A. Proof of theorems and technical lemmas

A.1. Proof of Proposition 3.2

From the definition of robust surrogate in (9) for the setting of Proposition 3.2 we have

$$
\phi_{\gamma}\left(\theta ; z_{0}\right):=\sup _{x}\left\{\left(y_{0}-x^{\top} \theta\right)^{2}-\gamma\left\|x-x_{0}\right\|_{\ell_{2}}^{2}\right\}
$$

by introducing $g_{\gamma}(x):=\left(y_{0}-x^{\top} \theta\right)^{2}-\gamma\left\|x-x_{0}\right\|_{\ell_{2}}^{2}$, for every scalar c we get

$$
\begin{aligned}
g_{\gamma}\left(x_{0}+c \theta\right) & =g_{\gamma}\left(x_{0}\right)+2 c\left(x_{0}^{\top} \theta-y_{0}\right)\|\theta\|_{\ell_{2}}^{2} \\
& +c^{2}\|\theta\|_{\ell_{2}}^{2}\left(\|\theta\|_{\ell_{2}}^{2}-\gamma\right),
\end{aligned}
$$

this implies if $\gamma<\|\theta\|_{\ell_{2}}^{2}$, then $\phi_{\gamma}\left(\theta ; z_{0}\right)=+\infty$. Consider $\gamma \geq\|\theta\|_{\ell_{2}}^{2}$, then from relation $\nabla^{2} g_{\gamma}(x)=2\left(\theta \theta^{\top}-\gamma I\right)$ we realize that g_{γ} is concave. Writing the first order optimal condition we have

$$
\begin{equation*}
\left(y_{0}-x^{\mathrm{\top}} \theta\right) \theta+\gamma\left(x-x_{0}\right)=0 \tag{34}
\end{equation*}
$$

Multiplying by θ and solving for $x^{\top} \theta$, we get

$$
x^{\mathrm{T}} \theta=\frac{\gamma x_{0}^{\top} \theta-y_{0}\|\theta\|^{2}}{\gamma-\|\theta\|^{2}}
$$

Substituting for $x^{\top} \theta$ in the stationary condition (34) implies

$$
x^{*}=x_{0}+\frac{x_{0}^{\top} \theta-y_{0}}{\gamma-\|\theta\|_{\ell_{2}}^{2}} \theta
$$

Replacing x^{*} in g_{γ} yields

$$
\phi_{\gamma}(\theta ; z)= \begin{cases}+\infty & \text { if } \gamma<\|\theta\|_{\ell_{2}}^{2} \tag{35}\\ \frac{\gamma\left(y_{0}-x^{\top} \theta\right)^{2}}{\left(\gamma-\|\theta\|_{\ell_{2}}^{2}\right)} & \text { if } \gamma \geq\|\theta\|_{\ell_{2}}^{2} .\end{cases}
$$

Then, we use dual formulation (8) to compute the Wasserstein adversarial risk:

$$
\begin{aligned}
& \operatorname{AR}(\theta):=\sup _{\mathbb{Q} \in \mathcal{U}_{\varepsilon}\left(\mathbb{P}_{z}\right)} \mathbb{E}_{z \sim \mathbb{Q}}[\ell(\theta ; z)] \\
& =\inf _{\gamma \geq 0}\left\{\gamma \varepsilon^{2}+\mathbb{E}_{\mathbb{P}_{Z}}\left[\phi_{\gamma}(\theta ; z)\right]\right\} \\
& =\inf _{\gamma \geq\|\theta\|_{\ell_{2}}^{2}}\left\{\gamma \varepsilon^{2}+\mathbb{E}_{\mathbb{P}_{Z}}\left[\phi_{\gamma}(\theta ; z)\right]\right\} \\
& =\inf _{\gamma \geq \theta \|_{\ell_{2}}^{2}}\left\{\gamma \varepsilon^{2}+\frac{\gamma \mathbb{E}_{\mathbb{P}_{Z}}[\ell(\theta ; z)]}{\gamma-\|\theta\|_{\ell_{2}}^{2}}\right\},
\end{aligned}
$$

the infimum is achieved at

$$
\gamma^{*}=\frac{1}{\varepsilon} \sqrt{\mathbb{E}_{\mathbb{P}_{Z}}[\ell(\theta ; z)]}\|\theta\|_{\ell_{2}}+\|\theta\|_{\ell_{2}}^{2} .
$$

Finally, this gives us

$$
\operatorname{AR}(\theta)=\left(\sqrt{\mathbb{E}_{\mathbb{P}_{Z}}[\ell(\theta ; z)]}+\varepsilon\|\theta\|_{\ell_{2}}\right)^{2}
$$

A.2. Proof of Theorem 3.3

Define $\mathcal{R}(\theta):=\lambda \mathrm{SR}(\theta)+\operatorname{AR}(\theta)$. Proposition 3.2 implies $\operatorname{AR}(\theta)=\operatorname{SR}(\theta)+2 \varepsilon\|\theta\|_{\ell_{2}} \sqrt{\operatorname{SR}(\theta)}+\varepsilon^{2}\|\theta\|_{\ell_{2}}^{2}$, then by expanding adversarial risk relation $\operatorname{AR}(\theta)$ in $\mathcal{R}(\theta)$ we get

$$
\begin{equation*}
\mathcal{R}(\theta)=(1+\lambda) \operatorname{SR}(\theta)+\varepsilon^{2}\|\theta\|_{\ell_{2}}^{2}+2 \varepsilon\|\theta\|_{\ell_{2}} \sqrt{\operatorname{SR}(\theta)} . \tag{36}
\end{equation*}
$$

It is easy to see $\operatorname{SR}(\theta)=\sigma_{y}^{2}+\theta^{\top} \Sigma \theta-2 v^{\top} \theta$. Replace $\nabla_{\theta} \operatorname{SR}(\theta)=2(\Sigma \theta-v)$ in (36) to get

$$
\begin{align*}
\nabla_{\theta} \mathcal{R}(\theta) & =2(1+\lambda)(\Sigma \theta-v)+2 \varepsilon^{2} \theta \\
& +2 \varepsilon\left(\frac{\theta}{\|\theta\|_{\ell_{2}}} \sqrt{\operatorname{SR}(\theta)}+(\Sigma \theta-v) \frac{\|\theta\|_{\ell_{2}}}{\sqrt{\operatorname{SR}(\theta)}}\right) \tag{37}
\end{align*}
$$

therefore stationary points (solutions of $\nabla_{\theta} \mathcal{R}(\theta)=0$) and a critical point $\theta=0$ are candidates for global minimizers. From equation $\operatorname{SR}(\theta)=\sigma_{y}^{2}+\theta^{\top} \Sigma \theta-2 v^{\top} \theta$ and adversarial risk relation in Proposition 3.2 it is clear that for $\theta=0$ we have $\operatorname{SR}(\theta)=\operatorname{AR}(\theta)=\sigma_{y}^{2}$. Next, we focus on characterizing stationary minimizers of $\mathcal{R}(\theta)$ and their corresponding standard and adversarial risk values. If θ_{*} is a stationary point, then putting (37) to be zero yields

$$
\begin{align*}
& \left(\left(1+\lambda+\frac{\varepsilon\left\|\theta_{*}\right\|_{\ell_{2}}}{\sqrt{\operatorname{SR}\left(\theta_{*}\right)}}\right) \Sigma+\left(\varepsilon^{2}+\frac{\varepsilon \sqrt{\operatorname{SR}\left(\theta_{*}\right)}}{\left\|\theta_{*}\right\|_{\ell_{2}}}\right) I\right) \theta_{*} \\
& =\left(1+\lambda+\frac{\varepsilon\left\|\theta_{*}\right\|_{\ell_{2}}}{\sqrt{\operatorname{SR}\left(\theta_{*}\right)}}\right) v . \tag{38}
\end{align*}
$$

Introduce $A_{*}:=\frac{\sqrt{\operatorname{SR}\left(\theta_{*}\right)}}{\left\|\theta_{*}\right\|_{\ell_{2}}}$ and $\gamma_{*}:=\frac{\varepsilon^{2}+\varepsilon A_{*}}{1+\lambda+\frac{\varepsilon}{A_{*}}}$, then (38) can be simplified to $\theta_{*}=\left(\Sigma+\gamma_{*} I\right)^{-1} v$. By replacing $\theta_{*}=\left(\Sigma+\gamma_{*} I\right)^{-1} v$ in A_{*} along with equation $\operatorname{SR}(\theta)=$ $\sigma_{y}^{2}+\theta^{\top} \Sigma \theta-2 v^{\top} \theta$ we get

$$
\begin{aligned}
A_{*}= & \frac{\sqrt{\operatorname{SR}\left(\left(\Sigma+\gamma_{*} I\right)^{-1} v\right)}}{\left\|\left(\Sigma+\gamma_{*} I\right)^{-1} v\right\|_{\ell_{2}}} \\
= & \frac{1}{\left\|\left(\Sigma+\gamma_{*} I\right)^{-1} v\right\|_{\ell_{2}}}\left(\sigma_{y}^{2}+\left\|\Sigma^{1 / 2}\left(\Sigma+\gamma_{*} I\right)^{-1} v\right\|_{\ell_{2}}^{2}\right. \\
& \left.-2 v^{\top}\left(\Sigma+\gamma_{*} I\right)^{-1} v\right)^{1 / 2}
\end{aligned}
$$

therefore γ_{*} is a fixed point solution of two equations (15) and (16). Moreover, definition of A_{*} gives us $\operatorname{SR}\left(\theta_{*}\right)=$ $A_{*}^{2}\left\|\left(\Sigma+\gamma_{*} I\right)^{-1} v\right\|_{\ell_{2}}^{2}$. Next, from adversarial risk relation in Proposition A. 1 we know that $\operatorname{AR}\left(\theta_{*}\right)=$ $\left(\sqrt{\operatorname{SR}\left(\theta_{*}\right)}+\varepsilon\left\|\theta_{*}\right\|_{\ell_{2}}\right)^{2}$. This implies $\operatorname{AR}\left(\theta_{*}\right)=\left(A_{*}+\right.$ $\varepsilon)^{2}\left\|\left(\Sigma+\gamma_{*} I\right)^{-1} v\right\|_{\ell_{2}}^{2}$.

A.3. Proof of Corollary 3.4

For linear data model $y=x^{\mathrm{T}} \theta_{0}+w$ with isotropic features $\mathbb{E}\left[x x^{T}\right]=I_{d}$ and Gaussian noise $w \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ we have $\mathbb{E}[x y]=\theta_{0}$. In addition, we have $\mathbb{E}\left[y^{2}\right]=\sigma^{2}+\left\|\theta_{0}\right\|_{\ell_{2}}^{2}$. This gives us $\sigma_{y}^{2}=\sigma^{2}+\left\|\theta_{o}\right\|_{\ell_{2}}^{2}$. Use Theorem 3.3 with $v=\theta_{0}, \Sigma=I$, and $\sigma_{y}^{2}=\sigma^{2}+\left\|\theta_{0}\right\|_{\ell_{2}}^{2}$ to get Corollary 3.4.

A.4. Proof of Proposition 3.5

We start by proving the expression for standard risk. By definition we have

$$
\begin{align*}
\operatorname{SR}(\theta) & :=\mathbb{E}[\mathbb{I}(y \neq \hat{y})]=\mathbb{P}\left(y x^{\top} \theta \leq 0\right) \\
& =\mathbb{P}\left(y\left(y \mu+\Sigma^{1 / 2} u\right)^{\top} \theta \leq 0\right) \\
& =\mathbb{P}\left(\left(\mu+\Sigma^{1 / 2} u\right)^{\top} \theta \leq 0\right) \\
& =\mathbb{P}\left(\mu^{\top} \theta+\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}} \nu \leq 0\right) \\
& =\Phi\left(-\frac{\mu^{\top} \theta}{\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}}}\right) \tag{39}
\end{align*}
$$

with $u \sim \mathrm{~N}\left(0, I_{d}\right)$ and $\nu \sim \mathrm{N}(0,1)$. To prove the expression for adversarial risk we use the dual form (8). Our next lemma characterizes the function ϕ_{γ} given by (9) for the binary problem under the Gaussian mixture model.
Lemma A.1. Consider the binary classification problem under the Gaussian mixture model with 0-1 loss. Then, the robust surrogate for the loss function ϕ_{γ} given by (9) with distance $d(\cdot, \cdot)(12)$ satisfies

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{P}_{z}}\left[\phi_{\gamma}(\theta ; z)\right]=\Phi\left(\sqrt{\frac{2}{b_{\theta} \gamma}}-a\right) \\
& +\frac{b_{\theta} \gamma}{2}\left\{\left(a_{\theta}+\sqrt{\frac{2}{b_{\theta} \gamma}}\right) \varphi\left(a_{\theta}-\sqrt{\frac{2}{b_{\theta} \gamma}}\right)\right. \\
& \left.\quad-a_{\theta} \varphi\left(a_{\theta}\right)+\left(a_{\theta}^{2}+1\right)\left[\Phi\left(a_{\theta}-\sqrt{\frac{2}{b_{\theta} \gamma}}\right)-\Phi\left(a_{\theta}\right)\right]\right\}
\end{aligned}
$$

with $a_{\theta}=\frac{\mu^{\top} \theta}{\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}}}$ and $b_{\theta}=\frac{\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}}^{2}}{\|\theta\|_{\ell_{q}}^{2}}$.

Proof(Lemma A.1). By definition of the ϕ_{γ} function, for the setting of Lemma A. 1 we have

$$
\phi_{\gamma}\left(\theta ; z_{0}\right)=\sup _{x}\left\{\mathbb{I}\left(y_{0} x^{\top} \theta \leq 0\right)-\frac{\gamma}{2}\left\|x-x_{0}\right\|_{\ell_{r}}^{2}\right\}
$$

We let $v_{0}:=y_{0} x_{0}$ and $v=y_{0} x$. Given that $y_{0} \in\{ \pm 1\}$, the function ϕ_{γ} can be written as

$$
\phi_{\gamma}\left(\theta ; z_{0}\right)=\sup _{v}\left\{\mathbb{I}\left(v^{\top} \theta \leq 0\right)-\frac{\gamma}{2}\left\|v-v_{0}\right\|_{\ell_{r}}^{2}\right\} .
$$

First observe that by choosing $x=x_{0}$, we obtain $\phi_{\gamma}\left(\theta, z_{0}\right) \geq 0$. It is also clear that $\phi_{\gamma}\left(\theta, z_{0}\right) \leq 1$. We consider two cases.
Case 1: $\left(v_{0}^{\top} \theta \leq 0\right)$. By choosing $v=v_{0}$ we obtain that $\phi_{\gamma}\left(\theta ; z_{0}\right) \geq 1$ and hence $\phi_{\gamma}\left(\theta ; z_{0}\right)=1$.
Case 2: $\left(v_{0}^{\top} \theta>0\right)$. Let v_{*} be the maximizer in definition of $\phi_{\gamma}\left(\theta ; z_{0}\right)$. If $v_{*}^{\mathrm{\top}} \theta>0$, then we have

$$
\begin{aligned}
\phi_{\gamma}\left(\theta ; z_{0}\right) & =\mathbb{I}\left(v_{*}^{\top} \theta \leq 0\right)-\frac{\gamma}{2}\left\|v_{*}-v_{0}\right\|_{\ell_{r}}^{2} \\
& =-\frac{\gamma}{2}\left\|v_{*}-v_{0}\right\|_{\ell_{r}}^{2} \leq 0 .
\end{aligned}
$$

Therefore, $\phi_{\gamma}\left(\theta ; z_{0}\right)=0$ in this case. We next focus on the case that $v_{*}^{\top} \theta \leq 0$. It is easy to see that in this case, v_{*} is the solution of the following optimization:

$$
\begin{align*}
& \min _{v \in \mathbb{R}^{d}}\left\|v-v_{0}\right\|_{\ell_{r}} \\
& \text { subject to } \quad v^{\mathrm{T}} \theta \leq 0 \tag{40}
\end{align*}
$$

Given that $v_{0}^{\top} \theta>0$ by assumption, using the Holder inequality it is straightforward to see that the optimal value is given by $\left\|v-v_{0}\right\|_{\ell_{r}}=\frac{v_{0}^{\top} \theta}{\|\theta\|_{\ell_{q}}}$, with $\frac{1}{r}+\frac{1}{q}=1$.
The function ϕ_{γ} is then given by $\phi_{\gamma}\left(\theta ; z_{0}\right)=1-$ $\frac{\gamma}{2}\left(\frac{v_{0}^{\top} \theta}{\|\theta\|_{\ell_{q}}}\right)^{2}$. Putting the two conditions $v_{*}^{\top} \theta \leq 0$ and $v_{0}^{\top} \theta>0$ together, we obtain

$$
\phi_{\gamma}\left(\theta ; z_{0}\right)=\max \left\{1-\frac{\gamma}{2}\left(\frac{v_{0}^{\top} \theta}{\|\theta\|_{\ell_{q}}}\right)^{2}, 0\right\}
$$

in this case.
Combining case 1 and case 2 we arrive at

$$
\begin{align*}
\phi_{\gamma}\left(\theta ; z_{0}\right) & =\mathbb{I}\left(v_{0}^{\top} \theta \leq 0\right) \tag{41}\\
& +\max \left(1-\frac{\gamma}{2}\left(\frac{v_{0}^{\top} \theta}{\|\theta\|_{\ell_{q}}}\right)^{2}, 0\right) \mathbb{I}\left(v_{0}^{\top} \theta>0\right) . \tag{42}
\end{align*}
$$

For $\left(x_{0}, y_{0}\right)$ generated according to the Gaussian mixture model, we have $v_{0}^{\top} \theta=y_{0} x_{0}^{\top} \theta=\mu^{\top} \theta+\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}} \nu$ with $\nu \sim N(0,1)$. Hence,

$$
\left|\frac{v_{0}^{\mathrm{T}} \theta}{\|\theta\|_{\ell_{q}}}\right|=\left|\frac{\mu^{\mathrm{T}} \theta}{\|\theta\|_{\ell_{q}}}+\frac{\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}}}{\|\theta\|_{\ell_{q}}} \nu\right|
$$

Letting $a_{\theta}:=\frac{\mu^{\top} \theta}{\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}}}$, (41) can be written as

$$
\begin{align*}
\phi_{\gamma}\left(\theta ; z_{0}\right) & =\mathbb{I}\left(\nu \leq-a_{\theta}\right) \\
& +\max \left(1-\frac{\gamma}{2} \frac{\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}}^{2}}{\|\theta\|_{\ell_{q}}^{2}}\left(\nu+a_{\theta}\right)^{2}, 0\right) \cdot \mathbb{I}\left(\nu>-a_{\theta}\right) \\
& =\mathbb{I}\left(\nu \leq-a_{\theta}\right) \\
& +\left(1-\frac{b_{\theta} \gamma}{2}\left(\nu+a_{\theta}\right)^{2}\right) \mathbb{I}\left(\sqrt{\frac{2}{b_{\theta} \gamma}}-a_{\theta}>\nu>-a_{\theta}\right), \tag{43}
\end{align*}
$$

where $b_{\theta}:=\frac{\left\|\Sigma^{1 / 2} \theta\right\|_{\ell_{2}}^{2}}{\|\theta\|_{\ell_{q}}^{2}}$. By simple algebraic calculation, we get

$$
\begin{align*}
& \mathbb{E}_{\mathbb{P}_{Z}}\left[\phi_{\gamma}(\theta ; z)\right]=\Phi\left(\sqrt{\frac{2}{b_{\theta} \gamma}}-a_{\theta}\right) \begin{array}{l}
\text { ation of loss } \ell \text { and derive the first-order approximation for } \\
\text { the Wasserstein adversarial risk. Denoting by } u_{j} \in \mathbb{R}^{d} \text { be } \\
\text { the } j \text { th row of matrix } U \text {, for } j=1,2, \ldots, N, \text { we have }
\end{array} \\
&+\frac{b_{\theta} \gamma}{2}\left\{\left(a_{\theta}+\sqrt{\frac{2}{b_{\theta} \gamma}}\right) \varphi\left(a_{\theta}-\sqrt{\frac{2}{b_{\theta} \gamma}}\right)-a_{\theta} \varphi\left(a_{\theta}\right)\right.
\end{aligned} \quad \begin{aligned}
& \left.+\left(a_{\theta}^{2}+1\right)\left[\Phi\left(a_{\theta}-\sqrt{\frac{2}{b_{\theta} \gamma}}\right)-\Phi\left(a_{\theta}\right)\right]\right\} . \\
& \quad=2\left(\theta_{x}^{\top} \sigma(\theta ; Z)=\nabla_{x}\left(y-\theta^{\top} \sigma(U x)\right)^{2}\right.
\end{align*}
$$

and therefore the maximum of $\varphi(t-a)-\varphi(a)+$ $a(\Phi(t-a)-\Phi(a))$ is achieved at $t=2 a$. As a result $\frac{d \mathcal{R}(a)}{d a} \leq-\lambda \varphi(-a)<0$, which implies that the objective (25) is decreasing in a. Since $|a| \leq\|\mu\|_{\ell_{2}}$, its infimum is achieved at $a=\|\mu\|_{\ell_{2}}$.
Equations (26) follows from (24) by substituting for $a_{\theta}=$ $\|\mu\|_{\ell_{2}}$ and $b_{\theta}=1$.

A.6. Proof of Corollary 3.8

Recall the distance $d(\cdot, \cdot)$ on the space $\mathcal{Z}=\{z=$ $\left.(x, y), x \in \mathbb{R}^{d}, y \in \mathbb{R}\right\}$ given by $d(z, \tilde{z})=\|x-\tilde{x}\|_{2}+$ $\infty \cdot \mathbb{I}(y-\tilde{y})$. This metric is induced from norm $\|z\|=$ $\|x\|_{\ell_{2}}+\infty \cdot \mathbb{I}(y=0)$ with corresponding conjugate norm $\|z\|_{*}=\|x\|_{\ell_{2}}$. We will use Proposition 2.3 to find the vari-

The claim of Proposition 3.5 follows readily from Lemma A. 1 and the fact that strong duality holds for the dual problem (8), where we use the change of variable $\gamma \mapsto \frac{\gamma}{b_{\theta}}$.

A.5. Proof of Remark 3.7

Recall the objective (25) and define

$$
\begin{aligned}
\mathcal{R}(a):= & \lambda \Phi(-a)+\gamma \varepsilon^{2}+\Phi\left(\sqrt{\frac{2}{\gamma}}-a\right) \\
& +\frac{\gamma}{2}\left\{\left(a+\sqrt{\frac{2}{\gamma}}\right) \varphi\left(a-\sqrt{\frac{2}{\gamma}}\right)-a \varphi(a)\right. \\
& \left.+\left(a^{2}+1\right)\left(\Phi\left(a-\sqrt{\frac{2}{\gamma}}\right)-\Phi(a)\right)\right\}
\end{aligned}
$$

Then, we get

$$
\begin{align*}
\frac{d \mathcal{R}(a)}{d a}= & -\lambda \varphi(-a) \\
& +\gamma\left\{\varphi\left(\sqrt{\frac{2}{\gamma}}-a\right)-\varphi(a)\right. \\
& \left.+a\left(\Phi\left(\sqrt{\frac{2}{\gamma}}-a\right)-\Phi(a)\right)\right\} \tag{44}
\end{align*}
$$

Note that

$$
\begin{align*}
& \frac{\partial}{\partial t}(\varphi(t-a)-\varphi(a)+a(\Phi(t-a)-\Phi(a))) \\
& =\varphi(t-a)(2 a-t) \tag{45}
\end{align*}
$$

As we work with Wasserstein of order $p=2$, we have conjugate order $q=2$. Therefore, Proposition 2.3 gives us $V_{P_{Z}, q}(\ell)=\left(\mathbb{E}\left[\left\|\nabla_{z} \ell(\theta ; Z)\right\|_{*}^{2}\right]\right)^{1 / 2}$. By using (46) we get
$V_{P_{Z}, q}(\ell)=2\left(\mathbb{E}\left[\left(\theta^{\top} \sigma(U x)-y\right)^{2}\left\|U^{\top} \operatorname{diag}\left(\sigma^{\prime}(U x)\right) \theta\right\|_{\ell_{2}}^{2}\right]\right)^{1 / 2}$.
Finally, relation $\operatorname{AR}(\theta)=\operatorname{SR}(\theta)+\varepsilon V_{P_{Z}, q}(\ell)+O\left(\varepsilon^{2}\right)$ from Proposition 2.3 completes the proof. We just need to verify that the necessary condition in Proposition 2.3 holds for the loss $\ell(\theta ; z)=\left(y-\theta^{\top} \sigma(W x)\right)^{2}$. By the setting of the problem, we have $x \in \mathbb{S}^{d-1}(\sqrt{d})$ and $u_{j} \in \mathbb{S}^{d-1}(1)$. Therefore $\|x\|_{\ell_{2}} \leq \sqrt{d}$ and $\|U\|_{\mathrm{op}} \leq \sqrt{\max (N, d)}$.
In the following lemma we show that the solution θ_{λ} to (14) is bounded as λ varies in $[0, \infty)$.
Lemma A.2. Under the setting of Corollary 3.8, and for θ_{λ} given by (14), there exist constants c_{0} and c_{1}, independent of λ, such that with probability at least $1-e^{-c_{0} d}$ we have $\left\|\theta_{\lambda}\right\|_{\ell_{2}} \leq c_{1}$.
Using Lemma A. 2 we can restrict ourselves to the ball of ℓ_{2} radius c_{1}. More specifically, we can define a 'surrogate' loss for (14) where θ is constrained to be in ball of radius c_{1}, without changing its solution. We can then apply Proposition 2.3 to establish a relation between SR and AR. In the following part we show that the conditions of Proposition 2.3 are satisfied.

We adopt the shorthands $D=\operatorname{diag}\left(\sigma^{\prime}(U x)\right), \tilde{D}=$
$\operatorname{diag}\left(\sigma^{\prime}(U \tilde{x})\right), s=\sigma(U x)$, and $\tilde{s}=\sigma(U \tilde{x})$, and write

$$
\begin{aligned}
& \frac{1}{2}\left\|\nabla_{z} \ell(\theta ; z)-\nabla_{z} \ell(\theta ; \tilde{z})\right\|_{*} \\
& =\frac{1}{2}\left\|\nabla_{x} \ell(\theta ; z)-\nabla_{x} \ell(\theta ; \tilde{z})\right\|_{\ell_{2}} \\
& \stackrel{(a)}{=}\left\|\left(\theta^{\top} s-y\right) U^{\top} D \theta-\left(\theta^{\top} \tilde{s}-\tilde{y}\right) U^{\top} \tilde{D} \theta\right\|_{\ell_{2}} \\
& \stackrel{(b)}{\leq}\left\|\theta^{\top} s U^{\top}(D-\tilde{D}) \theta\right\|_{\ell_{2}}+\left\|\theta^{\top}(s-\tilde{s}) U^{\top} \tilde{D} \theta\right\|_{\ell_{2}} \\
& +\left\|y U^{\top}(D-\tilde{D}) \theta\right\|_{\ell_{2}}+\left\|(y-\tilde{y}) U^{\top} \tilde{D} \theta\right\|_{\ell_{2}} \\
& \stackrel{(c)}{\leq} N c_{1}^{2}+\sqrt{N} c_{1}^{2}\|s-\tilde{s}\|_{\ell_{2}}+\sqrt{N} c_{1}^{2}+\sqrt{N} c_{1}|y-\tilde{y}| \\
& \stackrel{(d)}{\leq}(N+\sqrt{N}) c_{1}^{2}+N c_{1}^{2}\|x-\tilde{x}\|_{\ell_{2}}+\sqrt{N} c_{1}|y-\tilde{y}| \\
& \leq(N+\sqrt{N}) c_{1}^{2}+N c_{1}^{2}\left(\|x-\tilde{x}\|_{\ell_{2}}+\infty \mathbb{I}_{\{y \neq \tilde{y}\}}\right) \\
& (e) \\
& \leq M+L\|z-\tilde{z}\|,
\end{aligned}
$$

where (a) comes from (46), in (b) we used triangle inequality, (c) is a direct result of Cauchy inequality and the fact that $\sigma(u) \leq u,(d)$ comes from Lipschitz continuity of σ, and in (e) we used $C=(N+\sqrt{N}) c_{1}^{2}$ and $L=N c_{1}^{2}$. Therefore the necessary condition in Proposition 2.3 is satisfied.

A.6.1. Proof of Lemma A. 2

By comparing the objective value (14) at θ_{λ} and 0 and using the optimality of θ_{λ} we get

$$
\left.\left.\left.\begin{array}{l}
(1+\lambda) \operatorname{SR}\left(\theta_{\lambda}\right) \\
\leq(1+\lambda) \operatorname{SR}\left(\theta_{\lambda}\right) \\
+2 \varepsilon \mathbb{E}_{x}[
\end{array}\right]\left(f_{d}(x)-\theta_{\lambda}^{\top} \sigma(U x)\right)^{2}+\sigma^{2}\right]\right) .
$$

Therefore by invoking (31) we get

$$
\begin{equation*}
\mathbb{E}_{x}\left[\left(f_{d}(x)-\theta_{\lambda}^{\top} \sigma(U x)\right)^{2}\right] \leq \mathbb{E}_{x}\left[f_{d}(x)^{2}\right] \tag{47}
\end{equation*}
$$

Using the inequality $(a-b)^{2} \geq \frac{a^{2}}{2}-b^{2}$, we get

$$
\begin{equation*}
\mathbb{E}\left[\left(\theta_{\lambda}^{\top} \sigma(U x)\right)^{2}\right] \leq 4 \mathbb{E}_{x}\left[f_{d}(x)^{2}\right]<c_{2} \tag{48}
\end{equation*}
$$

with probability at least $1-e^{-c_{3} d}$ for some constants $c_{2}, c_{3}>0$. We next lower bound the eigenvalues of $\mathbb{E}\left[\sigma(U x) \sigma(U x)^{\mathrm{T}}\right]$ from which we can upper bound $\left\|\theta_{\lambda}\right\|_{\ell_{2}}$.
Define the dual activation of σ as

$$
\tilde{\sigma}(\rho)=\mathbb{E}_{(v, w) \sim \mathrm{N}_{\rho}}[\sigma(v) \sigma(w)]
$$

where N_{ρ} denotes the two dimensional Gaussian with mean zero and covariance $\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)$. With this definition, we have
$\mathbb{E}\left[\left(\sigma(U x) \sigma(U x)^{\mathrm{T}}\right)_{i j}\right]=\tilde{\sigma}\left(u_{i}^{\top} u_{j}\right)$ for $i, j=1, \ldots, N$. Let $\left\{a_{r}\right\}_{r=0}^{\infty}$ denote the Hermite coefficients defined by

$$
a_{r}:=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sigma(g) h_{r}(g) e^{-\frac{g^{2}}{2}} \mathrm{~d} g
$$

where $h_{r}(g)$ is the normalized Hermite polynomial defined by

$$
h_{r}(x):=\frac{1}{\sqrt{r!}}(-1)^{r} e^{\frac{x^{2}}{2}} \frac{\mathrm{~d}^{r}}{\mathrm{~d} x^{r}} e^{-\frac{x^{2}}{2}} .
$$

Using the properties of normalized Hermite polynomials we have
$\tilde{\sigma}(\rho)=\mathbb{E}_{(v, w) \sim \mathrm{N}_{\rho}}\left[\left(\sum_{r=0}^{\infty} a_{r} h_{r}(v)\right)\left(\sum_{\tilde{r}=0}^{\infty} a_{\tilde{r}} h_{\tilde{r}}(u)\right)\right]=\sum_{r=0}^{\infty} a_{r}^{2} \rho^{r}$.

Writing in matrix form we obtain

$$
\begin{equation*}
\mathbb{E}\left[\left(\sigma(U x) \sigma(U x)^{\top}\right)\right]=\tilde{\sigma}\left(U U^{\top}\right)=\sum_{r=0}^{\infty} a_{r}^{2}\left(U U^{\top}\right)^{\odot r} \tag{50}
\end{equation*}
$$

where for a matrix $A^{\odot r}=A \odot\left(A^{\odot(r-1)}\right)$ with \odot denoting the Hadamard product (entrywise product).

We next use the identity $\left(A A^{\boldsymbol{\top}}\right) \odot\left(B B^{\boldsymbol{\top}}\right)=(A * B)(A *$ $B)^{\top}$, with $*$ indicating the Khatri-Rao product. By using this identity and applying induction on r it is straightforward to get the following relation for any matrix A :

$$
\begin{equation*}
\left(A A^{\top}\right)^{\odot r}=\left(A^{* r}\right)\left(A^{* r}\right)^{\top} \tag{51}
\end{equation*}
$$

with $A^{* r}=A *\left(A^{*(r-1)}\right)$. By using the above identity in Equation (50) we obtain

$$
\begin{aligned}
\mathbb{E}\left[\left(\sigma(U x) \sigma(U x)^{\top}\right)\right] & =\sum_{r=0}^{\infty} a_{r}^{2}\left(U U^{\top}\right)^{\odot r} \\
& =\sum_{r=0}^{\infty}\left(a_{r} U^{* r}\right)\left(a_{r} U^{* r}\right)^{\top} \\
& \succeq a_{r}^{2}\left(U^{* r}\right)\left(U^{* r}\right)^{\top}
\end{aligned}
$$

for any $r \geq 0$. Using this bound with $r=2$ and the fact that $a_{2}=\frac{1}{2 \sqrt{\pi}}$ for ReLU activation, we get

$$
\begin{equation*}
\mathbb{E}\left[\left(\sigma(U x) \sigma(U x)^{\top}\right)\right] \succeq \frac{1}{4 \pi}(U * U) \geq c_{4} \tag{52}
\end{equation*}
$$

where the last step holds with probability at least $1-e^{-c_{5} d}$ for some constants c_{4} and c_{5} using the result of (?)Corollary 7.5]soltanolkotabi2018theoretical.

Combining Equations (48) and (52) gives us $\left\|\theta_{\lambda}\right\|_{\ell_{2}} \leq$ $\sqrt{c_{2} / c_{4}}$, which completes the proof.

