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Abstract
We propose UCBMQ, Upper Confidence Bound
Momentum Q-learning, a new algorithm for rein-
forcement learning in tabular and possibly stage-
dependent, episodic Markov decision process.
UCBMQ is based on Q-learning where we add a
momentum term and rely on the principle of op-
timism in face of uncertainty to deal with explo-
ration. Our new technical ingredient of UCBMQ
is the use of momentum to correct the bias that
Q-learning suffers while, at the same time, limit-
ing the impact it has on the the second-order term
of the regret. For UCBMQ, we are able to guaran-
tee a regret of at most Õ(

√
H3SAT + H4SA)

where H is the length of an episode, S the
number of states, A the number of actions, T
the number of episodes and ignoring terms in
poly log(SAHT ). Notably, UCBMQ is the first
algorithm that simultaneously matches the lower
bound of Ω(

√
H3SAT ) for large enough T and

has a second-order term (with respect to the hori-
zon T ) that scales only linearly with the number
of states S.

1. Introduction
In reinforcement learning (RL), an agent interacts with an
environment with the objective of maximizing the sum of
collected rewards (Sutton & Barto, 1998). We model the
environment as an unknown episodic tabular Markov Deci-
sion Process (MDP) with S states, A actions and episodes
of length H . After T episodes, we measure the perfor-
mance of the agent by its cumulative regret which is the
difference between the total reward collected by an optimal
policy and the total reward collected by the agent during the
learning. In order to minimize the regret the agent needs to
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balance the exploration of the environment and exploitation
of the current knowledge to act optimally.

In particular, we study the non-stationary setting where re-
wards and transitions can change within an episode, and for
which Jin et al. (2018) and Domingues et al. (2021b) pro-
vide a problem-independent lower bound on the regret of
order Ω(

√
H3SAT ) (see also Azar et al. 2017 for station-

ary transitions).

Following the previous work on the infinite-horizon setting
(Jaksch et al., 2010; Fruit et al., 2018; Talebi & Maillard,
2018), a first line of research on episodic MDPs (Azar et al.,
2017; Dann et al., 2017; Zanette & Brunskill, 2019) inves-
tigate model-based algorithms. The idea is to perform an
optimistic value-iteration with an estimated model (i.e. es-
timated transitions here), and act greedily with respect to
the obtained upper bounds on the optimal Q-values.

In particular, Azar et al. (2017) provide an upper bound
on the regret of order Õ(

√
H3SAT + H3S2A). This

bound matches the lower bound for T ≥ H3S3A, where
the first-order term,

√
H3SAT , dominates. However, for

T ≤ H3S3A, which is an important regime, the bound is
affected by the second order term that scales in S2 and can
be harmful. Indeed, when the number of states is very large
(e.g., for continuous states MDPs after discretization), the
second order term can dominate the regret bound, which in
such case leads to a bound with a potentially sub-optimal
rate (see Domingues et al. 2020; Sinclair et al. 2020). Fur-
thermore, in order to obtain a non-trivial upper bound on
the regret (i.e., a bound smaller than HT ), at least H3S2A
samples are needed. That means we roughly need H2S
samples per state-action pair while we rather expect to have
a meaningful bound with only poly(H) samples per state-
action pair. In the current analyses, the S2 factor in the
second-order term comes from the fact that, for model-
based algorithms, the estimated transitions and the upper
confidence bounds on the optimal value functions are cor-
related.1 A union bound over a covering of all possible
value functions with a cardinal that scales exponentially

1It is the same reason why there is an extra factor S in the first
order term of the bound of UCRL algorithm by Jaksch et al. (2010).
This factor is "pushed" to the second-order term by the improved
analysis of Azar et al. (2017).
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Algorithm Upper bound (non-stationary case)

UCBVI (Azar et al., 2017) Õ(
√
H3SAT +H3S2A)

UBEV (Dann et al., 2017) Õ(
√
H4SAT +H2S3A2)

EULER (Zanette & Brunskill, 2019) Õ
(√

H3SAT +H3S3/2A(
√
S +
√
H)
)

OptQL (Jin et al., 2018) Õ(
√
H4SAT +H9/2S3/2A3/2)

UCB-Advantage (Zhang et al., 2020b) Õ(
√
H3SAT +H33/4S2A3/2T 1/4)

UCBMQ (this paper) Õ(
√
H3SAT +H4SA)

Table 1. Regret upper bound under unknown episodic, non-stationary, tabular MDPs.

with the number of states S is (implicitly) used to break the
correlation. A similar remark also holds for other model-
based algorithms like EULER (see Table 1 for details).

A second line of work initiated by Jin et al. (2018) con-
sider model-free algorithms based on Q-learning (Watkins
& Dayan, 1992). Interestingly, such an approach does not
suffer from the same issue as model-based algorithms. In-
deed, the Q-values are estimated in an online fashion (see
Section 3.1), and there is no correlation issue anymore as
for model-based algorithms. On the other hand, the current
estimate of the optimal Q-value for Q-learning-based al-
gorithms relies on the target computed with past estimates
of the same quantity (possibly inaccurate), therefore they
suffer from a larger bias (see Section 3.1).

In particular, Jin et al. (2018) propose to use a more aggres-
sive learning rate to mitigate that bias by forgetting old esti-
mates, but at the price of increasing the variance. It leads to
a regret bound of order Õ(

√
H4SAT ) with an extra

√
H in

the first-order term with respect to the lower bound.2 Build-
ing on variance reduction techniques, Sidford et al. (2018b)
and Zhang et al. (2020b) manage to avoid this extra depen-
dency on the horizon. The idea is to first provide a rough
estimate of the optimal value, namely the value reference
function, and then leverage the low variance of a reference-
advantage decomposition of the optimal Q-value to com-
pensate the forgotten past samples. However, in their cur-
rent analyses, the initial phase of learning the reference
value functions degrades the second order term and brings
back a S2 factor (see Table 1).

In this paper we rather follow another approach. Follow-
ing the work of Azar et al. (2011) (see also Weng et al.
2020), we propose UCBMQ, which adds a momentum term
to the targets in the Q-value updates so as to correct the
bias of Q-learning. However, contrary to the generative set-
ting considered by Azar et al. (2011) where all state-action

2Specifically, with Hoeffding-type bonuses they have an extra
H and second-order term of order H2SA; with Bernstein type
bonuses, the discrepancy is only of a factor

√
H , but the second-

order term is no longer linear in S, see Table 1.

pairs are sampled at each update of the Q-value, we have
to deal with two additional challenges in our setting. First,
we need to handle the exploration and we do it by introduc-
ing optimism. Second, in the absence of the oracle we do
not see all state-action pairs at each "episode", but only the
ones encountered along the trajectory. Consequently, each
state-action pair learns at its own pace.

To address the above two challenges, we build a value func-
tion for each state-action pair that represents the bias of
this particular pair, and use it to build a momentum term
that is able to correct the bias of previous estimates on the
Q-value. Every new sample is thus used to refine the esti-
mate on the Q-value via the target and correct the bias of
the past targets via the momentum term at the same time.
Moreover, with the careful use of a Freedman-Bernstein-
type inequality we manage to obtain tight dependence on
the horizon without degrading the second-order term.

Using the above techniques, we prove a regret bound
of order Õ(

√
H3SAT + H4SA) for UCBMQ. This upper

bound matches the lower bound up to poly log factors in
S,A,H, T for T ≥ H5SA. This rate improves over the
one of previous model-free algorithms and, for S ≥ H , the
one of previous model-based algorithms. In particular, we
provide an algorithm that enjoys a second-order term only
in S instead of S2. Our results make a step towards resolv-
ing an open question that was hinted by Azar et al. (2011)
and also recently explicitly raised by Zhang et al. (2020a).
Finally, in Section 4, we provide numerical simulations on
a grid-world environment to illustrate the benefits of not
forgetting the targets in UCBMQ.

We highlight our main contributions:

• We carefully design a momentum term Q-learning in
the episodic setting and analyse its benefits for the re-
gret guarantees.

• We propose UCBMQ, with a regret bound of order
Õ(
√
H3SAT+H4SA). It is the first algorithm, up to

our knowledge, that matches the problem-independent
lower bound Ω(

√
H3SAT ) up to poly log terms and
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has a second-order term that is linear in S.

2. Setting
In this paper, we consider a tabular episodic MDP(
S,A, H, {ph}h∈[H], {rh}h∈[H]

)
, with S the set of states,

A the set of actions, H the number of steps in one episode,
ph(s′|s, a) is the probability transition from state s to
state s′ by taking the action a at step h, and rh(s, a) ∈ [0, 1]
is the bounded deterministic reward received after taking
the action a in state s at step h. Note that we consider the
general case of rewards and transition functions that are
possibly non-stationary, i.e., that may change over the de-
cision steps h ∈ [H]3 within an episode. We denote by S
and A the number of states and actions, respectively.

Policy & value functions. A deterministic policy π is a
collection of functions πh : S → A for all h ∈ [H],
where every πh maps each state to a single action. The
value functions of π, denoted by V πh , as well as the optimal
value functions, denoted by V ?h are given respectively by
the Bellman equations (Puterman, 1994):

Qπh(s, a) = rh(s, a) + phV
π
h+1(s, a) V πh (s) = πhQ

π
h(s) .

By convention, V πH+1 , 0. Furthermore, phf(s, a) ,
Es′∼ph(·|s,a)[f(s′)] denotes the expectation operator with
respect to the transition probabilities ph and (πhg)(s) ,
πhg(s) , g(s, πh(s)) denotes the composition with the
policy π at step h. An optimal policy π? is such that
π? ∈ arg maxπ V

π
1 (s1). The optimal Q-value and value

functions are the ones of an optimal policy. Precisely we
have V ?h = V π

?

h and Q?h = Qπ
?

h for all h.

Learning problem. The agent, to which the transitions
are unknown, interacts with the environment during T
episodes of length H , with a fixed initial state s1.4 Be-
fore each episode t the agent selects a policy πt based only
on the past observed transitions up to episode t − 1. At
each step h ∈ [H] of episode t, the agent observes a state
sth ∈ S, takes an action πth(sth) = ath ∈ A and makes a
transition to a new state sth+1 according to the probability
distribution ph(sth, a

t
h) and receives a deterministic reward

rh(sth, a
t
h).

Regret. We measure the agent performance through re-
gret, which is the difference between what it could obtain
(in expectation) by acting optimally and what it really gets,

RT ,
T∑
t=1

V ?1 (s1)− V πt

1 (s1) .

3For any integer n ∈ N?, we define [n] := {1, . . . , n}.
4As explained by Fiechter (1994) and Kaufmann et al. (2021),

if the first state is sampled randomly as s1 ∼ p0, we can simply
add an artificial first state s0 such that for any action a, the transi-
tion probability is defined as the distribution p0(s0, a) , p0.

Notation. We denote the number of visits of state-action
pair (s, a) by nth(s, a) =

∑t
k=1 χ

t
h(s, a) where χth(s, a) is

the indicator function χth(s, a) , 1{(sth,a
t
h)=(s,a)}. We also

use the indicator function χth(s) , 1{sth=s} to represent
the event where state s is visited at step h in episode t. We
denote by pth the Dirac distribution at (sth+1), i.e., for all
functions f defined on S we have (pthf)(s, a) = f(sth+1).
In particular, this distribution does not depend on (s, a).

3. UCBMQ algorithm
Before presenting the algorithm we provide an intuition of
how it works.

3.1. Intuition

If the agent knows the transition probabilities, it could per-
form real-time Q-value iteration and obtain a bounded re-
gret (see Efroni et al. 2019). In this case upper bounds on
the Q-value functions are updated as follows5

Q
n

h(s, a) = (rh + phV
n−1
h )(s, a) , (1)

where upper bounds on the optimal value functions are
defined by V

n

h(s) = maxaQ
n

h(s, a) and initialized to
V

0

h(s) = H . When the model is unknown we can ap-
proximate it by averaging successive sample updates as in
Q-learning (Watkins & Dayan, 1992),

Qnh(s, a) = αn(rh + pnhV
n−1
h )(s, a) +

(
1− αn

)
Qn−1
h (s, a) .

(2)

A usual choice for the learning rate is αn = 1/n instead of
αn = 1 used for real-time Q-value iteration above. Unfold-
ing the previous inequality and using Azuma–Hoeffding in-
equality to move for the sample expectation pih to the true
expectation ph, we have with high probability

Qnh ≈ rh(s, a) +
1

n

n∑
i=1

pihV
i−1
h+1(s, a)

≈ rh(s, a) + ph

(
1

n

n∑
i=1

V
i−1
h+1

)
︸ ︷︷ ︸

:=V n
h,s,a bias-value function

(s, a)±
√
H2

n︸ ︷︷ ︸
variance term

, (3)

where the bias-value function of state-action (s, a) encodes
the bias of the estimate Qnh with respect to the randomness
of the (pih)i≥1. Thus choosing (Hoeffding-type) bonuses of
order βn(s, a) ≈

√
H2/n, we can build upper bounds on

the optimal Q-value and the value functions

Q
n

h(s, a) = Qnh(s, a) + βnh (s, a), V
n
h(s) = max

a∈A
Q
n

h(s, a) .

5We index the quantities by n in this section where n is the
number of times the state-action pair (s, a) is visited. In particular
this is different from the time t since, in our setting, all the state-
action pair are not visited at each episode. See Section 3.2 for
precise notation.
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However, the bias term in (3) is too large because of the
old (and potentially inaccurate) upper bound V

i

h+1 that ap-
pears in the bias-value function V nh,s,a. Indeed it is not clear
how to prove a bound that is not exponential in the horizon
H in this case (see Jin et al. 2018). Note that on contrary
when the model is known, i.e. using (1), we have a smaller
V nh,s,a = V

n−1
h+1 bias provided that the (V

i

h+1)i≥1 are non-
increasing.

To overcome this issue, Jin et al. (2018) propose with
the OptQL algorithm6 to choose a learning rate of order
αn ≈ H/n to keep only the recent upper-bounds V

i

h+1 in
the bias-value value function. Indeed, proceeding as above,
we have

Qnh(s, a) ≈ rh(s, a) +
H

n

n∑
i≥n−H/n

pihV
i−1
h+1(s, a)

≈ rh(s, a) + ph

H
n

n∑
i≥n−n/H

V
i−1
h+1


︸ ︷︷ ︸
:=V n

h,s,abias-value function

(s, a)±
√
H3

n︸ ︷︷ ︸
variance term

. (4)

Because of the aggressive learning rate of order H/n there
are only n/H samples in the sum of (4) leading to a high
variance. Thus we need to add an extra H factor in the
bonus which leads to the sub-optimal regret bound of order
Õ(
√
H5SAT ). One workaround for this issue is to learn

a reference value function (Zhang et al., 2020b), but it is
not clear how to obtain a second order term that depends
linearly on the size of the state space with this approach.

We consider another approach in this paper. Following the
work by Azar et al. (2011), we add a momentum term in the
update of the Q-value that corrects the bias at the price of
a small vanishing increase of the variance. Precisely for a
momentum rate γn, we now consider the following update,

Qnh(s, a) = αn(rh + pnhV
n−1
h+1)(s, a) + (1− αn)Qn−1

h (s, a)

+ γnp
n
h(V

n−1
h+1 − V n−1

h,s,a)(s, a) ,

where we call V n−1h,s,a the bias-value function of state-action
(s, a) defined by

V nh,s,a(s′) = (αn + γn)V
n−1
h+1(s′) + (1− αn − γn)V n−1

h,s,a(s′) .

Note that there is a priori a different bias-value function
for each state-action pair. In particular if we force the se-
quence of upper bounds on the value functions to be non-
increasing, it holds that V nh,s,a − V

n

h+1 ≥ 0. We choose
αn ≈ 1/n to not forget samples as in (4). The momentum
rate is γn ≈ H/n to correct the bias that will appear oth-
erwise as in (3). As explained by Azar et al. (2011), this
aggressive momentum will be compensated by the fact that

6 With Hoeffding-type bonuses.

V
n−1
h+1 − V n−1h,s,a is small when the two quantities converge

toward V ?h+1. Thanks to these choices, the bias-value func-
tion is the same as in (4),

V nh,s,a(s′) ≈ H + 1

n
(V n−1h,s,a − V

n−1
h )(s′) + V

n−1
h (s′)

≈ H

n

n∑
i≥n−n/H

V
i−1
h+1(s′) .

Now we explain why V nh,s,a is named bias-value function.
We have, with high probability,

Qnh(s, a) ≈ rh(s, a)+
1

n

n∑
i=1

pih

(
(H + 1)V

i−1
h+1 − V i−1

s,a,h

)
(s, a)

≈ rh(s, a) + ph

H
n

n∑
i≥n−n/H

V
i−1
h


︸ ︷︷ ︸
≈V n

h,s,a
bias-value function

(s, a)±
√
H2

n︸ ︷︷ ︸
variance term

±

√√√√H3

n

n∑
i=1

ph(V n−1
h,s,a − V

n−1
h )(s, a)

1

n︸ ︷︷ ︸
momentum variance term

.

Note that, we use a negative momentum since it allows to
put more weight on the recent targets. We thus manage
to get the advantages of the two learning rates: use all the
samples for small variance and get a bias-value function
that only relies on the recent upper-bounds on the optimal
value function. This comes only at the cost of an additional
momentum variance term that will only influence the de-
pendence onH of the second order term in the regret. Note
that here, for sake of simplicity, we used Azuma-Hoeffding
inequality which leads to a sub-optimal dependence on
the horizon. That is why in the sequel we rather use a
Freedman-Bernstein-type inequality (and adapted bonuses)
to obtain the optimal dependence on the horizon in the first
order term.

Indeed OptQL by Jin et al. (2018) with Hoeffding-type
bonuses has a regret bound of order

√
H5SAT with an ex-

tra factor H with respect to the lower bound of
√
H3SAT

(in particular without second order term in S2). Using
Bernstein-type bonuses allows to waive a

√
H factor in the

first-order term. But there is still an extra
√
H because

of the aggressive learning rate of H/n used to deal with
the bias issue as described above7. Note that doing so also
introduces a second-order term which is not linear in the
number of states S, see Table 1. This is because in their
analysis they need a coarse upper bound on V

t

h − V ?h (see
Lemma C.7 in the proof of Lemma C.3 then C.6 by Jin et al.
(2018), such a coarse upper bound is also used by Azar
et al. (2017)) to link the empirical variance to the true one.
The key point in our analysis is to avoid such an intermedi-
ate coarse upper bound which leads inexorably to an extra

7Which will be removed because of the momentum in UCBMQ.
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factor S. But instead postpone bounding such quantity to
the next step error (we rather control V

t

h − V π
t+1

h ), see
Lemma 9 and Lemma 10. Indeed, we control (pth− ph)V h
instead of (pth−ph)V ?h which allows us avoid upper bound-
ing V

t

h − V ?h to build the upper confidence bound (see
Lemma 7 and 8). But we do not know if it is impossible
to build an upper confidence bound (that does not depends
on S) by only controlling (pth − ph)V ?h .

3.2. Algorithm

We initialize the upper bounds on the optimal value func-
tions by V

0

h(s) = H for all (s, h) ∈ S × [H]. We fix a
learning rate αth(s, a) ≥ 0 a momentum rate γth(s, a) ≥ 0
such that αth(s, a)+γth(s, a) ≤ 1. We also consider a bonus
function βth(s, a). The update of the Q-value for UCBMQ is
defined as follows. We update a (biased) estimator of the
optimal Q-value function as follow,

Qth(s, a) = αth(s, a)
(
rh(s, a) + pthV

t−1
h+1(s, a)

)
+ γth(s, a)pth(V

t−1
h+1 − V t−1h,s,a)(s, a)

+
(
1− αth(s, a)

)
Qt−1h (s, a) , (5)

where the bias-value function for state-action (s, a) is de-
fined by, V 0

h,s,a(s′) = H ,

V th,s,a(s′) = ηth(s, a)V
t−1
h+1(s′) +

(
1− ηth(s, a)

)
V t−1
h,s,a(s′) ,

(6)

where we define ηth(s, a) = αth(s, a) + γth(s, a). We
name this quantity the bias-value function because we will
prove that with high probably Qth(s, a) ≈ rh(s, a) +
phV

t
h,s,a(s, a) in Lemma 9 of Appendix E. Then we build

upper-confidence bounds on the Q-values by adding a
bonus and on the value functions by taking the maximum
of the upper-confidence bounds on the Q-values (clipped to
be non-increasing)

Q
t

h(s, a) = Qth(s, a) + βth(s, a) ,

V
t

h(s) = clip
(

max
a∈A

Q
t

h(s, a), 0, V
t−1
h (s)

)
,

where the clipping operator is defined as clip(x, y, z) =
min(max(x, y), z). We also fix the upper bounds of the
value function at step H + 1 to zero: V

t

H+1(s) = 0. Note
that Q

t

h(s, a) could be negative because of the momentum
but it will still be an upper bound on the optimal Q-value
with high probability, see Lemma 1. We also enforce the
upper bound on the value function to be non-increasing.
We then pick the action greedily with respect to the upper-
bounds Q

t

h. The complete procedure is described in Algo-
rithm 1. We choose (with the convention 0 ×∞ = 0 and

1/0 =∞)

αth(s, a) = χth(s, a)
1

nth(s, a)
, (7)

γth(s, a) = χth(s, a)
H

H + nth(s, a)

nth(s, a)− 1

nth(s, a)
, (8)

for the learning rate and the momentum. Note that in par-
ticular it holds ηth(s, a) = χth(s, a)(H+1)/(H+nth(s, a))
which is the learning rate used by Jin et al. (2018). We can
unfold (5) to obtain explicit formulas for the estimate of the
Q-value function when nth(s, a) > 0:

Qth(s, a) = rh(s, a) +
1

nth(s, a)

t∑
k=1

χkh(s, a)pkhV
k−1
h (s, a)

+
1

nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)pkh(V
k−1
h − V k−1h,s,a)(s, a) ,

(9)

where the normalized momentum is definied as

γ̊kh(s, a) = H
nth(s, a)− 1

nth(s, a) +H
.

We use a bonus derived from the Bernstein inequality plus a
correction term. Precisely if nth(s, a) = 0 then βth(s, a) =
H otherwise

βth(s, a) = 2

√
W t
h(s, a)

ζ

nth(s, a)
+ 53H3 ζ log(T )

nth(s, a)

+

t∑
k=1

χkh(s, a)̊γkh(s, a)

H log(T )nth(s, a)
pkh(V k−1h,s,a − V

k−1
h+1)(s, a) ,

where ζ is some exploration threshold that we specify later
and W t

h is a proxy for the variance term

W t
h(s, a)=

t∑
k=1

χkh(s, a)

nth(s, a)
pkh

(
V
k−1
h+1−

t∑
l=1

χlh(s, a)

nth(s, a)
plhV

l−1
h+1

)2

(s, a) .

Note that the third term in the bonus will not compensate
the momentum because it is 1/(H log(T )) times smaller
than the momentum term.

3.3. Regret bound

We assume in this section that T ≥ 3. We fix δ ∈ (0, 1)
and the exploration threshold

ζ = log(32eHSA(2T + 1)/δ) . (10)

We can now state the main result of the paper which is
proved in Appendix E. We sketch the proof in Section 3.4.
Theorem 1. For UCBMQ, with probability at least 1− δ

RT ≤ C1(δ, T )
√
H3SAT + C2(δ, T )H4SA

where C1(δ, T ) = 126e127 log(T )
√
ζ and C2(δ, T ) =

3527e127 log(T )2ζ.
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Algorithm 1 UCBMQ

1: Initialize: For all (s, a, h), V 0
h,s,a = V

0

h = H and
Q0
h = 0

2: for t ∈ [T ] do
3: for h ∈ [H] do
4: Play ath ∈ arg maxQ

t−1
h (sth, a)

5: Observe sth+1 ∼ ph(sth, a
t
h)

6: end for
7: for all s, a, h do
8: Update Qth(s, a) using Equation 5
9: Update V th,s,a for all s′ using Equation 6

10: Q
t

h(s, a) = Qth(s, a) + βth(s, a)

11: V
t

h(s) = clip
(

maxa∈AQ
t

h(s, a), 0, V
t−1
h (s)

)
12: end for
13: end for

Note that we did not try to optimize the constants C1, C2.
The regret of UCBMQ is thus of order Õ

(√
H3SAT +

H4SA
)

matching the lower bound of Õ
(√
H3SAT

)
by

Domingues et al. (2021b) for T ≥ H5SA.

Computational complexity. Note that the update of the
upper bounds on the Q-values and value functions and the
bias-value functions can be performed online. Indeed at
step h and episode t, the learning rate αth(s, a) and the mo-
mentum rate γth(s, a) equal to zero if (s, a) 6= (sth, a

t
h).

Thus the time complexity of UCBMQ is of order O(H(S +
A)T ) for T episodes. This complexity is smaller than the
one of model-based algorithms, O(HSAT ) at best (see
Efroni et al. 2019), but is larger than O(HAT ), the one
of model-free algorithms (Jin et al., 2018; Zhang et al.,
2020b). The space complexity is O(HS2A) since we need
to store all the bias-value functions, which is the same as
the one of model-based algorithms.

Model-free or model-based algorithm. UCBMQ does not
estimate the probability transitions but rather estimates di-
rectly the Q-values/values. Therefore UCBMQ can be viewed
as a model-free algorithm. On the other hand, the space
complexity of UCBMQ is the same as the size of the model
HS2A. Thus from a space complexity point of view (see
e.g. the definition of model-free algorithms by Jin et al.
2018), UCBMQ is a model-based algorithm.

Comparison with variance reduction methods. Build-
ing on variance reduction techniques, Sidford et al.
(2018a;b) and Zhang et al. (2020b) propose model-free al-
gorithms that match the problem-independent lower bound
for large enough T (see Table 1). They use, for some refer-
ence value function V ref, the following advantage decom-

position of the optimal Q function,

Q?(s, a)=rh(s, a)+phV
ref
h+1(s, a)+ph(V ?h+1−V ref

h+1)(s, a).

To derive their algorithm, they estimate the two expec-
tations above differently. The expectation phV

ref
h+1(s, a)

is estimated using all the samples, and the expectation
ph(V ?h+1 − V ref

h+1) is estimated using only the last 1/H-
fraction of the samples. The key point is to learn a refer-
ence value function V ref that is close enough to V ∗ to com-
pensate the smaller number of samples. However, learn-
ing such V ref, which is done by using similar update as
(4), requires a certain number of episodes, and increases
the second term in their analysis. Interestingly, our up-
date (5) could be seen as an advantage decomposition: con-
sidering (9), the bias-value function V th,s,a acts as a refer-
ence value function. However, contrary to the approach of
Zhang et al. (2020b), V th,s,a is updated continuously as (6),
instead of being fixed after a “burn-in” phase.

3.4. Proof sketch of Theorem 1

We first prove that Q
t

and V
t

are indeed upper confidence
bounds on the optimal Q-values and the optimal value func-
tions respectively.

Lemma 1. On the event E that holds with probability 1−δ
(see Section C.1) , ∀t ∈ N,∀(s, a, h) ∈ S ×A× [H] (also
for h = H + 1 for the value function), we have

Q
t

h(s, a) ≥ Q?h(s, a) and V
t

h(s) ≥ V ?h (s) .

Step 1: Upper-bound (Q
t

h−Qπ
t+1

h )(s, a). We first upper-
bound the difference (Q

t

h − Qπ
t+1

h )(s, a) for a certain
state-action pair (s, a). Considering the rewriting (9) we
can apply a Freedman-Bernstein-type inequality (see Ap-
pendix C.1) to replace the sample expectation by the true
expectation (see Lemma 9),∣∣Qth(s, a)− rh(s, a)− phV th,s,a(s, a)

∣∣ ≤ bth(s, a) ,

where we define, for ñth(s, a) = nth(s, a) ∧ 1,

bth(s, a)=

√√√√ 4

ñth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)
ζ

ñth(s, a)

+

t∑
k=1

2χkh(s, a)

H log(T )ñth(s, a)
ph(V

k−1
h+1−V π

k

h+1)(s, a)+24H3 log(T )ζ

ñth(s, a)
·

In Lemma 10, we upper bound the bonus βth(s, a) with high
probability, with a quantity of the same order as bth(s, a).
Combining these two bounds we obtain

(Q
t

h−Qπ
t+1

h )(s, a)≤ ph(V th,s,a−V π
t+1

h+1 )(s, a)+6bth(s, a).

(11)



UCB Momentum Q-learning: Correcting the bias without forgetting

Step 2: Upper-bound the local optimistic regret. Next,
we upper-bound the local optimistic regret of state-action
(s, a) at step h defined by

R̃Th (s, a) =

T−1∑
t=0

χt+1
h (s, a)(Q

t

h −Qπ
t+1

h )(s, a).

We decompose the first term that appears in (11) by intro-
ducing the optimal value function

ph(V th,s,a − V π
t+1

h+1 )(s, a) = ph(V th,s,a − V ?h+1)(s, a)

+ ph(V ?h+1 − V π
t+1

h+1 )(s, a).

Then, using Lemma 13 from Appendix F.2 yields

T−1∑
t=0

χt+1
h (s, a)ph(V th,s,a − V ?h+1)(s, a)

≤ H+

T−1∑
k=1

(
T−1∑
t=k

χt+1
h (s, a)ηt,kh (s, a)

)
ph(V

k−1
h+1 − V ?h+1)(s, a)

≤ H +

(
1 +

1

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t−1
h+1 − V ?h+1)(s, a),

we get V th,s,a(s′) =
∑t
k=1 η̃

t,k
h (s, a)V

k−1
h+1(s′) by unfold-

ing (6), see (15) in Appendix B. Combining this inequality
with the previous decomposition and using that V ?h+1 ≥
V π

k+1

h+1 , we get

T−1∑
t=0

χt+1
h (s, a)ph(V th,s,a − V π

t+1

h+1 )(s, a)

≤
T−1∑
t=0

χt+1
h (s, a)ph(V ?h+1 − V π

t+1

h+1 )(s, a) +H

+

(
1 +

1

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t−1
h+1 − V ?h+1)(s, a)

≤ H +

(
1 +

1

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t−1
h+1 − V π

t+1

h+1 )(s, a) .

We can proceed similarly to upper-bound the bonus term
using this time Lemma 12, 14 from Appendix F.2, see (27),
(28) and (29) in Appendix E, and get the upper bound on
the optimistic local regret,

R̃Th (s, a) ≤ 44 log(T )

√√√√ζ

T−1∑
t=0

χt+1
h (s, a)Varph(V π

t+1

h+1 )(s, a)

+

(
1 +

41

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t
h+1 − V π

t+1

h+1 )(s, a)

+ 1041H3 log(T )2ζ .

Step 3: From visit to reach probability. We denote by
p̄th(s, a) respectively p̄th(s) the probability to reach state-
action (s, a) respectively state s at step h under the pol-
icy πt. We replace the indicator function χth by its expecta-
tion p̄th. Using again an Freedman-Bernstein-type inequal-
ity (see Appendix C.2), from the upper bound on the opti-
mistic local regret above we obtain

R̃Th (s, a) ≤ 63 log(T )

√√√√ζ

T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a)

+

(
1+

83

H

)T−1∑
t=0

p̄t+1
h (s, a)ph(V

t
h+1−V π

t+1

h+1 )(s, a)

+ 1754H3 log(T )2ζ . (12)

Step 4: Upper-bound the step h optimistic regret. We
define the regret at step h by

R̃Th =
∑
s∈S

T−1∑
t=0

p̄t+1
h (s)(V

t−1
h − V πt+1

h )(s) .

Note that we used the probability to reach the state s rather
than the indicator function χth(s) above. Using again a
Freedman-Bernstein-type inequality (see Appendix C.2) to
upper-bound the reach probability by the indicator function
and the definition of V

k

h, we have for s ∈ S

T−1∑
t=0

p̄t+1
h (s)(V

t
h − V π

t+1

h )(s)

≤
(

1 +
1

H

) T−1∑
t=0

χt+1
h (s)(V

t
h(s)− V π

t+1

h )(s) + 19H2ζ

≤
(

1 +
1

H

) T−1∑
t=0

χt+1
h (s)πt+1

h (Q
k

h −Q
πt+1

h )(s) + 19H2ζ .

Combining this inequality with (12) then the fact the poli-
cies πt are deterministic and Cauchy-Schwarz inequality
yield the upper-bound the step h optimistic regret

R̃Th ≤
(

1+
1

H

)∑
s,a

T−1∑
t=0

χt+1
h (s, a)(Q

k

h−Q
πt+1

h )(s, a) + 19H2Sζ

=

(
1 +

1

H

)∑
s,a

R̃Th (s, a) + 19H2Sζ

≤ 126 log(T )

√√√√ζSA
∑
s,a

T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a)

+

(
1 +

167

H

)
R̃Th+1 + 3527H3SA log(T )2ζ , (13)

where in the last inequality we used that∑
(s,a,s′)∈S×A×S

p̄t+1
h (s, a)ph(s′|s, a) =

∑
s′∈S

p̄t+1
h+1(s′) .
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Step 5: Upper-bound the regret. We upper-bound the
Step 1 regret R̃1. By successively unfolding (13) with the
fact that R̃Th+1 = 0, using the Cauchy-Schwarz inequality
and the law of total variance (Lemma 11 in Appendix F.1),

R̃T1 ≤
H∑
h=1

C1(δ, T )

√√√√SA
∑
s,a

T−1∑
t=0

p̄t+1
h (s, a)Varph(V

πt+1

h+1 )(s, a)

+ C2(δ, T )H3SA

≤ C1(δ, T )

√√√√SAH ∑
s,a,h

T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a)

+ C2(δ, T )H4SA

≤ C1(δ, T )
√
H3SAT + C2(δ, T )H4SA .

It remains to relate the opstimistic regret with the regret.
Thanks to Lemma 1 we have

V ?1 (s1)− V πt+1

h (s1) ≤ V t1(s1)− V πt+1

1 (s1) ,

which allows us to conclude

RT ≤ R̃T1 ≤ C1(δ, T )
√
SAH3T + C2(δ, T )SAH4 .

4. Experiments
In this section, we present a numerical simulation to
illustrate the benefits of not forgetting the targets in
UCBMQ. We compare UCBMQ to the following baselines:
(i) UCBVI (Azar et al., 2017); (ii) OptQL (Jin et al., 2018),
and (iii) Greedy-UCBVI, a version of UCBVI using real–
time dynamic programming (Efroni et al., 2019). We use
a grid-world environment with 50 states (i, j) ∈ [10] × [5]
and 4 actions (left, right, up and down). When taking an
action, the agent moves in the corresponding direction with
probability 1− ε, and moves to a neighbor state at random
with probability ε. The starting position is (1, 1). The re-
ward equals to 1 at the state (10, 5) and is zero elsewhere.8

Using different exploration bonuses (e.g., by changing the
multiplicative constants) can result in drastically different
regrets empirically. In order to fairly compare the algo-
rithmic ideas of UCBMQ to the baselines, we use the same
exploration bonus for all the algorithms, given by:

βth(s, a) = min

(√
1

nth(s, a)
+
H − h+ 1

nth(s, a)
, H − h+ 1

)
.

Although the confidence intervals required by the algo-
rithms are not always satisfied with this bonus, they hold
for nth(s, a) = 0 (resulting in βth(s, a) = H − h + 1), so
that this choice does not hurt the initial exploration. When
nth(s, a) > 0, the bonus behaves as a simplified version of
the Bernstein-type bonuses used in different algorithms.

8The code to reproduce the experiments is available on
GitHub, and uses the rlberry library (Domingues et al., 2021a).
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Figure 1. Regret of UCBMQ compared to baselines, for H = 100
and transition noise ε = 0.15. Average over 8 runs.

In Figure 1, we observe that UCBMQ outperforms OptQL in
our experiments, whereas the only differences in the im-
plementations of the two algorithms are the learning rates
and the momentum term used by UCBMQ (since the bonuses
were kept identical). This illustrates the potential gain in
sample efficiency enabled by not forgetting the targets.

We also observe that, in this simulation, UCBMQ has a larger
regret than UCBVI and Greedy-UCBVI, which are model-
based algorithms using empirical estimates of the transi-
tions probabilities and planning. It is not surprising since
explicitly using a model and backward induction allows
new information to be more quickly propagated to the value
function computed by the algorithms. UCBVI performs
full planning after each episode. Greedy-UCBVI does 1-
step planning, propagating information more quickly than
UCBMQ, but more slowly than UCBVI, which explains the
results in Figure 1. However, current regret bounds for
model-based algorithms, such as UCBVI, still feature a sec-
ond order term scaling with S2 (see Table 1): an interesting
open question is whether a bound scaling linearly with S
can be obtained when a transition model is used.

5. Conclusion
We studied regret minimization in tabular, non-stationary,
episodic MDPs. For this settings, we provided an algorithm
a regret bound that is optimal in a problem-independent
sense for a large enough number of episodes T and such
that the second-order term in the regret bound scales only
linearly with the number of states S. Our result rises fol-
lowing interesting open questions for a further research.

Problem-independent optimal regret. We conjec-
ture that the optimal problem-independent regret is
O(
√
H3SAT + H2SA). This conjecture is coherent

with the one of Wang et al. (2020) for PAC problem-

https://github.com/omardrwch/ucbmq_code
https://github.com/rlberry-py/rlberry
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independent optimal sample complexity if we do not
assume that the sum of the rewards along any trajectory is
smaller than 1. In particular, it is not clear how to obtain a
better dependency on the horizon H in the second-order
term, while being only linear in S. For UCBMQ we have an
extra H factor in the second-order term in comparison to
the regret bound of UCBVI. This is due to the momentum
rate γ which scales with H (Equation 8). This scaling
seems necessary to refrain from getting an extra H factor
at the first-order term and it is unclear how to avoid it. Note
that if our conjecture for the optimal problem-independent
regret is true, the regret bounds for the model-based
algorithms (e.g., UCBVI, see Table 1) would be sub-optimal
in H in the second-order term.

Dependency on S for model-based algorithms. Even
if UCBMQ could be considered as a model-based algorithm
(Section 3.2) it relies on the model-free Q-learning algo-
rithm. This is the main reason behind obtaining a linear
dependence on the size of the state space S in the second-
order term. As explained in Section 1, it is not clear to
obtain similar bounds for model-based algorithm but ex-
perimentally they perform better, see Section 4. Interest-
ingly with access to a generative model, Szita & Szepesvári
(2010) managed to get rid of the extra factor S for PAC-
MDP complexity (Kakade, 2003).

Computational complexity. As we need to maintain a
separate bias-value function for each state-action pairs,
UCBMQ has a larger complexity both in time and space than
the algorithms of Jin et al. (2018) and Zhang et al. (2020b).
It is not clear how to obtain an algorithm with the same
guarantees as UCBMQ while having a space complexity of
O(HSA) and a time complexity of O(HT ).
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A. Notations

Table 2. Table of notation
Notation Meaning

S state space of size S
A action space of size A
H length of one episode
T number of episodes
rh(s, a) reward
ph(s′|s, a) probability transition
pth(s′|s, a) Dirac distribution (pthf)(s, a) = f(sth+1)
χth(s) indicator function χth(s) = 1{sth=s}
χth(s, a) indicator function χth(s, a) = 1{(sth,a

t
h)=(s,a)}

nth(s, a) number of visits of state-action nth(s, a) =
∑t
k=1 χ

t
h(s, a)

ñth(s, a) maximum ñth(s, a) = max(nth(s, a), 1)
Qth(s, a) estimate of the Q-value, see (5)
Q
t

h(s, a) upper bound on the optimal Q-value
V
t

h(s) upper bound on the optimal values
V ts,a,h biased-value function, see (6)
αth(s, a) learning rate, see (7)
γth(s, a) momentum rate, see (8)
ηth(s, a) learning rate of the bias-value function, ηth(s, a) = (αth + γth)(s, a)
βth(s, a) bonus, see Section 3.2
ζ exploration rate, see (10)
p̄th(s, a) probability to visit (s, a) at step h under πth
p̄th(s) probability to visit s at step h under πth
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B. Preliminaries
We can unfold (5) to obtain explicit formulas for the estimate of the Q-value function when nth(s, a) > 0:

Qth(s, a) = rh(s, a) +
1

nth(s, a)

t∑
k=1

χkh(s, a)
(
pkhV

k−1
h+1(s, a) + γ̊kh(s, a)pkh(V

k−1
h+1 − V k−1h,s,a)(s, a)

)
where we defined the normalized momentum

γ̊th(s, a) = H
nth(s, a)− 1

nth(s, a) +H
.

Note that in particular 0 ≤ γ̊th(s, a) ≤ H . We can do the same with (6) for the bias value function of state-action (s, a)
when nth(s, a) > 0

V th,s,a(s′) =
1

nth(s, a)

t∑
k=1

χkh(s, a)
(
V
k−1
h+1(s′) + γ̊kh(s, a)(V

k−1
h+1 − V k−1h,s,a)(s′)

)
(14)

= ηth(s, a)V
t−1
h+1(s′) + (1− ηth(s, a))V t−1h,s,a(s′)

=

t∑
k=1

η̃t,kh (s, a)V
k−1
h+1(s′) (15)

where we defined the cumulative weights

η̃t,kh (s, a) = ηkh(s, a)

t∏
l=k+1

(
1− ηlh(s, a)

)
recalling ηth(s, a) = χth(s, a)

H + 1

H + nth(s, a)
.

We regroup in the following lemma properties on the different value functions that hold almost surely.

Lemma 2. For all (s, s′, t), it holds almost surely:

• the sequence (V
t

h(s))t≥0 is non-increasing,

• 0 ≤ V th(s) ≤ H ,

• V
t

h+1(s′) ≤ V th,s,a(s′) ≤ H .

Proof. The fact that (V
t

h(s))t≥0 is non increasing comes directly by construction

V
t

h(s) = clip
(

max
a∈A

Q
t

h(s, a), 0, V
t−1
h (s)

)
≤ V t−1h (s).

To prove that 0 ≤ V
t

h(s) ≤ H , we proceed by induction. The algorithm initializes V
0

h(s), hence the claim is satisfied by
t = 0. Assuming that 0 ≤ V

t−1
h (s) ≤ H , the equation above implies that this is also satisfied by V

t

h(s). For the third
point, we have

V
t

h+1(s′) ≤ min
k∈{1,...t}

V
k−1
h+1(s′) ≤

t∑
k=1

η̃t,kh (s, a)V
k−1
h+1(s′) ≤

t∑
k=1

η̃t,kh (s, a)H ≤ H

and we use the fact that
∑t
k=1 η̃

t,k
h (s, a)V

k−1
h+1(s′) = V th,s,a(s′).
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C. Concentration events
C.1. From sample mean to expectation

We define the favorable events Ev1 and Ev2 where we control two martingales involving the moment of order 1 and 2 of
the upper bounds on the value function at the next step. We also define Emw , Em where we control the martingale of the
momentum term with and without weights, precisely

Ev1 ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)V
k−1
h+1(s, a)

∣∣∣∣∣ ≤
√√√√2ζ

t∑
k=1

χkh(s, a)Varph(V
k−1
h )(s, a) + 6Hζ

}
,

Ev2 ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1)2(s, a)

∣∣∣∣∣ ≤
√√√√8H2ζ

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 12H2ζ

}

Emw ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :∣∣∣∣∣
t∑

k=1

χkh(s, a)̊γkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤√√√√2ζ

t∑
k=1

χkh(s, a)̊γkh(s, a)2Varph(V
k−1
h+1 − V k−1h,s,a)(s, a) + 6H2ζ

}

Em ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤
√√√√2ζ

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1 − V k−1h,s,a)(s, a) + 6Hζ

}
.

We define E = Ev1 ∩ Ev2 ∩ Emw ∩ Em the intersection of these events where the optimism will be true. This event holds
with high probability.
Lemma 3. For the choice

ζ = log(32e(2T + 1)/δ),

it holds P(E) ≥ 1− δ/2.

Proof. Thanks to the choice of ζ and Theorem 2 we have

P((Ev)c) ≤ δ

8
, P((Ev2)c) ≤ δ

8
, P((Emw)c) ≤ δ

8
, P((Em)c) ≤ δ

8
.

For the second event, note that thanks to the Freedman-Bernstein-type inequality (Theorem 2) with probability at least
1− δ/6 it holds

∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1)2(s, a)

∣∣∣∣∣ ≤
√√√√2ζ

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)2(s, a) + 12H2ζ .

Thanks to Lemma 15 we know that Varph(V
k−1
h+1)2(s, a) ≤ 2H2Varph(V

k−1
h+1)(s, a) and consequently the last event holds

with high probability P((Ev2)c) ≤ δ
6 . A union bound allows us to conclude.
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We can get a confidence of order 1/n at the price of a constant term when the variance is not important in the concentration
inequalities of event E .

Lemma 4. On the event E , ∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A, it holds∣∣∣∣∣
t∑

k=1

χkh(s, a)̊γkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤ 1

4H log(T )

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a)

+ 14H3 log(T )ζ (16)∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤ 1

4

t∑
k=1

χkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) + 14Hζ (17)∣∣∣∣∣

t∑
k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1)2(s, a)

∣∣∣∣∣ ≤ 1

4

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 44H2ζ (18)

Proof. For (16) we use that event Emw holds,̊γth(s, a) ≤ H , 0 ≤ V k−1h,s,a − V
k−1
h+1 ≤ H and

√
xy ≤ x+ y,

∣∣∣∣∣
t∑

k=1

χkh(s, a)̊γkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤
√√√√2Hζ

t∑
k=1

χkh(s, a)̊γkh(s, a)Varph(V
k−1
h+1 − V k−1h,s,a)(s, a)

+ 6H2ζ

≤

√√√√2ζH2

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a)

+ 6H2ζ

≤ 1

4H log(T )

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a)

+ 14H3 log(T )ζ .

For (17) we proceed similarly as above knowing that Em holds

∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤
√√√√2ζ

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1 − V k−1h,s,a)(s, a) + 6H2ζ

≤

√√√√2Hζ

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V k−1h,s,a)(s, a) + 6Hζ

≤ 1

4

t∑
k=1

χkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) + 14H2ζ .

And for (18) we use event Ev2 :

∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1)2(s, a)

∣∣∣∣∣ ≤
√√√√8H2ζ

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 12H2ζ

≤ 1

4

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 44H2ζ .
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C.2. From empirical visits to reach probability

We also define an event where we replace the indicator function to visit a state-action or a state by its expectation. We
define by p̄th(s, a) and p̄th(s) the probabilities to reach state-action (s, a) and state s, respectively, at step h under the policy
πt. Precisely we define the event Gvar, Gv1 , Gv1 where we replace χth(s, a) or χth(s) by its expectation when it is multiplied
by a predictable quantity,

Gvar ,
{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :∣∣∣∣∣
t∑

k=1

(χkh − p̄kh)(s, a)Varph(V π
t

h+1)(s, a)

∣∣∣∣∣ ≤
t∑

k=1

p̄kh(s, a)Varph(V π
t

h+1)(s, a) + 8H2ζ ,

Gv1 ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :∣∣∣∣∣
t∑

k=1

(χkh − p̄kh)(s, a)ph(V
k−1
h+1 − V π

t

h+1)(s, a)

∣∣∣∣∣ ≤ 1

4H

t∑
k=1

p̄kh(s, a)ph|V
k−1
h+1 − V π

t

h+1|(s, a) + 14H2

}
,

Gv2 ,

{
∀t ∈ N,∀h ∈ [H],∀s ∈ S :∣∣∣∣∣
t∑

k=1

(χkh − p̄kh)(s)(V
k−1
h − V πt

h )(s)

∣∣∣∣∣ ≤ 1

4H

t∑
k=1

p̄kh(s)|V k−1h+1 − V π
t

h+1|(s) + 14H2ζ

}
.

We define G = Gvar ∩ Gv1 ∩ Gv2 the intersection of these events and the previous event E . This event holds with high
probability.

Lemma 5. For the choice

ζ = log(32eHSA(2T + 1)/δ),

it holds P(G) ≥ 1− δ/2.

Proof. Thanks to Theorem 2, with probability at 1 − δ/8, for all s, a, h, t we have, using that for a Bernoulli distribution
of parameter X ∼ Ber(q) its variance is upper-bounded by Var(X) = q(1− q) ≤ q and

√
xy ≤ x+ y,

∣∣∣∣∣
t∑

k=1

(χkh − p̄kh)(s, a)Varph(V π
t

h+1)(s, a)

∣∣∣∣∣ ≤
√√√√2ζ

t∑
k=1

p̄kh(s, a)Varph(V π
t

h+1)(s, a)2 + 6ζH2ζ

≤
t∑

k=1

p̄kh(s, a)Varph(V π
t

h+1)(s, a) + 8ζH2 .

Thus we know that P
(
(Gvar)c

)
≤ δ/8. Similarly for the second event, thanks to Theorem 2, with probability at 1 − δ/8,

for all s, a, h, t we obtain

∣∣∣∣∣
t∑

k=1

(χkh − p̄kh)(s, a)ph(V
k−1
h+1 − V π

t

h+1)(s, a)

∣∣∣∣∣ ≤
√√√√2ζ

t∑
k=1

p̄kh(s, a)ph(V
k−1
h+1 − V π

t

h+1)(s, a)2 + 6ζH2ζ

≤ 1

4H

t∑
k=1

p̄kh(s, a)ph|V
k−1
h+1 − V π

t

h+1|(s, a) + 14H2ζ .

Thus it holds P
(
(Gv1)c

)
≤ δ/8. We proceed in the same way for the last event. Thanks to Theorem 2, with probability at
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1− δ/8, for all s, a, h, t we have∣∣∣∣∣
t∑

k=1

(χkh − p̄kh)(s)(V
k−1
h+1 − V π

t

h+1)(s)

∣∣∣∣∣ ≤
√√√√2ζ

t∑
k=1

p̄kh(s)(V
k−1
h+1 − V π

t

h+1)(s)2 + 6ζH2ζ

≤ 1

4H

t∑
k=1

p̄kh(s)ph|V
k−1
h+1 − V π

t

h+1|(s) + 14H2ζ .

Thus it holds P
(
(Gv2)c

)
≤ δ/8. An union bound allows us to conclude.

C.3. The favorable event

We define the event D = E ∩ G as the intersection of the event E where the optimism will hold and G where we can relate
the empirical number of visits of a state-action to the probability of visit. In particular the regret bound will be true on this
event which holds with high probability.

Lemma 6. For the choice
ζ = log(32eHSA(2T + 1)/δ),

it holds P(D) ≥ 1− δ.

Proof. This is a simple consequence of Lemma 3 and Lemma 5.

C.4. Deviation inequality for bounded distributions

Below, we reproduce the self-normalized Freedman-Bernstein-type inequality by Domingues et al. (2020). Let (Yt)t∈N? ,
(wt)t∈N? be two sequences of random variables adapted to a filtration (Ft)t∈N. We assume that the weights are in the
unit interval wt ∈ [0, 1] and predictable, i.e. Ft−1 measurable. We also assume that the random variables Yt are bounded
|Yt| ≤ b and centered E[Yt|Ft−1 ] = 0. Consider the following quantities

St ,
t∑

s=1

wsYs, Vt ,
t∑

s=1

w2
s · E

[
Y 2
s |Fs−1

]
, and Wt ,

t∑
s=1

ws

and let h(x) , (x+ 1) log(x+ 1)− x be the Cramér transform of a Poisson distribution of parameter 1.

Theorem 2 (Bernstein-type concentration inequality). For all δ > 0,

P
(
∃t ≥ 1, (Vt/b

2 + 1)h

(
b|St|
Vt + b2

)
≥ log(1/δ) + log(4e(2t+ 1))

)
≤ δ.

The previous inequality can be weakened to obtain a more explicit bound: if b ≥ 1 with probability at least 1 − δ, for all
t ≥ 1,

|St| ≤
√

2Vt log(4e(2t+ 1)/δ) + 3b log(4e(2t+ 1)/δ) .
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D. Optimism
We will prove in the next lemma that Qth(s, a) ≈ rh(s, a) + phV

t
h,s,a(s, a) thus the bias of our estimator will be controlled

by the bias of V th,s,a with respect to V ?h+1.

Lemma 7. On the event E , ∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A, if nth(s, a) > 0, it holds

∣∣Qth(s, a)− rh(s, a)− phV th,s,a(s, a)
∣∣ ≤

√√√√ 2

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)

ζ

nth(s, a)
+ 20H3 ζ log(T )

nth(s, a)

+
1

4 log(T )Hnth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) .

Proof. Thanks to the definition of the bias-value function V th,s,a we have

∣∣Qth(s, a)− rh(s, a)− phV th,s,a(s, a)
∣∣ ≤ ∣∣∣∣∣ 1

nth(s, a)

t∑
k=1

χkh(s, a)(pkh − ph)V
k−1
h+1(s, a)

∣∣∣∣∣
+

∣∣∣∣∣ 1

nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ .
We will upper-bound the two terms of the right-hand of the previous inequality separately. For the first term, thanks to the
definition of E (see Section C.1), we obtain

1

nth(s, a)

∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)V
k−1
h+1(s, a)

∣∣∣∣∣ ≤
√√√√ 2

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h )(s, a)

ζ

nth(s, a)
+ 6H

ζ

nth(s, a)
.

For the second term using Lemma 4 yields∣∣∣∣∣ 1

nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤
1

4H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) + 14H3 ζ log(T )

nth(s, a)
.

Combining these two inequalities allows us to conclude.

The exploration bonus is designed to compensate the approximation error made by Qth in the previous lemma, as we show
below.

Lemma 8. On the event E , ∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A, if nth(s, a) > 0, it holds

βth(s, a) ≥

√√√√ 2

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)

ζ

nth(s, a)
+ 20H3 ζ log(T )

nth(s, a)

+
1

4H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) .

Proof. First, we recall the definition of the bonus

βth(s, a) = 2

√
W t
h(s, a)

ζ

nth(s, a)
+ 53H3 ζ log(T )

nth(s, a)
+

1

H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)pkh(V k−1h,s,a − V
k−1
h+1)(s, a)



UCB Momentum Q-learning: Correcting the bias without forgetting

where W t
h is a proxy for the variance term

W t
h(s, a) =

1

nth(s, a)

t∑
k=1

χkh(s, a)pkh(V
k−1
h+1)2(s, a)−

(
1

nth(s, a)

t∑
k=1

χkh(s, a)pkhV
k−1
h+1(s, a)

)2

.

The approximation error in Lemma 7 includes terms depending on the true transitions ph, which are unknown to the
algorithm. Hence, to design the bonuses, we will use the concentration inequalities that hold on the event E to replace ph
by pkh, which depends only on the observed data and can be used in the bonus.

Correction term First note that thanks to Lemma 4 we can control the correction term

∣∣∣∣∣ 1

nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)(pkh − ph)(V
k−1
h+1 − V k−1h,s,a)(s, a)

∣∣∣∣∣ ≤ 14H3 log(T )ζ

nth(s, a)

+
1

4H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) . (19)

Variance term W t
h(s, a) Using Lemma 4 and the definition of E (see Section C.1), we replace the sample "expectation"

by the true expectation in the two sums of the proxy of the variance W t
h(s, a):

∣∣∣∣∣ 1

nth(s, a)

t∑
k=1

χkh(s, a)(pkh − ph)(V
k−1
h+1)2(s, a)

∣∣∣∣∣ ≤ 1

4

1

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 44H2 ζ

nth(s, a)
, (20)

and

∣∣∣∣∣
(

1

nth(s, a)

t∑
k=1

χkh(s, a)pkhV
k−1
h+1(s, a)

)2

−
(

1

nth(s, a)

t∑
k=1

χkh(s, a)phV
k−1
h+1(s, a)

)2∣∣∣∣∣
≤ 2H

nth(s, a)

∣∣∣∣∣
t∑

k=1

χkh(s, a)(pkh − ph)V
k−1
h+1(s, a)

∣∣∣∣∣
≤ H

√√√√8
1

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)

ζ

nth(s, a)
+ 12H2 ζ

nth(s, a)

≤ 1

4nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 44H2 ζ

nth(s, a)
, (21)

where we also used the fact that
√
xy ≤ x+ y.
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Using (20), (21) and Jensen’s inequality, we lower-bound W t
h(s, a):

W t
h(s, a) =

1

nth(s, a)

t∑
k=1

χkh(s, a)pkh(V
k−1
h+1)2(s, a)−

(
1

nth(s, a)

t∑
k=1

χkh(s, a)pkhV
k−1
h+1(s, a)

)2

≥ 1

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1)2(s, a)−

(
1

nth(s, a)

t∑
k=1

χkh(s, a)phV
k−1
h+1(s, a)

)2

− 1

2

1

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)− 88H2 ζ

nth(s, a)
by (20) and (21)

≥ 1

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1)2(s, a)− 1

nth(s, a)

t∑
k=1

χkh(s, a)(phV
k−1
h+1(s, a))2

− 1

2

1

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)− 88H2 ζ

nth(s, a)
by Jensen’s inequality

≥ 1

2nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)− 88H2 ζ

nth(s, a)
.

Finally, combining the inequality above with (19) for the correction term allows us to conclude

βth(s, a) ≥ 2

√(
W t
h(s, a) + 88H2

ζ

nth(s, a)

)
ζ

nth(s, a)
+ (53− 2

√
88− 14)H3 ζ log(T )

nth(s, a)

+
3

4H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a)

≥

√√√√ 2

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)

ζ

nth(s, a)
+ 20H3 ζ log(T )

nth(s, a)

+
1

4H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) ,

where we used the fact that
√
x+ y ≤ √x+

√
y.

We are now ready to prove the optimism.
Lemma 1. On the event E that holds with probability 1− δ (see Section C.1) , ∀t ∈ N,∀(s, a, h) ∈ S ×A× [H] (also for
h = H + 1 for the value function), we have

Q
t

h(s, a) ≥ Q?h(s, a) and V
t

h(s) ≥ V ?h (s) .

Proof. We proceed by induction on t. For t = 0 the result is trivially true because of the initialization. Assume the result is
true for all k ≤ t−1. We will prove the results at episode t by backward induction on h. For h = H+1 the result is trivially
true because V

t

H+1(s) = V ?H+1(s) = 0. Assume the results are true at h + 1. If nth(s, a) = 0 because Q
t

h(s, a) = H in

this case we have Q
t

h(s, a) ≥ Q?h(s, a). If nth(s, a) > 0, since the event E holds, Lemma 7 and Lemma 8 yield

Q
t

h(s, a) = Qth(s, a) + βth(s, a)

≥ rh(s, a) + phV
t
h,s,a(s, a)

≥ rh(s, a) + ph

(
t∑

k=1

η̃t,kh (s, a)V
k−1
h+1

)
(s, a) ≥ rh(s, a) + phV

?
h+1(s, a) = Q?h(s, a)
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where in the last inequality we used the induction assumption. To conclude it remains to note that

V
t

h(s) = clip
(

max
a

Q
t

h(s, a), 0, H
)
≥ max

a∈A
Q?h(s, a) = V ?h+1(s).

In particular, on the event E we have the ordering for all (s, a, h, s′) and t ∈ [T ]:

V π
t

h (s′) ≤ V ?h (s′) ≤ V t−1h (s) ≤ V t−1h,s,a(s) .
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E. Proof of the regret bound
We introduce the maximum between the count and one to deal with the state-action never visited:

ñth(s, a) = max(nth(s, a), 1) .

We provide a refined version of Lemma 7 where we introduce the variance of the value function of the current policy rather
than the variance of the upper-bound in order to apply subsequently the law of total variance (Lemma 11).

Lemma 9. On the event E , ∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A, it holds

∣∣Qth(s, a)− rh(s, a)− phV th,s,a(s, a)
∣∣ ≤

√√√√ 4

ñth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)
ζ

ñth(s, a)

+
2

H log(T )ñth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a)

+ 24H3 log(T )ζ

ñth(s, a)
.

Proof. If nth(s, a) = 0 the bound is trivially true because in this case
∣∣∣Qth(s, a)− rh(s, a)− phV th,s,a(s, a)

∣∣∣ =∣∣∣rh(s, a) + phV
t
h,s,a(s, a)

∣∣∣ ≤ (H + 1). Now assume that nth(s, a) > 0. Proceeding as in the proof of Lemma 7 we
have on the event E

∣∣Qth(s, a)− rh(s, a)− phV th,s,a(s, a)
∣∣ ≤

√√√√ 2

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)

ζ

nth(s, a)
+ 20H3 ζ log(T )

nth(s, a)

+
1

4 log(T )Hnth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) .

Correction term Using (14) and V th,s,a ≥ V ?h+1 ≥ V π
k

h+1, we upper-bound the correction term

1

nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a) =

1

nth(s, a)

t∑
k=1

χkh(s, a)phV
k−1
h+1(s, a)− phV th,s,a(s, a)

≤ 1

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) . (22)

Variance term For the variance term, using H ≥ V kh ≥ V ?h ≥ V π
k+1

h and Lemma 15, we can replace the variance of the
current upper bounds on the optimal value function by the variance of the current policy,

1

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) ≤ 2

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)

+
2H

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) .
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Using
√
x+ y ≤ √x+

√
y and

√
xy ≤ x+ y allows to upper-bound the variance term

√√√√ 2

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)

ζ

nth(s, a)
≤

√√√√ 4

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)
ζ

nth(s, a)

+
1

H log(T )nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a)

+ 4H2 log(T )ζ

nth(s, a)
. (23)

Combining (23) and (22) allows us to conclude.

We now provide an upper bound on the bonus.

Lemma 10. On the event E , ∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A, it holds

βth(s, a) ≤ 2

√√√√ 3

ñth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)
ζ

ñth(s, a)

+
3

H log(T )ñth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) + 106H3 log(T )ζ

ñth(s, a)
.

Proof. If nth(s, a) = 0 the result is trivially true because in this case βth(s, a) = H . We now assume nth(s, a) > 0. For the
upper-bound we first upper-bound the proxy of the variance. Using (20) and (21) from the proof of Lemma 8 and the fact
that H ≥ V kh ≥ V ?h in combination with Lemma 1 (optimism) we obtain

W t
h(s, a) ≤ 1

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1)2(s, a)−

(
1

nth(s, a)

t∑
k=1

χkh(s, a)phV
k−1
h+1(s, a)

)2

+
1

2nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 88H2 ζ

nth(s, a)

= Varph(V ?h+1)(s, a)

+
1

nth(s, a)

t∑
k=1

χkh(s, a)ph
(
(V

k−1
h+1)2 − (V ?h+1)2

)
(s, a) + (phV

?
h+1)2 −

(
1

nth(s, a)

t∑
k=1

χkh(s, a)phV
k−1
h+1(s, a)

)2

+
1

2nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a) + 88H2 ζ

nth(s, a)

≤ Varph(V ?h+1)(s, a) +
1

2nth(s, a)

t∑
k=1

χkh(s, a)Varph(V
k−1
h+1)(s, a)

+
2H

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V ?h+1)(s, a) + 88H2 ζ

nth(s, a)
.

We now introduce the value of the current policy and proceed similarly as above using H ≥ V kh ≥ V ?h ≥ V π
k+1

h . Also, we
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apply Lemma 15 to the terms Varph(V ?h+1)(s, a) and Varph(V
k−1
h+1)(s, a) to make appear Varph(V π

k

h+1):

W t
h(s, a) ≤ 3

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)

+
2H

nth(s, a)

t∑
k=1

χkh(s, a)ph(V ?h+1 − V π
k

h+1)(s, a) +
H

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a)

+
2H

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V ?h+1)(s, a) + 88H2 ζ

nth(s, a)

≤ 3

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)

+
5H

nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) + 88H2 ζ

nth(s, a)

Combining this inequality with
√
x+ y ≤ √x+

√
y and

√
xy ≤ x+ y we upper-bound the variance term of the bonus

2

√
W t
h(s, a)

ζ

nth(s, a)
≤ 2

√√√√ 3

nth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)
ζ

nth(s, a)

+
1

H log(T )nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) + 39H2 log(T )ζ

nth(s, a)
. (24)

We can proceed similarly for the correction term, using Lemma 4

1

H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)pkh(V k−1h,s,a − V
k−1
h+1)(s, a) ≤ 14H3 log(T )ζ

nth(s, a)

+
5

4H log(T )nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)ph(V k−1h,s,a − V
k−1
h+1)(s, a)

≤ 14H3 log(T )ζ

nth(s, a)

+
5

4H log(T )nth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) ,

where in the last inequality we use, thanks to (14) and V π
k

h+1(s′) ≤ V th,s,a(s′),

1

nth(s, a)

t∑
k=1

χkh(s, a)̊γkh(s, a)(V k−1h,s,a − V
k−1
h+1)(s′) =

1

nth(s, a)

t∑
k=1

χkh(s, a)V
k−1
h+1(s′)− V th,s,a(s′)

≤ 1

nth(s, a)

t∑
k=1

χkh(s, a)(V
k−1
h+1 − V π

k

h+1)(s′) .

Combining these two bounds allows us to conclude

We are now ready to prove the main result.

Proof of Theorem 1. We will prove that the regret bound holds on event D (Section C.3). Not his events holds with
probability at least 1 − δ, according to Lemma 6. Thus from now we assume that the event D holds. Fix (s, a, h) ∈
S ×A× [H] and t ≥ 0.
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Step 1: Upper-bound (Q
t

h − Qπ
t+1

h )(s, a) We will upper-bound the difference of the previous upper bound on the
optimal Q-value function and the Q-value of the current policy. Thanks to Lemma 9 and Lemma 10, we obtain

(Q
t

h −Qπ
t+1

h )(s, a) ≤ ph(V th,s,a − V π
t+1

h+1 )(s, a) + 130H3 log(T )ζ

ñth(s, a)

+

√√√√ 30

ñth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)
ζ

ñth(s, a)

+
5

H log(T )ñth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) . (25)

Step 2: Upper-bound of the local optimistic regret R̃Th (s, a) We will now thanks to this inequality upper-bound the
local optimistic regret R̃Th (s, a) at state-action s, a and step h defined by

R̃Th (s, a) ,
T−1∑
t=0

χt+1
h (s, a)(Q

t

h −Qπ
t+1

h )(s, a) .

We will upper-bound the sum over t weighted by the indicator function that the state-action (s, a) is visited at time t + 1
of each term in the above inequality (25). For the first term, we introduce the optimal value function

ph(V th,s,a − V π
t+1

h+1 )(s, a) = ph(V th,s,a − V ?h+1)(s, a) + ph(V ?h+1 − V π
t+1

h+1 )(s, a) .

Then using (15) and Lemma 13 yields

T−1∑
t=0

χt+1
h (s, a)ph(V th,s,a − V ?h+1)(s, a) =

T−1∑
t=0

χt+1
h (s, a)1{nt

h(s,a)=0}ph(V th,s,a − V ?h+1)(s, a)

+

T−1∑
t=0

χt+1
h (s, a)1{nt

h(s,a)>0}

t∑
k=1

η̃t,kh (s, a)ph(V
k−1
h+1 − V ?h+1)(s, a)

≤ H +

T−1∑
k=1

(
T−1∑
t=k

χt+1
h (s, a)η̃t,kh (s, a)

)
ph(V

k−1
h+1 − V ?h+1)(s, a)

≤ H +

(
1 +

1

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t−1
h+1 − V ?h+1)(s, a) .

Combining this inequality with the previous decomposition and that V ?h+1 ≥ V π
k+1

h+1 , one obtains

T−1∑
t=0

χt+1
h (s, a)ph(V th,s,a − V π

t+1

h+1 )(s, a) ≤
T−1∑
t=0

χt+1
h (s, a)ph(V ?h+1 − V π

t+1

h+1 )(s, a) +H

+

(
1 +

1

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t−1
h+1 − V ?h+1)(s, a)

≤ H +

(
1 +

1

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t−1
h+1 − V π

t+1

h+1 )(s, a) . (26)

We can proceed in a similar way but using this time Lemma 14 to upper-bound the sum of the correction terms, precisely

T−1∑
t=0

χt+1
h (s, a)

ñth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) ≤
T−1∑
k=1

(
T−1∑
t=k

χt+1
h (s, a)

ñth(s, a)

)
χkh(s, a)ph(V

k−1
h+1 − V π

k

h+1)(s, a)

≤ 8 log(T )

T−1∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) .
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We then obtain the upper bound on the correction term

T−1∑
t=0

5χt+1
h (s, a)

H log(T )ñth(s, a)

t∑
k=1

χkh(s, a)ph(V
k−1
h+1 − V π

k

h+1)(s, a) ≤ 40

H

T−1∑
t=0

χt+1
h (s, a)ph(V

t

h+1 − V π
t+1

h+1 )(s, a) . (27)

For the variance term using Cauchy-Schwarz inequality in combination with Lemma 14 and Lemma 12 yields

T−1∑
t=0

χt+1
h (s, a)

√√√√ 30

ñth(s, a)

t∑
k=1

χkh(s, a)Varph(V π
k

h+1)(s, a)
ζ

ñth(s, a)
≤

√√√√30

T−1∑
t=0

χt+1
h (s, a)

ñth(s, a)

t∑
k=1

Varph(V π
k

h+1)(s, a)

×

√√√√T−1∑
t=0

χt+1
h (s, a)

ζ

ñth(s, a)

≤ 44 log(T )ζ1/2

√√√√T−1∑
t=0

χt+1
h (s, a)Varph(V π

t+1

h+1 )(s, a) .

(28)

Finally for the remaining term, using Lemma 12, we have

T−1∑
t=0

χt+1
h (s, a)130H3 log(T )ζ

ñth(s, a)
≤ 1040H3 log(T )2ζ . (29)

Thus combining from (26) to (29) with (25) we obtain an upper-bound on the optimistic regret at (s, a, h)

R̃Th (s, a) ≤ 44 log(T )ζ1/2

√√√√T−1∑
t=0

χt+1
h (s, a)Varph(V π

t+1

h+1 )(s, a) + 1041H3 log(T )2ζ

+

(
1 +

41

H

) T−1∑
t=0

χt+1
h (s, a)ph(V

t

h+1 − V π
t+1

h+1 )(s, a) . (30)

Step 3: From visit χth to reach probability p̄th We replace the indicator function χth by its expectation p̄th. Since we are
on the event D, in particular the event G holds. Thus we know that√√√√T−1∑

t=0

χt+1
h (s, a)Varph(V π

t+1

h+1 )(s, a) ≤

√√√√2

T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a) +
√

8ζH

and

T−1∑
t=0

χt+1
h (s, a)ph(V

t

h+1 − V π
t+1

h+1 )(s, a) ≤
(

1 +
1

H

) T−1∑
t=0

pt+1
h (s, a)ph(V

t

h+1 − V π
t+1

h+1 )(s, a) + 14H2ζ

Plugging these two inequalities in (30) we obtain

R̃Th (s, a) ≤ 63 log(T )ζ1/2

√√√√T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a) + 1754H3 log(T )2ζ

+

(
1 +

83

H

) T−1∑
t=0

p̄t+1
h (s, a)ph(V

t

h+1 − V π
t+1

h+1 )(s, a) . (31)
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Step 4: Upper-bound R̃Th the step h optimistic regret We define the regret at step h by

R̃Th =
∑
s∈S

T−1∑
t=0

p̄t+1
h (s)(V

t−1
h − V πt+1

h )(s) .

Note that in this definition we used the probability to reach state-action (s, a) rather than the indicator function. We will
upper bound this quantity with the local regret. Using successively, that the event G holds (in particular event Gv2 see
Appendix C.2), for all x ≥ 1 it holds 1/

(
1− 1/(4x)

)
≤ 1 + 1

x , the definition of V
k

h(s) and that Q
k

h ≥ 0 on D (Lemma 1)
we have

T−1∑
t=0

p̄t+1
h (s)(V

t

h − V π
t+1

h )(s) ≤ 1

1− 1/(4H)

T−1∑
t=0

χt+1
h (s)(V

t

h(s)− V πt+1

h )(s) +
4

3
14H2ζ

≤
(

1 +
1

H

) T−1∑
t=0

χt+1
h (s)(V

t

h(s)− V πt+1

h )(s) + 19H2ζ

≤
(

1 +
1

H

) T−1∑
t=0

χt+1
h (s)πt+1

h (Q
k

h −Qπ
t+1

h )(s) + 19H2ζ .

Combining this inequality with (31) then the fact the policies πt are deterministic and Cauchy-Schwarz inequality yield
the upper-bound the step h optimistic regret

R̃Th ≤
(

1 +
1

H

)∑
s∈S

T−1∑
t=0

χt+1
h (s)πt+1

h (Q
k

h −Qπ
t+1

h )(s) + 19H2Sζ

=

(
1 +

1

H

) ∑
(s,a)∈S×A

T−1∑
t=0

χt+1
h (s, a)(Q

k

h −Qπ
t+1

h )(s, a) + 19H2Sζ

=

(
1 +

1

H

) ∑
(s,a)∈S×A

R̃Th (s, a) + 19H2Sζ

≤ 126 log(T )ζ1/2
∑

(s,a)∈S×A

√√√√T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a)

+

(
1 +

167

H

) ∑
(s,a)∈S×A

T−1∑
t=0

p̄t+1
h (s, a)ph(V

t

h+1 − V π
t+1

h+1 )(s, a) + 3527SAH3 log(T )2ζ

≤ 126 log(T )

√√√√ζSA
∑

(s,a)∈S×A

T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a)

+

(
1 +

167

H

)
R̃Th+1 + 3527H3SA log(T )2ζ , (32)

where in the last inequality we used that∑
(s,a)∈S×A

p̄t+1
h (s, a)ph(V

t

h+1 − V π
t+1

h+1 )(s, a) =
∑

(s,a)∈S×A

∑
s′∈S

p̄t+1
h (s, a)ph(s′|s, a)(V

t

h+1 − V π
t+1

h+1 )(s′)

=
∑
s′∈S

p̄t+1
h+1(s′)(V

t

h+1 − V π
t+1

h+1 )(s′) .

Step 5: Upper-bound on the regret RT We upper-bound the step 1 regret R̃1. By successively unfolding (32) with the
fact that R̃Th+1 = 0, using the Cauchy-Schwarz inequality and the law of total variance (Lemma 11 in Appendix F.1), we
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obtain

R̃T1 ≤
H∑
h=1

(
1 +

127

H

)H−h
126 log(T )

√√√√ζSA
∑

(s,a)∈S×A

T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a)

+

(
1 +

127

H

)H−h
3527H3SA log(T )2ζ

≤ 126e127 log(T )

√√√√ζSAH
∑

(s,a,h)∈S×A×[H]

T−1∑
t=0

p̄t+1
h (s, a)Varph(V π

t+1

h+1 )(s, a) + 3527e127H4SA log(T )2ζ

= 126e127 log(T )

√√√√√ζSAH

T−1∑
t=0

Eπt+1

( H∑
h=1

r(sh, ah)− V πt+1

1 (s1)

)2
+ 3527e127H4SA log(T )2ζ

≤ 126e127 log(T )
√
ζH3SAT + 3527e127H4SA log(T )2ζ .

It remains to relate the optimistic regret with the regret. Thanks to Lemma 1 we have

V ?1 (s1)− V πt+1

h (s1) ≤ V t1(s1)− V πt+1

1 (s1) .

This allows us to conclude

RT ≤ R̃T1 ≤ 126e127 log(T )
√
ζH3SAT + 3527e127H4SA log(T )2ζ .
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F. Technical lemmas
F.1. A Bellman-type equation for the variance

We reproduce in this section the law of total variance from (Ménard et al., 2021). For a deterministic policy π we define
Bellman-type equations for the variances as follows

σQπh(s, a) , VarphV
π
h+1(s, a) + phσV

π
h+1(s, a)

σV πh (s) , σQπh(s, π(s))

σV πH+1(s) , 0,

where Varph(f)(s, a) , Es′∼ph(·|s,a)
[
(f(s′) − phf(s, a))2

]
denotes the variance operator. In particular, the function

s 7→ σV π1 (s) represents the average sum of the local variances VarphV
π
h+1(s, a) over a trajectory following the policy π,

starting from (s, a). Indeed, the definition above implies that

σV π1 (s1) =

H∑
h=1

∑
s,a

pπh(s, a)Varph(V πh+1)(s, a).

The lemma below shows that we can relate the global variance of the cumulative reward over a trajectory to the average
sum of local variances.
Lemma 11 (Law of total variance). For any deterministic policy π and for all h ∈ [H],

Eπ

( H∑
h′=h

rh′(sh′ , ah′)−Qπh(sh, ah)

)2∣∣∣∣∣∣(sh, ah) = (s, a)

 = σQπh(s, a).

In particular,

Eπ

( H∑
h=1

rh(sh, ah)− V π1 (s1)

)2 = σV π1 (s1) =

H∑
h=1

∑
s,a

pπh(s, a)Varph(V πh+1)(s, a).

F.2. Weights and counts

Lemma 12. For T ∈ N? and (ut)t∈N? , for a sequence where ut ∈ [0, 1] and Ut ,
∑t
l=1 u`, we get

T∑
t=0

ut+1

Ut ∨ 1
≤ 4 log(UT+1 + 1).

In particular if T + 1 ≥ 2,
T∑
t=0

ut+1

Ut ∨ 1
≤ 8 log(T + 1) .

Proof. Notice that

T∑
t=0

ut+1

Ut ∨ 1
≤ 4

T∑
t=0

ut+1

2Ut + 2

≤ 4

T∑
t=0

Ut+1 − Ut
Ut+1 + 1

≤ 4

T∑
t=0

∫ Ut+1

Ut

1

x+ 1
dx

= 4 log(UT+1 + 1).
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Lemma 13. For all (s, a) ∈ S ×A it holds

t∑
k=l

χk+1
h (s, a)η̃k,lh (s, a) ≤

(
1 +

1

H

)
χlh(s, a) ,

t∑
k=1

η̃t,kh (s, a) = 1 if nth(s, a) > 0 .

Proof. Note that if χlh(s, a) = 0 then η̃k,lh (s, a) = 0 for all k ≥ l and the first inequality is true. Now assume that
χlh(s, a) > 0 and thus nth(s, a) ≥ 1. For n,m ≥ 1 defined

η̃n,m =
H + 1

H +m

n∏
j=m+1

n− 1

H + n
,

remark that
t∑
k=l

χk+1
h (s, a)η̃k,lh (s, a) ≤

nt
h(s,a)∑

n=nl
h(s,a)

η̃n,n
l
h(s,a) .

We will prove by induction that for all N ≥ m ≥ 1, which will implies the inequality we want to prove, that

1 +
1

H
−

N∑
n=m

η̃n,m = η̃N,m
N

H
.

For N = m we have

1 +
1

H
− η̃m,m =

H + 1

H

m

H +m
= η̃m,m

m

H
.

Then if we assume that the result is true for N then we obtain

1 +
1

H
−
N+1∑
n=m

η̃n,m = η̃N+1,m

(
H +N + 1

H
− 1

)
= η̃N+1,mN + 1

H
.

The equality can be proved by induction using that for all t

t∑
k=1

η̃t,kh (s, a) = ηth(s, a) +
(
1− ηth(s, a)

) t−1∑
k=1

η̃t−1,kh (s, a) ,

and there exists k ≤ t such that η̃t,kh (s, a) = 1 because nth(s, a) > 0.

Lemma 14. For all (s, a) ∈ S ×A and t ≤ T − 1 (with T ≥ 2), it holds

χlh(s, a)

t∑
k=l

χk+1
h (s, a)

ñkh(s, a)
≤ 8 log(T )χlh(s, a) .

Proof. If χlh(s, a) = 0 then the inequality is trivially true. Else χlh(s, a) > 0 and using Lemma 12 we get

t∑
k=l

χk+1
h (s, a)

ñkh(s, a)
≤
T−1∑
k=0

χk+1
h (s, a)

ñkh(s, a)
≤ 8 log(T ) .
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F.3. Inequality for the variance

Lemma 15. For p, q ∈ ΣS , for f, g : S 7→ [0, b] two functions defined on S, we have that

Varp(f) ≤ 2Varp(g) + 2bp|f − g| and

Varp(f
2) ≤ 2bVarp(f),

where we denote the absolute operator by |f |(s) = |f(s)| for all s ∈ S.

Proof. First note that

Varp(f) = p(f − g + g − pg + pg − pf)2 ≤ 2p(f − g − pf + pg)2 + 2p(g − pg)2 = 2Varp(f − g) + 2Varp(g).

From the above we can immediately conclude the proof of the first inequality with

Varp(f − g) ≤ p(f − g)2 ≤ bp|f − g|,

where we used that for all s ∈ S , 0 ≤ |f(s) − g(s)| ≤ b. For the second inequality let x ∼ p be independent of y ∼ p,
then we have

Varp(f
2) =

1

2
Ex∼p,y∼p

[(
f(x)2 − f(y)2

)2]
=

1

2
Ex∼p,y∼p

[(
f(x) + f(y)

)2(
f(x)− f(y)

)2]
≤ 2b2Varp(f) .
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