T̂2(s, a)x(δ′, nt(s, a), S)√

nt(s, a)

+ max
s∈S

√
T̂3x(δ′, nt(s, π̂?t (s)), 2) +

√
T̂4x

(
δ′, nt(s, π̂?t (s)), S

)
√
nt(s, π̂?t (s))

≤ 1

}
.

First we derive a convenient upper-bound of the left-hand-side term of the inequality above (which we denote by LHSt).
Rewrite the definition of x(δ, n,m) = log(1/δ) + (m− 1) + (m− 1) log(1 + n/(m− 1)) , log(1/δ) + y(n,m). Then,
using the fact that

√
A+B ≤

√
A+
√
B, we have:

LHSt ≤
√

log(δ′)

(
max

s,a6=π̂?t (s)

√
T̂1(s, a) +

√
T̂2(s, a)√

nt(s, a)
+ max

s∈S

√
T̂3 +

√
T̂4√

nt(s, π̂?t (s))

)

+ max
s,a6=π̂?t (s)

√
T̂1(s, a)y(nt(s, a), 2) +

√
T̂2(s, a)y(nt(s, a), S)√

nt(s, a)

+ max
s∈S

√
T̂3y(nt(s, π̂?t (s)), 2) +

√
T̂4y(nt(s, π̂?t (s)), S)√

nt(s, π̂?t (s))

,
√

log(δ′)

(
max

s,a6=π̂?t (s)

√
T̂1(s, a) +

√
T̂2(s, a)√

nt(s, a)
+ max

s∈S

√
T̂3 +

√
T̂4√

nt(s, π̂?t (s))

)
+ f(nt, φ̂t),

(43)
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where nt = (nt(s, a))(s,a)∈S×A denotes the number of visits vector. Note that when the terms (T̂i)1≤i≤4 are bounded and
lim
t→∞

nt(s, a) =∞ , which we will soon establish, then we have lim
t→∞

f(nt, φ̂t) = 0.

Next define the convergence event:

C =
{
∀(s, a) ∈ S ×A, lim

t→∞

nt(s, a)

t
= ωs,a, φ̂t → φ

}
.

Then by assumptions of the theorem and since ∀(s, a), ωs,a > 0, we have lim
t→∞

nt(s, a) =∞ which implies Pφ(C) = 1.
Under C, by continuity of the involved functionals of the MDP, we have:

∀ε > 0, ∃t1(ε) ∈ N, ∀t ≥ t1 :



π̂?t = π∗, as soon as
∥∥∥Q?

φ̂t
−Q?φ

∥∥∥
∞
< ∆min/2,

T̂1,t(s, a) < (1 + ε)T1(s, a), ∀s, a 6= π?(s),

T̂2,t(s, a) < (1 + ε)T2(s, a), ∀s, a 6= π?(s),

T̂3,t ≤ (1 + ε)T3,

T̂4,t ≤ (1 + ε)T4,

nt(s, a)/t ≥ (1− ε)ωs,a, ∀s, a 6= π?(s),

nt(s, π̂
?
t (s))/t ≥ (1− ε)ωs,π∗(s), ∀s ∈ S,

f(nt, φ̂t) ≤ ε.

Thus when t ≥ t1(ε), inequality (43) implies:

LHSt ≤

√
(1 + ε) log(δ′)

(1− ε)t

(
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
+ max

s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)
+ ε. (44)

Next we define :

t2(δ, ε) = inf

{
t > 0

∣∣∣∣
√

(1 + ε) log(δ′)

(1− ε)t

(
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a

+ max
s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)
≤ 1− ε

}

=
(1 + ε) log(δ′)

(1− ε)3

(
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
+ max

s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2

.

(45)

Combining (44) and (45), we have for t ≥ max(t1(ε), t2(δ, ε)), LHSt ≤ 1. Therefore:

τδ ≤ max (t1(ε), t2(ε, δ))

= max

t1(ε),
(1 + ε) log(δ′)

(1− ε)3

(
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
+ max

s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2
 .

Thus ∀δ ∈ (0, 1), τδ is finite on C and we have:

∀ε > 0, lim sup
δ→0

τδ
log(1/δ)

≤ 1 + ε

(1− ε)3

(
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
+ max

s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2

.

Taking the limit when ε→ 0, we get:

lim sup
δ→0

τδ
log(1/δ)

≤

(
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
+ max

s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2

.

We conclude by applying Lemma 11.
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G.2. Proof of Theorem 3

For a kernel u in RS×SA, we define the norm ‖u‖1,∞ , max
(s,a)∈S×A

∑
s′∈S
|u(s′|s, a)|. Next, we define the following distance

on MDPs:

‖ψ − φ‖ = max
s,a

(
‖qψ(.|s, a)− qφ(.|s, a)‖1 ∨ ‖pψ(.|s, a)− pφ(.|s, a)‖1

)
.

Based on this distance, we can define balls on the set of MDPs:

B‖.‖(φ, ξ) , {ψ : ‖ψ − φ‖ ≤ ξ}.

Let ε > 0. By recursively bounding Bellman operator, one can prove that Q? is Liptschitz w.r.t. rewards and transitions:

∥∥Q?φ −Q?ψ∥∥∞ ≤ (1 +
1

1− γ

)(
‖rφ − rψ‖∞ +

γ

(1− γ)
‖pφ − pψ‖1,∞

)
≤
(

1 +
1

1− γ

)(
max
s,a
‖qψ(.|s, a)− qφ(.|s, a)‖1 +

γ

(1− γ)
‖pφ − pψ‖1,∞

)
.

Thus, there exists ξ = ξ(ε) > 0 such that:

∀ψ ∈ B‖.‖(φ, ξ),
∥∥Q?φ −Q?ψ∥∥∞ < ∆min/2 and max

s,a
|ωs,a(ψ)− ωs,a(φ)| ≤ ε.

Crucially, the first inequality implies that π?ψ = π?φ. For T ∈ N, consider the concentration event:

ET =

T⋂
t=T 1/4

(
φ̂t ∈ B‖.‖(φ, ξ)

)
.

We will be using the following technical lemmas. The first corresponds to Lemma 20 in (Garivier & Kaufmann, 2016),
which we reformulate in our case by replacing the number of arms of the bandit by the number of (state, action) pairs of the
MDP.

Lemma 12. There exists a constant Tε such that for T ≥ Tε, it holds on ET , for C-Tracking:

∀t ≥ Tε, max
s,a

∣∣∣∣nt(s, a)

t
− ωs,a

∣∣∣∣ ≤ 3(SA− 1)ε.

The second lemma is a concentration inequality similar to that of Lemma 19 in (Garivier & Kaufmann, 2016) (we defer its
proof to the end of this appendix).

Lemma 13. Denote by EcT the complementary of the event ET . There exists two constants B,C (that depend on φ and ε)
such that:

∀T ≥ 1,P (EcT ) ≤ BT exp(−CT 1/8).

Recall inequality (43), which gives an upper bound of the left-hand-side of the stopping condition:

LHSt ≤
√

log(δ′)

(
max

s,a6=π̂?t (s)

√
T̂1(s, a) +

√
T̂2(s, a)√

nt(s, a)
+ max

s∈S

√
T̂3 +

√
T̂4√

nt(s, π̂?t (s))

)
+ f(nt, φ̂t)
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where f(., .) is a continuous function in both arguments. Define:

D(φ, ε) = sup
ψ ∈ B‖.‖(φ, ξ(ε))∥∥ω′ − ω(φ)∥∥ ≤ 3(SA− 1)ε

max
s,a6=π?(s)

√
T1(s, a;ψ) +

√
T2(s, a;ψ)√

ω′sa
,

E(φ, ε) = sup
ψ ∈ B‖.‖(φ, ξ(ε))∥∥ω′ − ω(φ)∥∥ ≤ 3(SA− 1)ε

max
s∈S

√
T3(ψ) +

√
T4(ψ)√

ω′s,π?(s)

,

F (φ, ε, t) = sup
ψ ∈ B‖.‖(φ, ξ(ε))∥∥ω′ − ω(φ)∥∥ ≤ 3(SA− 1)ε

f(t× ω′, ψ).

For T ≥ Tε, on the event ET , we have: ∀t ≥ T 1/4, π̂?t = π?, and using Lemma 12,
∥∥∥nt(s,a)

t − ωs,a
∥∥∥
∞
≤ 3(SA− 1)ε.

Therefore, for the stopping condition LHSt ≤ 1 to be satisfied, it is sufficient to have:√
log(δ′)√
t

(
D(φ, ε) + E(φ, ε)

)
+ F (φ, ε, t) ≤ 1. (46)

By Lemma 14, lim
t→∞

F (φ, ε, t) = 0. Hence, we can define the following times :



t1(φ, ε, η, δ) = inf

{
t > 0 | ∀x > t,

√
log(δ′)√
x

(
D(φ, ε) + E(φ, ε)

)
≤ 1− η

}

=

log(δ′)

(
D(φ, ε) + E(φ, ε)

)2

(1− η)2

,

t2(φ, ε, η) = inf

{
t > 0 | ∀x > t, F (φ, ε, t) ≤ η

}
.

It is easy to see that for T ≥ max(Tε, t1, t2), condition (46) is verified and consequently: τδ ≤ T . In other words, we just
proved that:

∀T ≥ max(Tε, t1, t2), ET ⊂ (τδ ≤ T ).

Therefore:

Eφ[τδ] =

∞∑
T=1

P(τδ > T )

≤
max(Tε,t1,t2)∑

T=1

1 +

∞∑
T=max(Tε,t1,t2)

P(EcT )

≤ Tε + t1(φ, ε, η, δ) + t2(φ, ε, η) +

∞∑
T=1

BT exp(−CT 1/8),
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where the last inequality comes from Lemma 13. Thus, E[τδ] is finite and we have:

lim sup
δ→0

E[τδ]

log(1/δ)
≤ lim sup

δ→0

t1(φ, ε, η, δ)

log(1/δ)
=

(
D(φ, ε) + E(φ, ε)

)2

(1− η)2
.

Letting η and ε go to zero, and noting that:

lim
ε→0

D(φ, ε) = max
s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
,

lim
ε→0

E(φ, ε) = max
s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

,

(
max

s,a6=π?(s)

√
T1(s, a;φ) +

√
T2(s, a;φ)√

ωs,a
+ max

s∈S

√
T3(φ) +

√
T4(φ)√

ωs,π?(s)

)2

≤ 4U(φ), (Lemma 11),

we get the desired result.

G.3. Second technical lemma

Lemma 14. Let π? = π?φ and let y(n,m) = (m− 1) + (m− 1) log(1 + n/(m− 1)). Define:

f(n, ψ) = max
s,a6=π?(s)

√
T1(s, a;ψ)y(n(s, a), 2) +

√
T2(s, a;ψ)y(n(s, a), S)√

n(s, a)

+ max
s∈S

√
T3(ψ)y(n(s, π?(s)), 2) +

√
T4(ψ)y(n(s, π?(s)), S)√

n(s, π?(s))

and
F (φ, ε, t) = sup

ψ ∈ B‖.‖(φ, ξ(ε))∥∥ω′ − ω(φ)∥∥ ≤ 3(SA− 1)ε

f(t× ω′, ψ).

Then, there exists ε0 such that: ∀ε ≤ ε0, lim
t→∞

F (φ, ε, t) = 0.

Proof. Define: 

T1(s, a, φ, ε) , sup
ψ∈B‖.‖(φ,ξ(ε))

T1(s, a;ψ),

T2(s, a, φ, ε) , sup
ψ∈B‖.‖(φ,ξ(ε))

T2(s, a;ψ),

T3(φ, ε) , sup
ψ∈B‖.‖(φ,ξ(ε))

T3(ψ),

T4(φ, ε) , sup
ψ∈B‖.‖(φ,ξ(ε))

T4(ψ).

By continuity of the functionals (Ti)1≤i≤4 in φ, there exists ε0 > 0, such that for all ε ≤ ε0, the supremums defined above are
upper bounded by M = 2× max

s,a6=π?(s)
(T1(s, a;φ), T2(s, a;φ), T3(φ), T4(φ)). Furthermore, if ‖ω′ − ω(φ)‖ ≤ 3(SA− 1)ε,

then for all (s, a): ωsa(φ) − 3(SA − 1)ε ≤ ω′sa ≤ ωsa(φ) + 3(SA − 1)ε. Summing up these inequalities we get, for ε
small enough:

F (φ, ε, t) ≤
√
M max

s,a6=π?(s)

√
y(t[ωsa(φ) + 3(SA− 1)ε], 2) +

√
y(t[ωsa(φ) + 3(SA− 1)ε], S)√

t[ωsa(φ)− 3(SA− 1)ε]

+ max
s∈S

√
y(t[ωs,π?(s)(φ) + 3(SA− 1)ε], 2) +

√
y(t[ωs,π?(s)(φ) + 3(SA− 1)ε], S)√

t[ωs,π?(s)(φ)− 3(SA− 1)ε]
.

(47)
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Since ∀a > 0 ∀m ≥ 2, lim
x→∞

√
y(ax,m)√

x
= lim
x→∞

√
(m−1)+(m−1) log(1+ax/(m−1))√

x
= 0, and the maximums in (47) are taken

over finite sets, then lim
t→∞

F (φ, ε, t) = 0.

G.4. Proof of Lemma 13

Proof. We have:

P (EcT ) ≤
T∑

t=T 1/4

P
(
φ̂t /∈ B‖.‖(φ, ξ)

)

≤
T∑

t=T 1/4

∑
s,a

[
P
(
r̂t(s, a)− r(s, a) > ξ

)
+ P

(
r̂t(s, a)− r(s, a) < −ξ

)

+
∑
s′

P
(
p̂t(s

′|s, a)− p(s′|s, a) > ξ/S

)
+ P

(
p̂t(s

′|s, a)− p(s′|s, a) < −ξ/S
)]

.

Let T be such that T 1/4 ≥ (SA)2. Then for t ≥ T 1/4, we have ∀(s, a), nt(s, a) ≥ (
√
t − SA/2)+ − 1 ≥

√
t − SA.

Therefore, using a union bound and Chernoff inequality, one can write:

P
(
p̂t(s

′|s, a)− p(s′|s, a) > ξ/S

)
= P

(
p̂t(s

′|s, a)− p(s′|s, a) > ξ/S, nt(s, a) ≥
√
t− S

)
≤

t∑
t′=
√
t−SA

P
(
p̂t(s

′|s, a)− p(s′|s, a) > ξ/S, nt(s, a) = t′
)

≤
t∑

t′=
√
t−SA

exp

(
− t′ · kl

(
p(s′|s, a) + ξ/S, p(s′|s, a)

))

≤
exp

(
− (
√
t− SA)kl

(
p(s′|s, a) + ξ/S, p(s′|s, a)

))
1− exp

(
− kl

(
p(s′|s, a) + ξ/S, p(s′|s, a)

)) .

Using the same reasoning, we can prove that:

P
(
p̂t(s

′|s, a)− p(s′|s, a) < −ξ/S
)
≤

exp

(
− (
√
t− SA)kl

(
p(s′|s, a)− ξ/S, p(s′|s, a)

))
1− exp

(
− kl

(
p(s′|s, a)− ξ/S, p(s′|s, a)

)) ,

P
(
r̂t(s, a)− r(s, a) > ξ

)
≤

exp

(
− (
√
t− SA)kl

(
r(s, a) + ξ, r(s, a)

))
1− exp

(
− kl

(
r(s, a) + ξ, r(s, a)

)) ,

P
(
r̂t(s, a)− r(s, a) < −ξ

)
≤

exp

(
− (
√
t− SA)kl

(
r(s, a)− ξ, r(s, a)

))
1− exp

(
− kl

(
r(s, a)− ξ, r(s, a)

)) .

Thus, for the following choice of constants

C = min
s,a

(
kl
(
r(s, a)− ξ, r(s, a)

)
∧ kl

(
r(s, a) + ξ, r(s, a)

)
∧ min

s′

(
kl
(
p(s′|s, a)− ξ/S, p(s′|s, a)

)
∧ kl

(
p(s′|s, a) + ξ/S, p(s′|s, a)

)))
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and

B =
∑
s,a

( exp

(
SA · kl

(
r(s, a) + ξ, r(s, a)

))
1− exp

(
− kl

(
r(s, a) + ξ, r(s, a)

)) +

exp

(
SA · kl

(
r(s, a)− ξ, r(s, a)

))
1− exp

(
− kl

(
r(s, a)− ξ, r(s, a)

))

+
∑
s′

[ exp

(
SA · kl

(
p(s′|s, a) + ξ/S, p(s′|s, a)

))
1− exp

(
− kl

(
p(s′|s, a) + ξ/S, p(s′|s, a)

)) +

exp

(
SA · kl

(
p(s′|s, a)− ξ/S, p(s′|s, a)

))
1− exp

(
− kl

(
p(s′|s, a)− ξ/S, p(s′|s, a)

))
])

,

we have

P (EcT ) ≤
T∑

t=T 1/4

B exp(−C
√
t) ≤ BT exp(−CT 1/8).
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H. Comparison of KLB-TS and BESPOKE:
H.1. Design principles

As KLB-TS, BESPOKE is an algorithm that adapts its sampling strategy to the learnt MDP. The two algorithms have
however different objectives: BESPOKE aims at returning an ε-optimal policy. BESPOKE starts with an intialization phase
where each (state, action) pair is sampled nmin = 2×6252×γ2×S×log(1/δ)

(1−γ)2 times. After this first phase, the algorithm enters

an inner loop. Each iteration of the loop aims at halving the sub-optimality gap
∥∥∥V ?φ − V π̂∗φ ∥∥∥

∞
of the empirical best policy.

The algorithm iterates until the gap becomes smaller than ε. At the beginning of each iteration, the algorithm solves a convex
program whose solution provides the numbers of times each (state, action) pair should be sampled in this iteration. The
program minimizes a weighted sum of ”confidence intervals” of rewards and transitions estimates at each (state, action) pair,
subject to a maximum budget constraint. This objective is known, thanks to the Simulation Lemma4, to be an upper bound
of the sub-optimality gap of the empirical optimal policy. BESPOKE uses a doubling trick to compute the maximum budget
for each iteration (this budget is defined so that the gap is halved). We note the following important differences between
KLB-TS and BESPOKE.

1. KLB-TS does not need to solve any convex program to update its sampling strategy, because given an estimate of the
MDP, this strategy is explicit.

2. It is also worth noting that the initialization phase of BESPOKE is extremely long: 2×6252×γ2×S2A×log(1/δ)
(1−γ)2 samples

must be gathered. During this phase, the algorithm is not adaptive at all. As we have shown in our numerical
experiments, even with small state and action spaces, the initialization phase constitutes a very large proportion of
the sample complexity – which makes the algorithm less adaptive than it seems, and really leads to poor performance.
KLB-TS has a much smaller initialization phase and is really adaptive. On Figure 3, we see that BESPOKE’s large
sample complexity is mainly due to the constant term corresponding to the minimum number of samples it allocates to
each (state, action) pair in the initialization phase. Note that this minimum number of samples cannot be avoided as it
is necessary to ensure that BESPOKE halves the accuracy of the empirical policy after each iteration5

3. BESPOKE’s stopping rule is suited to identify ε−optimal policies. Unless it has access an oracle revealing ∆min, it
cannot perform best policy identification.

Figure 3. Comparing BESPOKE initialization phase duration nmin to its total sample complexity τ : − log(1− nmin
τ

) as a function of
log(1/δ).

4see Lemma 2 in (Zanette et al., 2019)
5see Lemma 16 and the proof of Theorem 1 in (Zanette et al., 2019).
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H.2. Theoretical guarantees of BESPOKE and KLB-TS

Theorem 2 in (Zanette et al., 2019) states that with a probability at least 1 − δ, the sample complexity of best-policy
identification using BESPOKE with ε = ∆min is upper bounded by6:

τδ = Õ

( ∑
s,a6=π?(s)

(Var[R(s, a)] + γ2Varp(s,a)[V
?
φ ]

∆2
sa

+
1

(1− γ)∆sa

)

+
∑
s∈S

min

{
1

(1− γ)3∆2
min

,
Var[R(s, π∗(s))] + γ2Varp(s,π∗(s))[V ?φ ]

∆2
min

+
1

(1− γ)2∆min

}
+

S2A

(1− γ)2

)
.

In contrast, the sample complexity of KLB-TS scales as:

τδ = O

( ∑
s,a6=π?(s)

(
max

{Varp(s,a)[V
?
φ ]

∆2
sa

,
sp[V ?φ ]4/3

∆
4/3
sa

}
+

1

∆2
sa

)

+ S ×min

{
1

(1− γ)3∆2
min

,max

{ Var∗max[V ?φ ]

(1− γ)2∆2
min

,
sp[V ?φ ]4/3

(1− γ)4/3∆
4/3
min

}}
+

S

(1− γ)2∆2
min

)
log(1/δ)

+ o(log(1/δ)).

From the above upper bounds, we can make the following comments:

1. Both bounds depend on functionals of the particular MDP to be learnt, such as the minimum gap, the variance or
maximum deviations of value functions. This means that BESPOKE and KLB-TS can adapt to the hardness of the
problem, and in particular perform significantly better than minimax approaches when the MDP is easy (e.g. when the
minimum gap is high or when the variances of the value function is low).

2. In the worst case, both sample complexities scale at most as Õ
(

SA
∆2

min(1−γ)3

)
, which corresponds to the minimax

bound.

3. When the rewards have strictly positive variances, then the two upper bounds are very similar, except for the large
constant term S2A log(1/δ)

(1−γ)2 for BESPOKE which comes from its very long initialization phase. We believe that this
constant term makes BESPOKE impractical.

4. While BESPOKE’s bound has the advantage of being non-asymptotic, it only holds with probability 1− δ. In contrast,
KLB-TS comes with an asymptotic bound on the expected sample complexity, which we also proved to be finite for all
confidence levels δ.

6Õ(.) is used to indicate a quantity that depends on (.) up to a polylog expression at most polynomial in S,A, 1
1−γ ,

1
δ

.


