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A. Empirical Potentials
Empirical potentials are approximations of the potential
energy surface for physical systems. In contrast to Density-
Functional Theory which computes energies from first prin-
ciples (Hohenberg & Kohn, 1964), empirical potentials are
generic functional forms whose parameters are fitted to cor-
respond to individual systems and which are designed to be
efficient to compute. In our paper, these empirical poten-
tials enable the training of learned optimizers, as we can
easily batch computation and use automatic differentiation
techniques to quickly calculate gradients/forces.

Moreover, the minima of empirical potentials are likely to
generalize to those found by more-accurate computations,
suggesting that the learned optimizers trained on these ap-
proximations will generalize as well. In this paper, we study
a few functional forms of empirical potentials:

A.1. Lennard-Jones Clusters

First, the Lennard-Jones Clusters are the archetype of a
simple-to-compute potential and are often used to model
spherically-symmetric particles or atoms in free-space (a
perfect vacuum with no other particles in the entire sys-
tem). For example, this empirical potential can be used to
model nobel gasses or methane (Jones & Chapman, 1924).
The energy landscape is defined only by pairwise distances
between particles, denoted as dij for atoms i, j.
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where ε describes the minimum two-particle energy and d0
describes the distance where this occurs. Following prior
work, in our paper we set ε and d0 to 1, as the resulting
minima structures can be scaled as necessary for systems
where these settings do not hold.

While this model of atoms may seem simple, the corre-
sponding optimization problem is anything but. For the
corresponding task with 75 atoms, common gradient-based
techniques such as Adam or FIRE cannot obtain the global
minimum value and even the best trial out of 150 random
initializations has an error greater than 7eV. Please see the
main body of the paper for additional discussion of the
difficulties of optimizing Lennard-Jones Clusters.

A.2. Gupta Clusters

The Gupta empirical potential adds an additional layer of
complexity when modelling the energy of atomic structures.
Designed to model lattice relaxations at a metal surface,
the Gupta model provides an improved approximation by
including a second-moment estimate of the tight-binding

Hamiltonian (Gupta, 1981). The Gupta potential has been
widely used in studying and predicting the stable structures
of noble metals and bimetallic clusters.

The functional form of the Gupta potential is as follows:∑
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The values d0, A, ξ, p, q are parameters of the Gupta po-
tential that describe specific inter-particle interactions. In
contrast to the Lennard-Jones system, these values cannot
be factored out or set to defaults. Instead, the parameters
are dervied either experimentally or by fitting to Density-
Functional Theory data from the bulk-faced cubic systems.
Note, when the system consists of only one type of atom,
the parameters are the same for all pairs of particles. How-
ever, for bimetallic clusters with multiple types of atoms,
these parameters can depend on the type of interaction. For
example, in Ag-Au clusters, there will be 3 possible values
for each of these constants corresponding to Ag-Ag, Ag-Au,
and Au-Au interactions.

As the minima structures of the Gupta potential can vary
based on the exact parameter values used, all of our experi-
ments are based on the already-discovered configurations by
Paz-Borbón et al. (2008). Table 4 provides the parameters
used in our single-atom experiment modelling Au (gold)
with 55 atoms and bimetallic experiments of Ag-Au, Ag-Pt,
Pd-Au, and Pd-Pt clusters.

A.3. Stillinger-Weber (SW)

Stillinger-Weber potentials are designed to provide more
accurate estimations of semiconductors and do so by includ-
ing a three-body angular term (i.e. penalizing for deviations
from an optimal angle within the crystal structure). In our
paper, we use the Stillinger-Weber potential to model Sil-
icon crystals. This system is distinct from the other two
benchmarks, as the crystal model assumes the lattice struc-
ture is repeatedly infinitely in space (although a cutoff in
interaction distance allows for models to use finite tilings).

For this system, the energy is defined by:
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where again the scalar parameters are fit to the system being
studied. For modelling Silicon, the parameters used in our
experiments are provided in Table 5.

Additionally, we only study the optimization problem of a
simple cubic lattice structure, where the lattice vectors are
defined by~i,~j,~k. Cells of 8 atoms are initialized to have
size 5.248 Å, and there is no lattice vector optimization
during the course of training. Furthermore, we define the
cutoff for atomic interactions to be 3.77 Å.

Table 4. Gupta Potential Coefficients

P Q d0 A ξ

AU (GOLD) 55
AU-AU 10.229 4.036 2.884 1.790 0.2061
BIMETALLIC AG-AU
AG-AG 10.85 3.18 2.8921 1.1895 0.1031
AG-AU 10.494 3.607 2.8885 1.4874 0.1488
AU-AU 10.139 4.033 2.885 1.8153 0.2096
BIMETALLIC AG-PT
AG-AG 10.86 3.18 2.8921 1.1895 0.1031
AG-PT 10.73 3.57 2.833 1.79 0.175
PT-PT 10.612 4.004 2.7747 2.695 0.2975
BIMETALLIC PD-AU
PD-PD 10.867 3.742 2.7485 1.718 0.1746
PD-AU 10.54 3.89 2.816 1.75 0.19
AU-AU 10.299 4.036 2.884 1.79 0.2061
BIMETALLIC PD-PT
PD-PD 10.867 3.742 2.7485 1.718 0.1746
PD-PT 10.74 3.87 2.76 2.2 0.23
PT-PT 10.612 4.004 2.7747 2.695 0.2975

B. Comparison of Training Strategies
In order to compare the meta-training strategies of ES,
ESMC (ours) and GA (ours), we focus on a simplified set-
up of the learned optimizers. Specifically, to remove the
noise originating from the meta-training on diverse tasks,
we focus on models trained only on the 13-atom Lennard-
Jones clusters. As the model is trained only on 1 task, we
only need to train for 900 meta-updates before both ESMC
(ours) and GA (ours) appear to reach the global minimum on
almost every single initialization. In contrast, traditional ES
appears to be unstable, deviating greatly in the meta-training
loss.

Table 5. Stillinger-Weber Potential Coefficients

A ε B P λ γ σ A

SILICON CRYSTALS
SI-SI 7.049 2.168 0.602 4 21.0 1.2 2.0951 1.8

As the loss landscape of this system is ‘funneled’ and a
low-energy paths exist between the local minima and the
global minimum, we do not expect sporadic behavior of the
learned optimizer to arise from the optimization problem
itself. Instead, the erratic behavior of appears to be coming
from instability in training, which is solved by our ESMC
and GA training strategies.

C. Baseline Optimizer Tuning
The baseline optimization techniques used in this paper
(Adam, FIRE, Basin Hopping) have their own hyper-
parameters which require tuning to obtain proper results.
Doing so correctly is essential to ensure that our learned
optimizer provide a meaningful improvement in minimum
discovery that cannot be explained by improved tuning.

C.1. Tuning Adam and FIRE

In our paper, all baseline results arise from a two-stage
process. First, we start with a grid search: utilizing 3 vari-
ants of the learning rate for each model, with values of
{0.01, 0.005, 0.001}. Early exploration also modified the
β parameters of Adam and the rate of increase/decrease of
FIRE; however, both optimizers showed generic robustness
to hyper-parameters other than learning rate changing.

While these baselines were somewhat competitive, we
further tuned these optimizers by learning the values of
the hyper-parameters for Adam and FIRE, following the
Adam4p strategy by Metz et al. (2019b). This strategy,
similar in spirit to the learned optimizers presented in the
paper, uses meta-training to update the scalar parameters
that define Adam and FIRE. 3 runs were conducted, ini-
tializing with each of the learning rates in the grid search.
Meta-optimization was conducted for 100 outer-steps, ap-
plied with Adam with a learning rate of 10−2. The best
hyper-parameters out of the grid search and the final learned
parameters were then used to provide evaluation results.

C.2. Tuning Basin Hopping

Recall, Basin Hopping first uses standard optimization tech-
nique such as Adam or FIRE to optimize a network for a
short number of steps. Parameters are perturbed from the
minimum found, and optimization is performed once again
to find a new minimum. If the new minimum is an im-
provement over the previous, then the new state is accepted;
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otherwise, the model reverts to the previous minimum.

This two-stage optimization technique has a number of
hyper-parameters that require tuning. First, to simplify the
setup, we fix Adam with a learning rate of 10−2 to be the
standard optimizer used to descend into minima after the
large perturbation steps. Experimental evidence showed that
this large learning rate model allowed us to decrease the
number of steps to 5000, while almost always converging
to a local minima. The final parameter of significance is
the size of the step taken, which is drawn from a normal
distribution. Similar to the approach to tuning Adam and
FIRE, we started with grid search, finding the best values
out of the set {0.2, 0.4, 0.6, 0.8}. Additional tuning was
performed by learning the size of the update step. As before,
the best of these hyper-parameters was used in reporting
results.

D. Training Details
For the sake of reproducible results, we provide additional
details about learned optimizer training, including descrip-
tions of how tasks are selected for the meta-batches and
about what it means to produce a random initialization for
particles.

D.1. Task Selection

During meta-training, estimates of the meta-gradients are
produced by averaging over ∼ 80 instantiations of atomic
structure optimization problems, defined by both a random
initialization (see Appendix D.2) and a corresponding empir-
ical potential to minimize. Prior work on learned optimizers
would refer to this set of problems as a task distribution and
sample 80 tasks used to compute the a single meta-update.
However, as the learned optimizers trained in this paper are
still in the few-task regime, we instead default to sampling
b80/mc copies of all m tasks.

D.2. Harmonic Initialization

In the context of atomic structure optimization, purely ran-
dom initializations (i.e. uniform over a pre-defined box size)
are problematic as atoms that are too close to one another
will have very large forces early in optimization. This can
result in one atom being moved far away from the others. As
most molecular dynamics simulations (including ours) use a
cutoff distance for atomic interactions, future optimization
steps are unlikely to update and recover this atom. As more
particles often corresponds to lower energies, the resultant
structure will be worse off than initializations where all
particles are incorporated into the final structure.

A number of strategies have been proposed to stably initial-
ize sets of atoms or particles. One strategy is to initialize
uniformly over a large box, large-enough so that the parti-

cles are unlikely to be close but small enough that cutoffs are
not a problem. In practice, we found this method difficult to
tune when working with a variety of systems.

Instead, we utilize harmonic initialization. This strategy
starts by randomly initializing coordinates in a small box,
of size 3.0 Å for all Lennard-Jones models. Before atomic
structural optimization begins, we first optimize an soft-
sphere potential, which only penalizes per-particles dis-
tances when atoms are within pre-defined cutoff. Opti-
mizing this intermediate function ensures that structural
optimization does not have excessively large forces at the
beginning of training. In free-space, this occurs by simply
spreading particles apart.

A functional form of the soft-sphere potential is provided
below:
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i
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ε
(1−dij)α

α otherwise
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where in our formulation ε = 1 and α = 2. By default, we
use 1000 optimization steps performed by gradient descent
with a learning rate of 10−3. Note, the learned optimziers
are not sensitive to changes in the harmonic step count or
learning rate; both defaults were chosen to allow excess
time for the soft-sphere potential to be minimized to ≈ 0.

The same strategy is used for Gupta potentials, with the only
difference being that the box is increased to edge length 4.0
Å to accomodate for the increased size of the atoms. For
crystal optimization with the Stillinger-Weber potentials,
our initialization respects the periodic boundary conditions,
so particles are optimized within the pre-defined lattice.

D.3. Learned Optimizer Initialization

All weights of the neural network used to parameterize
the learned optimizer are initialized via a LeCun Normal
initialization (LeCun et al., 2012), following the default in
the FLAX library (Heek et al., 2020), except for the output
layer which is initialized to have output variance of 0. This
default ensures that the learned optimizer at the beginning
of training does not yield divergent trajectories.

For meta-training, the parameters that have the most sig-
nificant impact on performance are the α, β, γ used in the
output parameterization. Best models used

α = 0.1 β = 1 γ = −3

We hypothesize that this setup is stable when combined with
the 0 output initialization, as steps start out very small and
increase in size over the course of meta-training. To large of
a step early in training may yield the undesirable scenario
of particles becoming too close to one another.
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Table 6. Transfer performance between potential types show that learned optimizers trained on Leannard-Jones can generalize to Stillinger-
Weber, outperforming Adam and FIRE. However, the reverse is not true as the models trained on Silicon find very poor local minima,
likely due to the removal of the periodic boundary condition.

MEAN OF 150 INITIALIZATIONS

TRAINING SET
LENNARD-JONES

13 ATOMS
LENNARD-JONES

75 ATOMS
SW

SILICON 64

BASELINES
ADAM -40.6 -380.5 -256.8
FIRE -40.5 -380.2 -257.0

LEARNED OPTIMIZERS
LENNARD-JONES {13, 19, 31, 38 55, 75} -44.3 -390.3 -261.7
SILICON 64 -35.6 -258.3 -261.8

GLOBAL MINIMIA -44.3 -397.5 -277.2

D.4. Compute Costs

Training costs vary significantly based on the system and
distributed setup. For example, costs scale quadratically
in the number of atoms for the Lennard-Jones and Gupta
cluster and cubicly for the Stillinger-Weber models due to
the three-body terms. Rough estimates of the training time
are 30 GPU hours for the Lennard-Jones models (single
atom type) with the main bottleneck coming from the op-
timization of the 75 atom system. The Gupta models took
about 10 GPU hours due to the smaller size.

E. Implementation
As mentioned in the core body of the text, the empirical po-
tentials make use of Jax MD (Schoenholz & Cubuk, 2019)
and the optimization makes use of pure JAX (Bradbury et al.,
2018). Code is available: https://learn2hop.page.
link/github.

F. Additional Results
In this section, we present additional results that were unable
to fit in the main body of the paper. These results includ-
ing minimal training task distributions and results beyond
atomic structure optimization further support the use of
learned optimizers in these global minimization problems.

F.1. Training with a Single Task

The results presented in Section 4 show significant benefits
on global minima discovery when training only on a subset
of 6 optimization tasks (defined by a different number of
Lennard-Jones atoms). This diverse training set provides
examples of both simple ‘funneled’ landscapes and glassy
landscapes with large energy barries between minima. How-
ever, it may be possible to perform well with significantly

Figure 8. Results for the Lennard-Jones single atom models, repli-
cated with various training sets (13-atoms only, 75-atoms only,
or a set of 6 different counts). Both models trained only on 1
atom count show improvements over Adam or FIRE but lack the
generalization performance of training from a diverse set.

fewer training tasks.

In Figure 8, we show a comparison between training the
learned optimizer on only Lennard-Jones with 13 atoms (LJ-
13), Lennard-Jones with 75 atoms (LJ-75), and the diverse
Lennard-Jones set from the main body of the paper {13, 19,
31, 38, 55, 75}. Interestingly, the models trained only on 13
or 75 atoms often perform better than Adam and FIRE and
generalize significantly beyond the respective training distri-
butions. The 13 atom model is perhaps the most impressive
as it is the cheapest to train (due to the quadratic slowdown
with number of atoms); but the model taking into account
diverse examples show greater generalization to large atom
counts.

F.2. Transfer Between Potentials

Early results in Table 6 also show that learned optimizers
can transfer between empirical potentials; for example, the
models trained on Lennard Jones clusters can transfer to the
Stillinger-Weber potential despite differences in the periodic
boundary and the addition of the angular term (but not vice

https://learn2hop.page.link/github
https://learn2hop.page.link/github
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versa). We believe that this form of generalization is most
interesting and hope that future work explores this direction
further; learned optimizers that train on empirical potential
and can be applied to DFT simulation appears a promising
avenue for significantly speeding up material design.


