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6. Supplementary Material/ Appendix for
paper: Necessary and sufficient conditions
for causal feature selection in time series
with latent common causes

6.1. Definitions

Here we briefly mention some fundamental definitions such
as Causal Markov Condition and Granger Causality, which
we use in our paper to present and prove our methodology.
For a thorough study see (Pearl, 2009; Peters et al., 2017;
Spirtes et al., 1993).

Definition 1 (Bivariate Granger Causality). Under the as-
sumption of Causal Sufficiency, X influences Y whenever
the past values of X help in predicting Y from its own
past. Formally, we write X Granger-causes Y ⇐⇒ Yt 6⊥⊥
Xpast(t) | Ypast(t)

Definition 2 (Multivariate Granger Causality). Xj Granger
causes Xk if Xk

t 6⊥⊥ Xj
past(t) | X

−j
past(t) Granger emphasized

that proper use of Granger causality would actually require
to condition on all relevant variables in the world. Neverthe-
less, Granger causality is often used in its bivariate version
or in situations, in which clearly important variables are
unobserved. Such a use can yield misleading statements
when interpreting the results causally. (Peters et al., 2017)

Definition 3 (d-separation (Pearl, 2009)). In a directed
acyclic graph (DAG) G, a path between nodes I1 and Im is
blocked by a set S (with neither I1 nor Im in S) whenever
there is a node Ik, k = 2, ...,m − 1 , such that one of the
following two possibilities holds:

(i) Ik ∈ S and Ik−1 → Ik → Ik+1 or Ik−1 ← Ik ←
Ik+1 or Ik−1 ← Ik → Ik+1

(ii) Neither Ik nor any of its descendants is in S and
Ik−1 → Ik ← Ik+1.

In a DAGG, we say that two nodesA andB are d-separated
by a third node C if every path between nodes A and B is
blocked by C. We then write A⊥⊥G B | C.

Definition 4 (Causal Markov Condition (Spirtes et al.,
1993)). Let G be a causal graph with vertex set V and P be
a probability distribution over the vertices in V generated
by the causal structure represented by G. G and P satisfy
the Causal Markov Condition if and only if for everyW in V ,
W is independent of V \ (Descendants(W ) ∪ Parents(W ))
given Parents(W ).

Here we use the global version of Markov condition, which
reads: if X ⊥⊥G Y | Z ⇒ X ⊥⊥ Y | Z for all disjoint vertex
sets X ,Y,Z (where⊥⊥G denotes d-separation, as defined
above)

Definition 5 (Causal Faithfulness). A distribution P is faith-
ful to a directed acyclic graph (DAG) G if no conditional

independence relations other than the ones entailed by the
Markov property are present.

6.2. Proof of Theorem 1b

Proof. (Proof by contradiction)
We need to show that if Xi

t 699K Yt+wi
then at least one of

the conditions 1 and 2 is violated.

Assume that there is no directed path between Xi
t and

Yt+wi
: Xi

t 699K Yt+wi
. Then, there is a confounding path

Xi
t L99 Qj

t′ 99K Yt+wi
, t′ ≤ t without any colliders.

(Colliders cannot exist in the path by the definition of the
lag T8.) In that case we will show that either condition
1 or 2 is violated. If all the existing confounding paths
Xi

t L99 Qj
t′ 99K Yt+wi

, t′ ≤ t contain an observed con-
founder Qj

t′ ≡ Xj
t′ ∈ {Si, Yt+wi−1} (there can be only

one confounder since in this case there are no colliders
in the path), then condition 1 is violated, because we con-
dition on Xj

t′ which d-separates Xi
t and Yt+wi

. If in all
the existing confounding paths the confounder node Qj

t′ 6∈
{Si, Yt+wi−1}, t′ ≤ t but some observed non-collider node
is in the path and this node belongs to {Si, Yt+wi−1}, then
condition 1 is violated, because we condition on Si which
d-separates Xi

t and Yt+wi . If there is at least one con-
founding path and its confounder node does no belong in
{Si, Yt+wi−1} and no other observed (non-collider or de-
scendant of collider) node which is in the path belongs in
{Si, Yt+wi−1} then condition 2 is violated for the follow-
ing reasons: Let’s name p1 : Xi

t L99 Qj
t′ 99K Yt+wi , t

′ ≤ t.
We know the existence of the path p2 : Xi

t−1 → Xi
t , due to

assumption A7.

(1I) If p1 and p2 have Xi
t in common, then Xi

t is a collider.
Therefore, adding Xi

t in the conditioning set would
unblock the path between Xi

t−1 and Yt+wi .

(1II) If p1 and p2 have Xi
t−1 in common, that means Xi

t−1
lies on p1. In this case Xi

t is not in the path from Xi
t−1

to Yt+wi
and hence adding Xi

t to the conditioning set
could not d-separate Xi

t−1 and Yt+wi
.

In both cases condition 2 is violated. Therefore we showed
that if conditions 1 and 2 hold, then Xi

t 99K Yt+wi
.

6.3. Proof of lemmas 1, 2

Lemma 1. If the paths between Xj and Y are directed then
the minimum lag wj as defined in T8 coincides with the
minimum non-negative integer w′j for which Xj

t 6⊥⊥ Yt+w′
j
|

Xj
past(t). The only case where w′j 6≡ wj is when there is a

confounding path between Xj and Y that contains a node
from a third time series with memory. In this case w′j = 0.

Proof. This is obvious by the fact that in the first two cases
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and when a memoryless confounder exists in the path Xj
t - -

-Yt+w′
j
, the path does not contain horizontal arrows of the

type Qr
s → Qr

s+1.

Lemma 2. Theorems 1a/1b and 2 are valid if the minimum
lag wj as defined in T8 is replaced with w′j obtained in
lemma 1.

Proof. Claims of theorem 1a/1b remain unaffected because
the conditions of theorem 1a/1b hold for any lag according
to remark 1. According to lemma 1 the only occasion that the
minimum non-negative integer w′j identified by its simple
condition, does not coincide with the minimum lag wj of
the definition in T8 is when there exist confounding paths
Xj

t - - -Yt+wj
in which the confounder or any intermediate

node in the path has memory. In this case w′j will always
be 0. If the confounder in the paths is hidden then due to
assumption A9 it will be memoryless. In this case the w′j
will coincide with the minimum lag and therefore according
to the proof of theorem 2 the appropriate node of Xj will
be in the conditioning set and no cause will be rejected.
Therefore it is enough to show that theorem 2 is valid using
w′j = 0 when there is an observed confounder in the path.

Assume that condition 2 is violated. Then this will mean
that the set {Xi

t ,S
i, Yt+wi−1} does not d-separate Xi

t−1
and Yt+wi . This would mean that there is a path Xi

t−1 - - -
Yt+wi

in which one of the elements of this set is a collider or
descendent of collider and there is no non-collider node in
the conditioning set. The proof for the cases (a1), (a2), (a4)
and (b) remain the same for the proof of theorem 2. Assume
that Xj

t+wij′−1 is a collider and no non-collider node in the
path belong to the conditioning set. However the observed
common causes of Xj

t+wij′−1 and Yt+wi−1 are always in
the path. Because all these observed common causes are
connected via a directed path with Yt+wi−1, their minimum
lag will be correctly identified and so by construction they
will be added in the conditioning set. This contradicts the
statement “and there is no non-collider node in the path that
belongs in the conditioning set”. Therefore we showed that
condition 2, thus theorem 2 is not violated.

6.4. Experiments on real datasets: Dairy product prices
for DE, IE and UK

(a) Dairy product prices for Germany. Raw Milk prices provided
in the dataset.

(b) Dairy product prices for Ireland. Raw Milk prices provided in
the dataset.

(c) Dairy product prices for Germany. Notice that Raw Milk prices
are no provided in the dataset. This dataset was on purpose se-
lected, as it would represent a realistic case of a hidden confounder
between Butter and the rest dairy products.

Figure 6. Dairy product prices provided by the EU for a span of
8.5-14.5 years (one price recording per month). Here we provide
the ground truth time-series from the dairy product prices for each
of the three countries ’DE’, ’IE’ and ’UK’. For UK Raw Milk
prices are not provided.

6.5. Additional results for simulated full-time graphs for
various number of observed time-series, noise levels
and hidden variables

Here we provide results for all the different hyperparameters
that were tested during the simulations. In practice for our
simulations where our models are linear with weights < 1
we assume that a shorter indirect edge will have a stronger
indirect effect compared to a longer indirect edge. Therefore,
we assume that the minimum integer that corresponds to the
shortest lag between Xi and Y will also correspond to the
maximum coefficient given by the lasso regression.
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6.5.1. FPR AND FNR FOR VARIOUS DENSITIES

The x-axis on the heatmaps shows the probability of exis-
tence of an edge from the candidates to the target. The y-axis
shows the probability of existence of an edge among the can-
didate time series. The first row of results always refers to
the FPR and the bottom row to the FNR. The four different
columns correspond to different sample sizes. Black color
cell corresponds to 0 and white to 100%. The red-colored
percentages incide the cells of the FNR correspond to the
missed dirrect causes. We focus only on the FNR that corre-
spond to the missed dirrect causes, because our conditions
(Theorem 2) are necessary only for direct.

Here we provide heatmaps for all the noise variance levels
and for all various number of observed time series that were
simulated, for one hidden time series. The false positive and
false negative rates are calculated over 100 random graphs
created for each combination tested here.

Overall, the noise in the data does not seem to affect the
results for sample sizes ≥ 1000. The false positive rate
(FPR) is constantly close to zero for sample size > 500, and
is not affected by the density and the size of the graph. The
total false negative rate that refers to both direct and indirect
missed causes (FNR) seem to gradually increase with the
size and the density of the graph. On the other hand, the
FNR that refers to the direct causes, for which we proved
that our method is complete and sound, does not increase
above 50% in very dense and large simulated graphs.

Results for low noise (0.1 noise variance):

(a) 1 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).

(b) 2 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).

(c) 3 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).

(d) 4 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).

(e) 5 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).

(f) 6 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).

(g) 7 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).
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(h) 8 observed, 1 hidden and 1 target time-series, for low noise
(variance 0.1).

Figure 7. FPR and FNR for low noise, various observed, 1 ad-
ditional hidden and 1 additional target time-series, for different
sample size (columns) and sparsity of edges among the candidate
causes (x-axis) and between the candidate causes and the target
(y-axis). The total FNR (for indirect and direct causes) is depicted
by the heatmap color. The FNR that refers to the direct causes (for
which our method is proved to be complete) is depicted with red
in the middle of each cell. Overall we see tat for sample size above
500 the false positives are very low and they keep decreasing as the
number of examples increase. False negatives for both direct and
indirect causes increases with the number of nodes and the density
of the graph, however the FNR that refers only to the direct causes
for which our method provides necessary conditions (red coloured
numbers) ranges just from 12% up to 52% for dense large graphs.

Results for medium noise (0.2 noise vairance):

(a) 1 observed, 1 hidden and 1 target time-series, for medium noise
(variance 0.2).

(b) 2 observed, 1 hidden and 1 target time-series, for medium
noise (variance 0.2).

(c) 3 observed, 1 hidden and 1 target time-series, for medium
noise (variance 0.2).

(d) 4 observed, 1 hidden and 1 target time-series, for medium noise
(variance 0.2).

(e) 5 observed, 1 hidden and 1 target time-series, for medium noise
(variance 0.2).

(f) 6 observed, 1 hidden and 1 target time-series, for medium noise
(variance 0.2).

(g) 7 observed, 1 hidden and 1 target time-series, for medium noise
(variance 0.2).

(h) 8 observed, 1 hidden and 1 target time-series, for medium noise
(variance 0.2).
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Figure 8. FPR and FNR for medium noise, various observed, 1
additional hidden and 1 additional target time-series, for different
sample size (columns) and sparsity of edges among the candidate
causes (x-axis) and between the candidate causes and the target
(y-axis). Similar to the rest of the noise levels, the total FNR
(for indirect and direct causes) is depicted by the heatmap color.
The FNR that refers to the direct causes (for which our method
is proved to be complete) is depicted with red in the middle of
each cell. Overall we see tat for sample size above 500 the false
positives are very low and they keep decreasing as the number
of examples increase. False negatives for both direct and indirect
causes increases with the number of nodes and the density of the
graph, however the FNR that refers only to the direct causes for
which our method provides necessary conditions (red coloured
numbers) ranges just from 15% up to 52% for dense large graphs.

Results for high noise (0.3 noise vairance):

(a) 1 observed, 1 hidden and 1 target time-series, for high
noise (variance 0.3).

(b) 2 observed, 1 hidden and 1 target time-series, for high
noise (variance 0.3).

(c) 3 observed, 1 hidden and 1 target time-series, for high
noise (variance 0.3).

(d) 4 observed, 1 hidden and 1 target time-series, for high
noise (variance 0.3).

(e) 5 observed, 1 hidden and 1 target time-series, for high noise
(variance 0.3).

(f) 6 observed, 1 hidden and 1 target time-series, for high noise
(variance 0.3).

(g) 7 observed, 1 hidden and 1 target time-series, for high noise
(variance 0.3).

(h) 8 observed, 1 hidden and 1 target time-series, for high noise
(variance 0.3).

Figure 9. FPR and FNR for high noise, various observed, 1 ad-
ditional hidden and 1 additional target time-series, for different
sample size (columns) and sparsity of edges among the candi-
date causes (x-axis) and between the candidate causes and the
target (y-axis). Similar to the rest of the noise levels, the total FNR
(for indirect and direct causes) is depicted by the heatmap color.
The FNR that refers to the direct causes (for which our method
is proved to be complete) is depicted with red in the middle of
each cell. Overall we see tat for sample size above 500 the false
positives are very low and they keep decreasing as the number
of examples increase. False negatives for both direct and indirect
causes increases with the number of nodes and the density of the
graph, however the FNR that refers only to the direct causes for
which our method provides necessary conditions (red coloured
numbers) ranges just from 11% up to 51% for dense large graphs.
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6.5.2. FPR AND FNR WITH VARIOUS HIDDEN
VARIABLE FOR VARIOUS DENSITIES

In the presence of zero hidden variables our method has
practically 0 false positives, which remains below 1% for
large noise.

6.5.3. ROC CURVES OF SYPI AND LASSO GRANGER

To build the ROC curves, for Lasso-
Granger, we varied the λ parameter across
{0.00001, 0.0001, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05,
0.1, 0.5, 0.6, 0.7, 0.8, 0.9}. For our method (SyPI), we var-
ied the two thresholds threshold1 and threshold2, keeping
their ratio equal to 1, using values in {0.01, 0.02, . . . , 0.12}.
Figure 10 shows the ROC curve for the performance of
SyPI and Lasso-Granger for the same graphs. Since our
method functions with two conditions and two p-values,
we did not manage to find logical pairs of thresholds that
increase further the FPR. We see that at all operating points
our method outperforms Lasso-Granger, with SyPI’s ROC
curve being above the Lasso-Granger one.

6.5.4. FPR AND FNR FOR “MULTIPLE-LAG
DEPENDENCIES”

Although our theory is complete against false negatives only
for single-lag dependencies, we wanted to test the perfor-
mance of our method even in the presence of multiple lags.
Therefore we examined the performance for 5 observed, 1
additional hidden and 1 target time series, for 2, 3 and 4
co-existing lag direct effects. We decide for the existence of
a lag sampling from a Bernoulli distribution with p = 0.5.
For Bernoulli probability of existence of an edge between
the time series (p1 = {0.1, 0.2, 0.3, 0.4}) and the time se-
ries and the target (p2 = {0.1, 0.2, 0.3, 0.4}) we calculate
FPR and FNR for different number of lags that can exist
between the time series.

We fix the number of samples at 2000, and the noise variance
at 20%. As depicted in Figure 11, our method seems to
perform very well in terms of FPR, independent of the
number of co-existing lags between the time series. As our
method is complete only for single-lag dependencies, we
don’t expect low FNR.

6.6. Future work on multiple lags

The reason why our conditions are not necessary for
“multiple-lag dependencies” is the difficulty in identifying
just one lag from each time series to look at and to add in the
conditioning set. If we did not put a lot of weight on keeping
the conditioning set to a minimum size for assuring a decent
statistical strength, we could still construct a conditioning set
with as many nodes per time series as the multiple lags and
have necessary conditions. In single-lag effects we describe

why a single node from each time-series is necessary and
sufficient and we show why this single lag can be the mini-
mum lag as defined in 1. Without making any strong claims
about the multi-lag case as it is out of the scope of this paper,
we found the following: If we use the following condition,
instead of the one defined in lemma 1, as max(v) 6= inf s.t.
At 6⊥⊥ Bt+v | {Apast(t), Afuture(t), Bpast(t+v), Bfuture(t+v)},
we managed to find only a very constrained bivariate case
where it is enough to use the maximum integer v (max-int) as
thewi in the theorems and still have necessary and sufficient
conditions. The case we managed to find that this is possible
for multiple-lags is the following: Only in a bivariate (2
observed series) full-time graph with one candidate time
series and one target time series, where hidden confounders
are memoryless and with unique lag, given the above condi-
tion, max-int could be enough for differentiating between
the time series causing the target with multiple lags and
the time-series being confounded. If a node Xi

t has a direct
edge both to Yt+1 and Yt+2, then the “maximum ” v would
be equal to 2. If we used this as wi in our conditions then,
Yt+wi ≡ Yt+2. Then conditioning on Xi

t , which is wi steps
back, and on Yt+1 ≡ Yt+wi−1, would render Xi

t−1 and
Yt+wi

independent, so the two conditions of our theorems
would hold.
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Figure 10. Yellow: ROC curve of Lasso-Granger for different values of the λ parameter. Red: ROC curve of our method for different
values of threshold1 and threshold2 with fixed ratio of 1. The ROC curves were calculated over 100 random graphs, for different density
of edges (three columns) and a moderate number of observed series with additional two hidden ones. Our method’s ROC curve is always
above the Granger’s ROC.

Figure 11. FPR and FNR for different number of coexisitng lags. Notice that the FPR is very low as expecteed by Theorem 1a/1b. Since
our method is complete only for single-lag dependencies, we notice large FNR both for direct causes (dashed lines) and for indirect.

Figure 12. FPR and FNR for various number of hidden and observed series, noise variance and sample size 2000, for sparse edges among
the X and Y (0.1, 0.1). As we can see, FPR is very low (max 1%) for any number of hidden series. Although the total FNR is gradually
increasing with the graph size, notice that the FNR that corresponds to direct causes (dashed lines, for which our method is complete)
does not exceed 35%.
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Figure 13. FPR and FNR for various number of hidden and observed series, noise variance and sample size 2000, for dense edges among
the X and Y (0.3, 0.3). As we can see, FPR remains very low (max 1.5% for high noise) for any number of hidden series. Although the
total FNR is gradually increasing with the graph size, notice that the FNR that corresponds to direct causes (dashed lines, for which our
method is complete) does not exceed 45%.


