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Abstract
The reward function is widely accepted as a suc-
cinct, robust, and transferable representation of a
task. Typical approaches, at the basis of Inverse
Reinforcement Learning (IRL), leverage expert
demonstrations to recover a reward function. In
this paper, we study the theoretical properties of
the class of reward functions that are compatible
with the expert’s behavior. We analyze how the
limited knowledge of the expert’s policy and of
the environment affects the reward reconstruction
phase. Then, we examine how the error propa-
gates to the learned policy’s performance when
transferring the reward function to a different en-
vironment. We employ these findings to devise
a provably efficient active sampling approach,
aware of the need for transferring the reward func-
tion, that can be paired with a large variety of
IRL algorithms. Finally, we provide numerical
simulations on benchmark environments.

1. Introduction
Inverse Reinforcement Learning (IRL, Osa et al., 2018)
aims at recovering a reward function by observing the be-
havior of an expert. One of the main challenges of IRL is
that the problem itself is ill-posed, as multiple solutions are
admissible (Ng & Russell, 2000). Several criteria have been
proposed to address this ambiguity issue, based on different
principles, including feature-based matching (Abbeel & Ng,
2004), maximum margin planning (Ratliff et al., 2006a),
maximum entropy (Ziebart et al., 2008), maximum Hessian
eigenvalue (Metelli et al., 2017), and generative adversarial
learning (Ho & Ermon, 2016). These algorithms were eval-
uated either experimentally, in terms of performance of the
policy learned using the recovered reward function (Ratliff
et al., 2006a; Ziebart et al., 2008; Silver et al., 2010; Ziebart
et al., 2010; Boularias et al., 2011; Ho & Ermon, 2016), or
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theoretically, under the strong assumption of reward unique-
ness (Abbeel & Ng, 2004; Pirotta & Restelli, 2016; Ramponi
et al., 2020b). Nevertheless, as noted in Osa et al. (2018),
the evaluation of IRL algorithms remains, to a large extent,
an open question.

Taking a step back, in the IRL framework, typically, the
transition model of the underlying Markov Decision Pro-
cess (MDP, Puterman, 2014) is unknown to the algorithm
as well as the expert’s policy. In general, these elements
are estimated by interacting with the environment and by
querying the expert. This leads to an unavoidable error on
the feasible set of reward functions, i.e., the ones compatible
with the expert’s demonstrations. Motivated by this, the first
question we aim to address is:

(Q1) How does the error on the transition model and on the
expert’s policy propagate to the recovered reward?

Clearly, any answer to this question will depend on the
chosen IRL algorithm, i.e., on the criterion for selecting
one reward function within the feasible set. To avoid the
dependence on the specific IRL algorithm, we will address
(Q1), studying directly the properties of the feasible set.

From an applicative point of view, the IRL’s objective is
twofold: explainability and transferability. On the one hand,
understanding the expert’s intentions is useful for descriptive
purposes and can help interpret the expert’s decisions (Rus-
sell & Santos, 2019; Juozapaitis et al., 2019; Hayat et al.,
2019; Likmeta et al., 2021). On the other hand, the recov-
ered reward function can be used to learn the same task in a
possibly different environment (Abbeel & Ng, 2004; Levine
et al., 2011; Fu et al., 2017). This ability makes the IRL
approach more powerful than Behavioral Cloning (BC, Osa
et al., 2018). Indeed, the reward function is the most “suc-
cinct” representation of a task (Sutton et al., 1998), and it
can be transferred to other domains, unlike a cloning policy
that is tightly connected to the environment in which it is
played. These considerations motivate our second question:

(Q2) How does the error on the recovered reward affect
the performance of the policy learned in a different
environment?

Thus, the performance of the policy learned in the new
environment will be our index for evaluating the quality
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of the recovered reward. As for question (Q1), we will
not focus on a particular IRL algorithm but rather on the
properties of the recovered feasible set of rewards.

Contributions The contributions of this paper can be sum-
marized as follows.

• We study the error on the recovered reward by deriving a
bound that highlights the individual contributions due to
the estimation of the transition model and of the expert’s
policy (Section 3).

• We analyze the problem of transferring the reward to a
new environment. We suppose to have a known target
environment and to interact with a different source envi-
ronment and with the corresponding expert’s policy only.
We derive a bound on the performance of the learned
policy in the target environment when using the reward
recovered from the source one (Section 4).

• Given the previous results, we consider a uniform sam-
pling strategy for the IRL problem given a generative
model of the source environment (Section 5). This leads
to a sample complexity bound for IRL and makes a first
step towards the answer of one of the open questions of
this setting (Osa et al., 2018).

• Finally, taking inspiration from Zanette et al. (2019), we
propose a new algorithm, Transferable Reward ActiVE
irL (TRAVEL), that adapts the sampling strategy to the
features of the problem. TRAVEL employs an IRL algo-
rithm to choose the reward function from the estimated
feasible set. We derive a problem-dependent upper bound
to the sample complexity for the IRL setting (Section 6).

The proofs of the results presented in the main paper can be
found in Appendix B.

2. Preliminaries
In this section, we introduce the background that will be
employed throughout the remainder of the paper.

Mathematical Notation Let X be a finite set and Y be
a space, we denote by YX the set of functions f :XÑ
Y . The simplex over X is denoted by ∆X“tνPr0,1sX :
ř

xPX νpxq“1u and we indicate with ∆Y
X the set of func-

tions f :XÑ∆Y . Let µP∆X and f PRX , we abbreviate
with µᵀf“

ř

xPX µpxqfpxq, i.e., we use µ as an operator.
We define the L8-norm of f as }f}8“maxxPX |fpxq|.

Markov Decision Processes A discounted Markov Deci-
sion Process without Reward function (MDPzR) is defined
as a tuple M“pS,A,p,γq, where S is the state space, A
is the action space, pP∆S

SˆA is the transition model, and
γPr0,1q is the discount factor. An MDPzR is a Markov
Decision Process (MDP, Puterman, 2014) in which we re-
move the reward function. Given an MDPzR M and a

reward function rPRSˆA, we denote with MYr the MDP
obtained by paring M and r. The agent’s behavior is mod-
eled by a policy πP∆A

S . We assume that the state and action
spaces are finite with cardinality S“|S| and A“|A|.

Operators Let f PRS and gPRSˆA. We denote by P
and π the operators induced by the transition model p
and by the policy π, i.e., pPfqps,aq“

ř

s1PS pps
1|s,aqfps1q

and pπgqpsq“
ř

aPAπpa|sqgps,aq. Moreover, we intro-
duce the operator pEfqps,aq“fpsq. Given πP∆S

SˆA,
we denote with pBπgqps,aq“gps,aq1tπpa|sqą0u and
pB

π
gqps,aq“gps,aq1tπpa|sq“0u. Finally, we denote the

expectation under the discounted occupancy measure with
pIS´γπP q

´1
f“

ř

tPNpγπP q
tf . See Appendix A for a

complete definition of the operators.

Value Functions and Optimality The Q-function
QπMYrPRSˆA of a policy π in the MDP MYr is
the expected discounted sum of the rewards starting
from a state-action pair and playing policy π thereafter,
and defined via the Bellman equation (Sutton et al.,
1998): QπMYr“r`γPπQ

π
MYr. The V-function is the

expectation of the Q-function over the action space:
V πMYr“πQ

π
MYr. The advantage function, defined as

AπMYr“Q
π
MYr´EV

π
MYr, provides the one-step perfor-

mance gain achieved by playing a specific action in a state
rather than following policy π. A policy π˚P∆A

S is optimal
if it yields non-positive advantage, i.e., Aπ

˚

MYrps,aqď0
for all ps,aqPSˆA. We denote with Π˚MYrĎ∆A

S the
set of optimal policies for the MDP MYr. Under mild
conditions (Puterman, 2014), any optimal policy attains the
optimal V-function, i.e., V ˚MYr“maxπP∆A

S
V πMYr.

3. Recovering Feasible Rewards
In this section, we start by revising the formalization of the
IRL problem. Then, we introduce and study the feasible
reward set, i.e., the set of the reward functions that make the
expert’s policy optimal (Section 3.1). Finally, we analyze
the error propagation when the feasible set is defined with an
estimated transition model and expert’s policy (Section 3.2).
We start by formally stating the IRL problem using our
notation and defining the feasible reward set.

Definition 3.1 (IRL Problem (Ng & Russell, 2000)). An
Inverse Reinforcement Learning (IRL) problem is a pair
P“pM,πEq, where M is an MDPzR and πEP∆A

S is an
expert’s policy. A reward rPRSˆA is feasible for P if πE

is an optimal policy for the MDP MYr, i.e., πEPΠ˚MYr.
We denote by RP the set of feasible rewards for P, named
feasible (reward) set.

As we pointed out in Section 1, the IRL problem admits
multiple solutions, i.e., it suffers from an ambiguity issue.
Thus, an IRL algorithm A , implementing a criterion for
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selecting a reward function within this set, can be seen as
a choice function mapping an IRL problem P to a feasible
reward, i.e., A :P ÞÑrPRP. It is worth noting that the
expert’s reward function rE (which is unknown) belongs to
RP, but for the sake of the IRL problem, we are interested
in finding just one reward inside RP. Thus, we primarily
focus on the properties of the feasible set, rather than on
specific criteria (i.e., IRL algorithms) for choosing a single
reward within RP.

3.1. Feasible Reward Set

In this section, we study the properties of the feasible reward
set. We start from the following result, which provides an
implicit characterization of the feasible set.

Lemma 3.1 (Feasible Reward Set Implicit (Ng & Russell,
2000)). Let P“pM,πEq be an IRL problem. Let rPRSˆA,
then r is a feasible reward, i.e., rPRP if and only if for all
ps,aqPSˆA it holds that:

(i) Qπ
E

MYrps,aq´V
πE

MYrpsq“0 if πEpa|sqą0,

(ii) Qπ
E

MYrps,aq´V
πE

MYrpsqď0 if πEpa|sq“0.

Furthermore, if condition (ii) holds with the strict inequality,
πE is the unique optimal policy under r, i.e., Π˚MYr“tπ

Eu.

Both conditions are expressed in terms of the advantage
function Aπ

E

MYrps,aq“Q
πE

MYrps,aq´V
πE

MYrpsq. Specifi-
cally, condition (i) prescribes that the advantage function of
the actions that are played by the expert’s policy πE must be
null, whereas condition (ii) ensures that the actions that are
not played have a non-positive advantage. In other words,
Lemma 3.1 requires πE to be an optimal policy under re-
ward function r. From Lemma 3.1, we derive an explicit
form of the reward functions belonging to the feasible set.

Lemma 3.2 (Feasible Reward Set Explicit). Let P“
pM,πEq be an IRL problem. Let rPRSˆA, then r is a fea-
sible reward, i.e., rPRP if and only if there exist ζPRSˆA

ě0

and V PRS such that:

r“´B
πE

ζ`pE´γP qV.

Thus, the reward function is the sum of two terms. The

first term ´B
πE

ζ depends on the expert’s policy πE only
but not on the MDP. It is zero for all actions the expert
plays, i.e., those such that πEpa|sqą0, while its value is
non-positive for actions that the expert does not play, i.e.,
for those with πEpa|sq“0. Requiring a strictly positive
ζ allows enforcing πE as the unique optimal policy. The
second term pE´γP qV depends on the MDP but not on the
expert’s policy. It can be interpreted as a reward-shaping via
function V , which is well-known to preserve the optimality
of the expert’s policy (Ng & Russell, 2000). By applying
the Bellman equation, it is easy to see that the Q-function

RP

RP̂

P = (M, πE)

P̂ = (M̂, π̂E)

Figure 1. Feasible reward sets of two IRL problems: P is an IRL
problem and pP a version of P estimated from samples.

induced by πE under r is given by Qπ
E

MYr“´B
πE

ζ`EV ,
in which V has the role of translating the Q-values by a fixed

quantity within a the state. Thus, ´B
πE

ζ represents the
advantage function Aπ

E

MYr and V is the V-function V π
E

MYr.

3.2. Error Propagation in the Feasible Reward Set

We now study the error propagation in the feasible set,
addressing question (Q1) of Section 1. Specifically, we con-
sider two IRL problems P“pM,πEq and pP“pxM,pπEq. pP
can be thought of as an approximate version of P, where
the transition model pp and the expert’s policy pπE are esti-
mated through samples. Intuitively, an error in estimating
the transition model p and the expert’s policy πE results in
an error in the estimation of the feasible sets RP. Since
the IRL problem is ambiguous (it admits multiple solutions)
we cannot expect to recover the expert’s reward rE exactly.
Instead, we will be satisfied whenever we recover an accu-
rate approximation of the feasible set, in which also rE lies.
Informally, we will say that the estimated feasible set R

pP is
“close” to the exact one RP if for every reward rPRP there
exists one estimated reward prPR

pP that is “close” to r and
vice versa (Figure 1).1 The following result formalizes the
intuition by providing the error propagation result.

Theorem 3.1 (Error Propagation). Let P“pM,πEq and
pP“pxM,pπEq be two IRL problems. Then, for any rPRP

such that r“´B
πE

ζ`pE´γP qV and }r}8ďRmax there
exists prPR

pP such that element-wise it holds that:

|r´pr|ďB
πE

BpπE

ζ`γ
ˇ

ˇ

ˇ

´

P´ pP
¯

V
ˇ

ˇ

ˇ
.

Furthermore, }ζ}8ď
Rmax

1´γ and }V }8ď
Rmax

1´γ .

The result states the existence of a reward pr in the estimated
feasible set R

pP fulfilling the bound that consists of two

components. The first one B
πE

BpπE

ζ depends on the policy
approximation only. Specifically, this term is non-zero in
the state-action pairs such that πEpa|sq“0 and pπEpa|sqą0
only, i.e., for the actions that are not played by the expert
but are wrongly believed to be played. Thus, to zero out this

1This notion of “closeness” between two sets is formalized by
the Hausdorff distance (Rockafellar & Wets, 2009).
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term it suffices to identify for each state one action played by
the expert. The second term |pP´ pP qV |, instead, concerns
the estimation error of the transition model. Clearly, by
reversing the roles of r and pr, we can obtain a symmetric
statement which, however, displays some differences when
thinking to R

pP as the estimated feasible set. Specifically,
while the second term related to the transition model does
not change (apart from V becoming pV ), the first one related

to the policy becomes B
pπE

Bπ
E
pζ. To zero out this term

it is required identifying all actions played by the expert
(not just one), that is a more demanding task. Clearly, this
distinction vanishes for deterministic experts.

4. Transferring Rewards
As mentioned in Section 1, one of the advantages of IRL
over BC is the possibility of reusing the learned reward
function in a different environment. More specifically, we
consider the following setting. There is an expert agent play-
ing an optimal policy πE in a source MDPzR M. We want
to recover a reward function explaining the expert’s policy
πE in M, knowing that we will employ it in a different
target MDPzR M1 for policy learning. In this section, we
discuss the assumptions needed for transferring the reward
function (Section 4.1). Then, we analyze how the error on
the reward function propagates to the performance of the
learned policy in the target environment (Section 4.2).

4.1. Transferable Reward Assumption

Transferring the recovered reward function poses new chal-
lenges that are quite unexplored in the IRL literature. Indeed,
it might happen that different rewards are inducing the same
expert’s policy πE in the source MDPzR M, while gener-
ating different optimal policies in the target MDPzR M1.
More formally, let rE be the true (and unknown) reward
optimized by the expert’s policy πE and let pπ1qE the pol-
icy that the expert would play in M1 optimizing the same
rE . Suppose we are able to solve the source IRL problem
P“pM,πEq finding rPRP, possibly different from rE .
There is no guarantee that r will make the policy pπ1qE op-
timal in the target MDPzR M1. In other words, r might not
be a solution to the target IRL problem P1“pM1,pπ1qEq.
In order to solve this additional ambiguity issue, we enforce
the following assumption.

Assumption 4.1. Let P“pM,πEq and P1“pM1,pπ1qEq
be the source and target IRL problems. The corresponding
feasible sets satisfy RP1ĚRP.

With this assumption, we guarantee that every reward that
is feasible for the source MDPzR M is also feasible for
the target MDPzR M1. We think that this assumption is
unavoidable in our setting since we have no information
regarding the optimality of the observed expert policy πE in

the target MDPzR M1. The intuition behind Assumption 4.1
is that, by simply observing the expert playing an action
in a state, we can only conclude that the action is optimal,
but we are unable to judge “how much” suboptimal are the
actions that the agent does not play. This issue could be
overcome in two ways, which anyway require a modification
of the setting and, thus, are out of the scope of this work:
(i) we observe the optimal behavior of the agent in several
different environments (Amin et al., 2017); (ii) we assume
the expert plays a stochastic policy defined in terms of its
Q-values. In this regard, Fu et al. (2017) proves that there
is a one-to-one mapping between Boltzmann policies and
Q-functions except for a state-only translation and scaling.

4.2. Error Propagation on the Value Function

In this section, we focus on question (Q2) presented in Sec-
tion 1. We discuss, under Assumption 4.1, how an error
on the reward function propagates into an error in estimat-
ing the optimal value function, and consequently on the
optimal policy, when transferring the recovered reward to a
possibly different MDPzR M1“pS,A,p1,γ1q. We start with
Lemma 4.1, which provides upper and lower bounds to the
difference between the optimal Q-function under the true
reward function Q˚M1Yr and the optimal Q-function under
the estimated reward function Q˚M1Ypr.

Lemma 4.1 (Simulation Lemma 1). Let M1“pS,A,p1,γ1q
be an MDPzR, let r,prPRSˆA be two reward functions.
Then, for every π˚PΠ˚M1Yr and pπ˚PΠ˚M1Ypr optimal poli-
cies for the MDPs M1Yr and M1Ypr respectively, the fol-
lowing inequalities hold element-wise:

Q˚M1Yr´Q
˚
M1Yprď

`

ISˆA´γ
1P 1π˚

˘´1
pr´prq,

Q˚M1Yr´Q
˚
M1Yprě

`

ISˆA´γ
1P 1pπ˚

˘´1
pr´prq.

In particular, it holds that:
›

›

›
Q˚M1Yr´Q

˚
M1Ypr

›

›

›

8
ď max
πPtπ˚,pπ˚u

›

›

›

`

ISˆA´γ
1P 1π

˘´1
pr´prq

›

›

›

8
.

The result suggests that we need to be accurate in estimating
the reward function of the state-action pairs that are highly
visited by the discounted occupancy measures of the optimal
policy π˚PΠ˚M1Yr and of the policy pπ˚PΠ˚M1Ypr induced
by the estimated reward function pr. It is worth noting that
Lemma 4.1 holds for arbitrarily chosen policies π˚ and pπ˚

in the corresponding sets.

However, sometimes we are not interested in just estimating
the value function accurately, rather in the performance of
the policy pπ˚, computed with the estimated reward func-
tion pr, under the true reward function r. The following
result shows that we can reduce this problem to the one of
estimating an accurate Q-function, as in Lemma 4.1.

Lemma 4.2 (Simulation Lemma 2). Let M1“pS,A,p1,γ1q
be an MDPzR, let r,prPRSˆA be two reward functions, and
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let pπ˚PΠ˚M1Ypr be an optimal policy for M1Ypr. Then, for
every π˚PΠ˚M1Yr optimal policy for MDP M1Yr, the fol-
lowing inequality holds element-wise:

V ˚M1Yr´V
pπ˚

M1Yrď
`

IS´γ
1
pπ˚P 1

˘´1
pπ˚´pπ˚q

ˆpQ˚M1Yr´Q
˚
M1Yprq.

(1)

In particular, it holds that:
›

›

›
V ˚M1Yr´V

pπ˚

M1Yr

›

›

›

8
ď

2

1´γ1

›

›

›
Q˚M1Yr´Q

˚
M1Ypr

›

›

›

8
. (2)

While the element-wise inequality in Equation (1) depends
on the specific choice of pπ˚ (indeed while all pπ˚PΠ˚M1Ypr

induce the same value function under pr they might induce
different value functions under r), the L8-norm inequality
in Equation (2), although looser, does not depend on the
specific policy pπ˚, but on the estimated reward pr only.

5. Learning Transferable Rewards with a
Generative Model

In this section, we introduce the problem of learning a trans-
ferable reward function in a generative model setting and
we introduce the notion of sampling strategy (Section 5.1).
Then, we provide confidence intervals for the estimated tran-
sition model and expert’s policy (Section 5.2). Finally, we
study the sample complexity of a simple uniform sampling
strategy (Section 5.3).

5.1. Problem Setting and Sampling Strategy

We start by explicitly stating the assumptions of the setting
we consider.

Assumption 5.1. The following statements hold:

(i) M and M1 have the same state and action spaces;
(ii) we have access to the generative model of M;

(iii) we can query the expert’s policy πE in any state of
M;

(iv) the expert’s policy πE is deterministic;
(v) we know the transition model p1 and the discount

factor γ1 of M1.

The sample collection proceeds at iterations. At each iter-
ation kPrKs, we collect at most nmaxPN samples. When
the generative model is queried about a state-action pair
ps,aqPSˆA, it responds with a transition triple ps,a,s1q,
where s1„pp¨|s,aq, and with an expert decision πEpsq. The
sampling strategy S decides, at each iteration k, how to
allocate the nmax samples over the state-action space SˆA,
with the goal of estimating the feasible set accurately. To
this purpose, we introduce the following PAC requirement.

Definition 5.1. Let S be a sampling strategy. Let RP

be the exact feasible set and R
pP be the feasible set recov-

ered after observing ně0 samples collected in the source

MDPzR M. Let pr,qrqPRPˆR
pP be a pair of target re-

wards, we say that S is pε,δ,nq-correct for MDPzR M1

and for the target rewards pr,qrq if with probability at least
1´δ it holds that:

inf
prPR

xP

›

›

›
Q˚M1Yr´Q

˚
M1Ypr

›

›

›

8
ďε

inf
rPRP

›

›

›
Q˚M1Yqr´Q

˚
M1Yr

›

›

›

8
ďε.

(3)

The first condition guarantees that for a choice of the target
reward in the exact feasible set rPRP (for instance, the
expert’s one rE), there exists a reward in the recovered fea-
sible set prPR

pP, inducing an ε-close Q-function. However,
the first condition alone allows the presence of reward func-
tions in R

pP that do not explain any exact reward function
(e.g., we could select R

pP“RSˆA). Thus, we enforce the
second condition, which guarantees that for a target reward
function selected in the recovered feasible set qrPR

pP (for
instance, the one produced by an IRL algorithm A pR

pPq),
there always exists a reward function in the exact feasible
set rPR

pP inducing an ε-close Q-function.2

The condition presented in Definition 5.1 refers to the ability
to recover a reward function in the feasible set that induces
an optimal Q-function Q˚M1Ypr close to the one induced
by a target reward Q˚M1Yr. As already mentioned in Sec-
tion 4.2, we might be interested, instead, in evaluating the
performance of an optimal policy pπ˚PΠ˚M1Ypr, recovered
with the estimated reward function pr, under a target reward
function r. In such a case, we have to focus on the value
function difference V ˚M1Ypr´V

pπ˚

M1Yr. The following result,
which makes use of Lemma 4.2, shows that fulfilling Defi-
nition 5.1, allows deriving guarantees for this case too.

Lemma 5.1. Let S be a sampling strategy. Let RP be the
exact feasible set and R

pP be the feasible set recovered after
observing ně0 samples collected in the source MDPzR M.
Let pr,qrqPRPˆR

pP be a pair of target rewards, if S is
pε,δ,nq-correct for MDPzR M1 and for the target rewards
pr,qrq, as in Definition 5.1, then it holds that:

inf
prPR

xP

sup
pπ˚PΠ˚M1Ypr

›

›

›
V ˚M1Yr´V

pπ˚

M1Yr

›

›

›

8
ď

2ε

1´γ1
,

inf
rPRP

sup
π˚PΠ˚M1Yr

›

›

›
V ˚M1Yqr´V

π˚

M1Yqr

›

›

›

8
ď

2ε

1´γ1
.

Thus, when moving from the approximation of the Q-
functions Q˚M1Yr´Q

˚
M1Ypr, to the evaluation of perfor-

mance of the learned policy pπ˚ under the target reward
r, we lose a factor 2{p1´γ1q. It is worth noting that the

2The target reward functions pr,qrqPRPˆR
pP are a way of

selecting one reward within the feasible set. As we shall see in
the next sections, we will be able to provide sample-complexity
guarantees for arbitrary choices of pr,qrq.
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guarantee of Lemma 5.1 involves a supremum over the set
of optimal policies for the candidate reward, i.e., Π˚M1Ypr,
that helps discarding degenerate rewards, like constant ones.

5.2. Transition Model and Policy Estimation

For each iteration kPrKs, we denote by nkps,a,s
1q the

number of times the triple ps,a,s1qPSˆAˆS is vis-
ited in episode k and nkps,aq“

ř

s1PSnkps,a,s
1q. For

the transition model estimation, we define the cumula-
tive counts Nkps,a,s1q“

ř

jPrksnjps,a,s
1q and Nkps,aq“

ř

jPrksnjps,aq, which lead to the estimate:

ppkps
1|s,aq“

Nkps,a,s
1q

N`k ps,aq
,

where x`“maxt1,xu. Concerning the estimated expert’s
policy pπEk , since the expert is deterministic for Assump-
tion 5.1, the first time we sample a state sPS we recover the
true policy πEpsq. We now show that, with high probability,
we can guarantee an accurate estimate of the expert’s policy
and of the transition model.

Lemma 5.2 (Good Event). Let δPp0,1q, define the good
event E as the event such that the following inequalities
hold simultaneously for all ps,aqPSˆA and kě1:

`

B
πE

BpπE
k ζ

˘

ps,aqď
Rmax

1´γ
1tNkpsq“0u,

`

B
pπE
k Bπ

E
pζk
˘

ps,aqď
Rmax

1´γ
1tNkpsq“0u,

ˇ

ˇ

ˇ

´

P´ pPk

¯

V
ˇ

ˇ

ˇ
ps,aqď

Rmax

1´γ

d

2`kps,aq

N`k ps,aq
,

ˇ

ˇ

ˇ

´

P´ pPk

¯

pVk

ˇ

ˇ

ˇ
ps,aqď

Rmax

1´γ

d

2`kps,aq

N`k ps,aq
,

where ζ, pζk, V , and pVk are defined in Theorem 3.1 and

`kps,aq“log
´

12SApN`k ps,aqq
2

δ

¯

. Then, PrpEqě1´δ.

The terms related to the policy estimation become null as
we identify the action played by the expert in each state,
being the expert’s policy deterministic. Therefore, they are
replaced with 1tNkpsq“0u. The terms related to the transi-
tion model, instead, are applications of Höeffding’s inequal-
ity (Boucheron et al., 2013). By plugging the confidence
interval of Lemma 5.2 into Theorem 3.1, we conclude that
under the good event E , at iteration k`1, given a target re-
ward rPRP, there exists an estimated reward prk`1PR pPk`1

such that |r´prk`1|ps,aqďCk`1ps,aq where:

Ck`1ps,aq“
Rmax

1´γ

«

1tNk`1psq“0u`γ

d

2`k`1ps,aq

N`k`1ps,aq

ff

,

and Nk`1ps,aq“Nkps,aq`nk`1ps,aq. Moreover, given a
target reward qrk`1PR pPk`1

, we can guarantee that under

Algorithm 1 Uniform Sampling IRL

Input: significance δPp0,1q, ε target accuracy, nmax maximum
number of samples per iteration
kÐ0
ε0“

1
1´γ1

while εkąε do
Collect r

nmax
SA

s from each ps,aqPSˆA
Update accuracy εk`1“

1
1´γ1

maxps,aqPSˆACk`1ps,aq

Update ppk`1 and pπEk`1

kÐk`1
end while

the same good event E , there exists an exact reward function
rPRP such that |r´qrk`1|ps,aqďCk`1ps,aq as well.

5.3. Uniform Sampling Strategy

The first algorithm we present employs a uniform sampling
strategy to allocate samples over SˆA, until the desired
accuracy εą0 is reached (Algorithm 1). The stopping con-
dition makes use of the obtained confidence intervals:

εk`1 :“
1

1´γ1
max

ps,aqPSˆA
Ck`1ps,aqďε.

Thanks to Lemma 4.1, we are guaranteed that, under E ,
when the stopping condition is activated, the recovered fea-
sible set fulfills Definition 5.1, as shown below.

Theorem 5.1 (Sample Complexity of Uniform Sampling
IRL). If Algorithm 1 stops at iteration K with accuracy εK ,
then with probability at least 1´δ it fulfills Definition 5.1,
for arbitrary target reward functions r and qr, with a number
of samples upper bounded by:

nď rO
ˆ

γ2R2
maxSA

p1´γ1q2p1´γq2ε2K

˙

.

6. Active Learning of Transferable Rewards
In this section, we present a novel algorithm, named Trans-
ferable Reward ActiVE irL (TRAVEL), that adapts the sam-
pling strategy to the structure of the problem. In order to
choose which state-action pairs to sample from, we make
use of Lemma 4.1. Suppose we are at iteration kPrKs and
we have to decide how to allocate the nmax samples of the
next iteration k`1. We have already observed that, un-
der the good event E , there exists prk`1PR pPk`1

and rPRP

such that |r´prk`1|ps,aqďCk`1ps,aq and |qrk`1´r|ps,aqď
Ck`1ps,aq. Then, by Lemma 4.1 we have that:
›

›

›
Q˚M1Yr´Q

˚
M1Yprk`1

›

›

›

8
ď max
πPtπ˚,pπ˚k`1u

›

›

›

`

ISˆA´γ
1P 1π

˘´1Ck`1

›

›

›

8
,

›

›

›
Q˚M1Yqrk`1

´Q˚M1Yr

›

›

›

8
ď max
πPtqπ˚k`1,π

˚u

›

›

›

`

ISˆA´γ
1P 1π

˘´1Ck`1

›

›

›

8
,

where the policies are arbitrarily selected in the correspond-
ing sets: π˚PΠ˚M1Yr, pπ

˚
k`1PΠ˚M1Yprk`1

, qπ˚k`1PΠ˚M1Yqrk`1
,

and π˚PΠ˚M1Yr. In principle, we could optimize the right-
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Algorithm 2 TRAVEL
Input: significance δPp0,1q, ε target accuracy, nmax maximum
number of samples per iteration, IRL algorithm A
kÐ0
ε0“

1
1´γ1

while εkąε do
Solve optimization problem in Eq (4) for nk`1 and εk`1

Collect nk`1ps,aq samples from ps,aqPSˆA
Update ppk`1 and pπEk`1

kÐk`1
end while

hand side of the previous inequalities over nk`1 to obtain
the sample allocation. However, we have no knowledge
about all the involved policies. Thus, we resort to a surro-
gate bound that leads to an allocation better than the uniform
one. To this purpose, given an IRL algorithm A , we follow
the spirit of (Zanette et al., 2019) extending the maximiza-
tion over a set of policies ΠA

k that, with high probability,
contains the needed ones:

ΠA
k “

#

πP∆A
S : sup

µ0P∆S
µ0

ᵀ
´

V ˚M1YA pR
xPk
q
´V πM1YA pR

xPk
q

¯

ď4εk

+

,

where the value of εk will be defined later. Here is the first
point in which we actually make use of an IRL algorithm
A , whose goal is to choose a reward in the feasible reward
set. The rationale in the definition of ΠA

k is to constrain the
search for the policy to those yielding a value function at
iteration k close to the estimated optimal one. We can now
formulate the optimization problem:

εk`1 :“ min
nk`1PNSˆA

max
µ0P∆

SˆA

πP∆A
S

µ0
ᵀ
`

ISˆA´γ
1P 1π

˘´1Ck`1

s.t. µ0
ᵀE

´

V ˚M1YA pR
xPk
q
´V πM1YA pR

xPk
q

¯

ď4εk
ÿ

ps,aqPSˆA

nk`1ps,aqďnmax.

(4)

The program is a minimax in which we look for the sam-
ple allocation nk`1 that minimizes the bound on the value
function difference of Lemma 4.1, under the worst possible
policy π in the set ΠA

k and initial state-action distribution
µ0. Therefore εk, used to define ΠA

k , is the objective func-
tion value of the previous iteration k. It can be proved that
under the good event E , ΠA

k contains a specimen of all
the required optimal policies, i.e., π˚, pπ˚k`1, qπ˚k`1, and π˚

(Corollary B.2). The constant nmax is the maximum num-
ber of samples allowed per iteration and it is a user-defined
parameter. By choosing the nmax value, the user has to
make a trade-off between time and sample efficiency. If the
value of nmax is too high, the algorithm achieves the de-
sired ε-correctness very quickly but with a possible sample
inefficient behavior (close to uniform); if the value of nmax

is too low, many iterations are needed to achieve the desired
accuracy ε, but choosing more carefully where to sample.
The pseudocode of TRAVEL is reported in Algorithm 2.

It is worth noting that we have not specified which IRL
algorithm should be employed to recover a reward function.
Indeed, any IRL algorithm A can be used for this purpose,
provided that it selects a reward function within the feasible
set R

pP. We stress that the main goal of this paper is not to
provide a new IRL algorithm for choosing a good reward
from the feasible reward set, but to explain how to recover a
good approximation of this feasible set.

6.1. Sample Complexity

In this section, we prove that TRAVEL fulfills the PAC-
condition of Definition 5.1. In order to provide this
result, we use as suboptimality gaps the negative ad-
vantage: ´A˚M1Yrrps,aq“V

˚
M1Yrrpsq´Q

˚
M1Yrrps,aq for all

ps,aqPSˆA, where rrParginfrPRP
}r´A pR

pPK
q}8 is the

reward function in the exact feasible set RP closest to the
one returned by the IRL algorithm A applied to the esti-
mated feasible set R

pPK
.

Theorem 6.1 (Sample Complexity of TRAVEL). If Algo-
rithm 2 stops at iteration K with accuracy εK and accuracy
εK´1 at the previous iteration, then with probability at least
1´δ it fulfills Definition 5.1, for arbitrary target reward
functions r and qr, with a number of samples upper bounded
by n“

ř

ps,aqPSˆANKps,aq where:

NKps,aqď rO
ˆ

min

"

γ2R2
max

p1´γ1q2p1´γq2ε2K
,

γ2R2
maxε

2
K´1

p1´γq2p´A˚M1Yrrps,aqq
2ε2K

*˙

.

The significance of this result depends on two main com-
ponents: the ratio between the two objectives εK´1 and εK
and the suboptimality gaps. The latter depends, although
indirectly, on the employed IRL algorithm A . The more
suboptimal the action is, the less the action will be sampled.
Instead, the εK´1{εK component depends on the choice of
the nmax value: if this value is small, then the ratio will
also be small. As discussed in the previous section, if the
nmax value is too high, the algorithm tends to sample every
action-state pair uniformly.

6.2. Discussion

The upper bound on the sample complexity that we
derive in the problem-independent version is of order
rO
´

SA
p1´γ1q2p1´γq2ε2

¯

. Although the problem we address
is intimately different, it is interesting to compare this result
with the well-known lower bound for RL with a genera-
tive model (Azar et al., 2013): rO

´

SA
p1´γq3ε2

¯

, matched by
several algorithms (Azar et al., 2012; Sidford et al., 2018;
Zanette et al., 2019). Thus, when γ1“γ, we have an expo-
nent 4 for the term 1{p1´γq. One might be tempted to think
that this is a consequence of using Höeffding’s inequality
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instead of the tighter Bernstein’s inequality.3 We think that
this might not be the case as the crucial property that allows
achieving power 3 is a careful bound of the variance of
pPV ˚ (Azar et al., 2013, Lemmas 7 and 8). There are two
reasons why we cannot exploit this bound. First, we con-
sider the expectations taken w.r.t. a different target model
P 1, while the estimates are conducted on the source one P .
Second, we are required, based on Theorem 3.1, to estimate
the variance of pPV and V is unknown and hard to estimate.

7. Related Works
The IRL problem was introduced by Ng & Russell (2000).
Most early IRL algorithms assume that the dynamics of
the system are known. Many criteria were proposed for
selecting a good reward function in the feasible reward set,
based on features matching (Abbeel & Ng, 2004), maximum
margin (Ratliff et al., 2006a), maximum entropy (Ziebart
et al., 2008; 2010), Bayesian framework (Ramachandran
& Amir, 2007), boosting methods (Ratliff et al., 2006b)
and Gaussian processes (Levine et al., 2011). A limited
number of IRL algorithms can be considered model-free:
Relative Entropy Inverse Reinforcement Learning (Boular-
ias et al., 2011), Generative Adversarial Imitation Learning
(Ho & Ermon, 2016), Gradient-based Inverse Reinforce-
ment Learning (Pirotta & Restelli, 2016) and its extensions
(Metelli et al., 2017; 2020; Ramponi et al., 2020b;a). Other
works on Imitation Learning use an active approach, such
as the one used in this paper. Judah et al. (2012) draw a
reduction from active imitation learning to i.i.d. active learn-
ing. In (Ross & Bagnell, 2010) and (Ross et al., 2011), the
authors propose two approaches based on executing the esti-
mated policy and asking an oracle for a dataset containing
the action performed by the expert. In these papers, however,
no guarantees on the sample complexity are provided. The
closest work to ours is by Lopes et al. (2009), which propose
a method to actively ask for samples from a generator to
perform IRL, adopting a Bayesian approach. However, they
assume knowledge of the real transition model and the main
effort lies in estimating the expert’s policy. Since we do not
assume the knowledge of the transition model, this work is
not fully comparable to our setting.

8. Experimental Evaluation
In this section, we provide the experimental evaluation of
TRAVEL with a threefold goal. In the first experiment, we
motivate the need for employing IRL over BC when our
goal is to transfer knowledge to a target environment (Sec-
tion 8.1). Then, we highlight the benefits of the sampling
strategy of TRAVEL over Uniform Sampling (Section 8.2).

3In the RL with generative model setting, Höeffding’s inequal-
ity leads to the same exponent 4.

Finally, we show how TRAVEL can be combined with dif-
ferent IRL algorithms (Section 8.3). In all the experiments,
we employ reward functions that depend on the state only
and the algorithms are evaluated according to the follow-
ing performance index }V ˚M1YrE

´V pπ˚

M1YrE }
2
2, where the

symbols are defined in the previous sections (we omit the
subscript M1Y in the plots). The complete experimental
results are provided in Appendix D.

8.1. IRL vs Behavioral Cloning

In this section, we show the benefits of IRL over BC when
we want to learn a transferable reward function. In BC, the
collected samples are used to estimate a policy describing
the expert’s behavior directly. The recovered policy is typ-
ically highly dependent on the environment in which the
expert is acting, therefore, in many cases, it cannot be trans-
ferred to different environments. We use a 3ˆ3 Gridworld
environment with an obstacle in the central cell that makes
the agent bouncing back with probability p and surpassing
it with probability 1´p. If p»0 the optimal policy is to col-
lide with the obstacle until the agent reaches the goal state.
While, if p»1, an optimal agent gets around the obstacle.
The source MDP has obstacle’s probability p“0.8 and tar-
get MDPs are four Gridworlds with obstacle’s probabilities
pPt0,0.2,0.5,0.8u. For this experiment, we use a simple
IRL algorithm that enforces the conditions of Lemma 3.1
and chooses the reward function to maximize the minimum
action gap; we call it MaxGap-IRL (details in Appendix C).
The results in Figure 2 show that the performance of BC
deteriorates as the source and target MDPs become more
dissimilar, as expected. Differently, TRAVEL combined
with MaxGap-IRL allows recovering a reward function that
leads to an optimal policy. Thus, as long as the target and
source environments are the same (Figure 2 first plot) BC is
a valid alternative, but IRL becomes unavoidable when the
need for transferring knowledge arises.

8.2. TRAVEL vs Uniform Sampling

As discussed in Section 5.3, Uniform Sampling IRL and
TRAVEL differ from the strategy used to allocate samples
to the state-action pairs. While Uniform Sampling queries
the generative model uniformly, TRAVEL actively allocates
samples in the state-action pairs that will carry “more infor-
mation”. We consider a chain MDP composed by 6 states
S“ts0,...,s4,sbu and 10 actions A“tag,a1,...,a9u (Fig-
ure 3). We have tested both algorithms and the results are
shown in Figure 4. Although Uniform Sampling IRL seems
to perform better with a small number of samples, we ob-
serve that TRAVEL recovers a reward function that allows
achieving a near-optimal performance in less than half of
the samples needed by Uniform Sampling.
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Figure 2. Comparison between TRAVEL and Behavioral Cloning (BC) on Gridworld environment, with different values of obstacle’s
probability for the target MDP M1. 200 runs, 98% c.i.
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8.3. TRAVEL with Different IRL Algorithms

In this section, we show the performance of TRAVEL paired
with different IRL algorithms: MaxGap-IRL, MaxEnt-
IRL (Ziebart et al., 2008), Linear-IRL (Abbeel & Ng, 2004),
and Random-IRL. The Random IRL selects a random re-
ward function from the estimated feasible set of rewards.
We compare the algorithms on 200 random generated MDPs.
The results in Figure 5 show that MaxGap-IRL, Linear-IRL,
and MaxEnt-IRL display a faster convergence rate than Ran-
dom. This is the expected behavior as these IRL algorithms
choose the reward function in the feasible set with a mean-
ingful criterion. However, the curve of Random-IRL shows
an improvement, proving that the feasible set shrinks, but it
struggles harder to reach a near-zero error as it likely selects
less discriminating rewards. This underlines how a reason-
able choice of the reward function within the feasible set
can have a positive impact on performance.

9. Conclusions
In this paper, we have studied how to efficiently learn a
transferable reward from a theoretical perspective. Using
the concept of feasible reward set, introduced by Ng & Rus-
sell (2000), we have derived novel bounds on the error of
the reward function, given an error on the transition model
and the expert’s policy. We have then obtained similar re-
sults on the performance in a target environment using the

rewards recovered from a source environment, introduc-
ing new simulation lemmas. Based on these findings, we
have proposed two algorithms, Uniform Sampling IRL and
TRAVEL, which, given a generator model for the source
MDP, decide the sampling strategy for querying the genera-
tor. These algorithms use an IRL algorithm, decided by the
user, as choice function. We have derived from the Uniform
Sampling IRL a sample complexity bound which, to the
best of our knowledge, is the first sample complexity result
for the IRL setting. TRAVEL, instead, adapts the sampling
strategy to the specific environment at hand. Leveraging this
characteristic of the algorithm, we have obtained a problem-
dependent bound on its sample complexity. Despite the
limitations of the considered setting, we believe that this pa-
per makes a first step towards a better understanding of the
theoretical aspects of IRL. Many appealing future research
directions arise. One central theoretical question is:

(Q3) Is Inverse Reinforcement Learning intrinsically more
difficult than Reinforcement Learning? Is the sample
complexity rO

´

SA
p1´γ1q2p1´γq2ε2

¯

tight?

We are currently unable to answer. From an algorithmic
perspective, our setting limits to tabular MDPs and assumes
access to a generative model. Future investigations should
include the extension to episode-based interaction and the
introduction of function approximation techniques to cope
with continuous problems.
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A. Notation and Symbols
In this appendix, we report the explicit definitions of the operators and functions that we have employed in the main paper
and in the appendix (Table 1).

Symbol Signature Definition

E RS
ÑRSˆA pEfqps,aq“fpsq

P RS
ÑRSˆA pPfqps,aq“

ř

s1PS pps
1|s,aqfps1q

π RSˆA
ÑRS pπfqpsq“

ř

aPAπpa|sqfps,aq

Eᵀ RSˆA
ÑRS pEᵀfqpsq“

ř

aPAfps,aq

P ᵀ RSˆA
ÑRS pP ᵀfqpsq“

ř

ps1,aqPSˆApps|s
1,aqfps1,aq

πᵀ RS
ÑRSˆA pπᵀfqps,aq“πpa|sqfpsq

M RSˆA
ÑRS pMfqpsq“maxaPAfps,aq

Bπ RSˆAÑRSˆA pBπfqps,aq“fps,aq1tπpa|sqą0u

B
π RSˆAÑRSˆA pB

π
fqps,aq“fps,aq1tπpa|sq“0u

ISˆA RSˆAÑRSˆA pISˆAfqps,aq“fps,aq
IS RSÑRS pISfqpsq“fpsq

pISˆA´γPπq
´1 RSˆAÑRSˆA ppISˆA´γPπq

´1
fqps,aq“

ř

iPN

´

pγPπq
i
f
¯

ps,aq

pIS´γπP q
´1 RSÑRS ppIS´γπP q

´1
fqpsq“

ř

iPN

´

pγπP q
i
f
¯

psq

1S RS 1Spsq“1
1SˆA RSˆA 1SˆAps,aq“1
0S RS 0Spsq“0
0SˆA RSˆA 0SˆAps,aq“0

Table 1. Operators and functions.

B. Proofs and Derivations
In this section, we provide the proofs of the results that are reported in the main paper.

B.1. Proofs of Section 3

Lemma 3.1 (Feasible Reward Set Implicit (Ng & Russell, 2000)). Let P“pM,πEq be an IRL problem. Let rPRSˆA, then
r is a feasible reward, i.e., rPRP if and only if for all ps,aqPSˆA it holds that:

(i) Qπ
E

MYrps,aq´V
πE

MYrpsq“0 if πEpa|sqą0,

(ii) Qπ
E

MYrps,aq´V
πE

MYrpsqď0 if πEpa|sq“0.

Furthermore, if condition (ii) holds with the strict inequality, πE is the unique optimal policy under r, i.e., Π˚MYr“tπ
Eu.

Proof. The proof is analogous of that of Theorem 3 of (Ng & Russell, 2000). For every state sPS, it must be that all actions aEPA
such that πEpaE |sqą0 fulfill for all other actions aPA that Qπ

E

MYrps,a
E
qěQπ

E

MYrps,aq. Furthermore, all actions aEPA such that
πEpaE |sqą0 must yield the same performance equal to Qπ

E

MYrps,a
E
q“V π

E

MYrpsq.

Lemma B.1. Let P“pM,πEq be an IRL problem. A Q-function satisfies condition of Lemma 3.1 if and only if there exist
ζPRSˆA

ě0 and V PRS such that:

QMYr“´B
πE

ζ`EV,

Furthermore, }V }8ď}QMYr}8.

Proof. We can easily see that all the Q-functions of the form QMYr“´B
πE

ζ`EV satisfy the conditions of Lemma 3.1. First notice

that the corresponding value function is given by VMYr“π
EQMYr“V , having observed that πEB

πE

“0S and πEE“IS . Let sPS
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and let aPA be such that πEpa|sqą0, then we have QMYrps,aq“V psq“VMYrpsq, that is condition (i) of Lemma 3.1. Instead, if
aPA such that πEpa|sq“0, then we have QMYrps,aq“´ζps,aq`V psq“´ζps,aq`VMYrpsqďVMYrpsq, that is condition (ii) of
Lemma 3.1. For the converse, suppose that QMYr satisfies conditions of Lemma 3.1. We take V “VMYr and ζ“EVMYr´QMYrě0.

For the second statement, consider a state sPS and an action aPA such that πEpa|sqą0. Then, we have QMYrps,aq“V psq. Conse-
quently, }V }8ď}QMYr}8.

Lemma 3.2 (Feasible Reward Set Explicit). Let P“pM,πEq be an IRL problem. Let rPRSˆA, then r is a feasible reward,
i.e., rPRP if and only if there exist ζPRSˆA

ě0 and V PRS such that:

r“´B
πE

ζ`pE´γP qV.

Proof. Simply recall that QMYr“
`

ISˆA´γPπ
E
˘´1

r and that for γă1 the matrix is invertible. In other words, having fixed πE , P ,
and γă1, there is a one-to-one correspondence between Q-functions and rewards. From Lemma B.1, we have:

r“
´

ISA´γPπ
E
¯

ˆ

´B
πE

ζ`EV

˙

“´B
πE

ζ`γPπEB
πE

ζ`
´

E´γPπEE
¯

V,

and we observe that πEB
πE

“0S and πEE“IS .

Theorem 3.1 (Error Propagation). Let P“pM,πEq and pP“pxM,pπEq be two IRL problems. Then, for any rPRP such

that r“´B
πE

ζ`pE´γP qV and }r}8ďRmax there exists prPR
pP such that element-wise it holds that:

|r´pr|ďB
πE

BpπE

ζ`γ
ˇ

ˇ

ˇ

´

P´ pP
¯

V
ˇ

ˇ

ˇ
.

Furthermore, }ζ}8ď
Rmax

1´γ and }V }8ď
Rmax

1´γ .

Proof. From Lemma 3.2, we can express the reward functions belonging to RP and R
pP as:

r“´B
πE

ζ`pE´γP qV,

pr“´B
pπE

pζ`
´

E´γ pP
¯

pV ,

where V, pV PRS and ζ,pζPRSˆA
ě0 . Since we look for the existence of prPR

pP, we provide a specific choice of pV and pζ: pV “V and

pζ“B
πE

ζ. Thus, we have:

r´pr“´

ˆ

B
πE

ζ´B
pπE

B
πE

ζ

˙

´γ
´

P´ pP
¯

V

“´

ˆ

ISˆA´B
pπE

˙

B
πE

ζ´γ
´

P´ pP
¯

V

“´B pπE

B
πE

ζ´γ
´

P´ pP
¯

V,

having observed that B
π

is linear and commutative and by observing that Bπ`B
π
“ISˆA. We now take the absolute value and by

applying the triangular inequality, we obtain:

|r´pr|ďB pπE

B
πE

ζ`γ
ˇ

ˇ

ˇ

´

P´ pP
¯

V
ˇ

ˇ

ˇ
.

We now bound the L8-norms by using the condition }r}8ďRmax. First of all, we observe that it must be that }ζ}8ď Rmax
1´γ

being the
advantage function. Then, from Lemma B.1 we have }V }8ď Rmax

1´γ
.

B.2. Proofs of Section 4

Lemma B.2 (Simulation Lemma 0). Let M1“pS,A,p1,γ1q be an MDPzR, let r,prPRSˆA be two reward functions, and let
πP∆A

S be a policy. Then, the following equality holds element-wise:

V πM1Yr´V
π
M1Ypr“

`

IS´γ
1πP 1

˘´1
πpr´prq.

Proof. The result is a simple application of the Bellman’s equation:

V πM1Yr´V
π
M1Ypr“

`

IS´γ
1πP 1

˘´1
πr´

`

IS´γ
1πP 1

˘´1
πpr“

`

IS´γ
1πP 1

˘´1
πpr´prq.
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Lemma 4.1 (Simulation Lemma 1). Let M1“pS,A,p1,γ1q be an MDPzR, let r,prPRSˆA be two reward functions. Then, for
every π˚PΠ˚M1Yr and pπ˚PΠ˚M1Ypr optimal policies for the MDPs M1Yr and M1Ypr respectively, the following inequalities
hold element-wise:

Q˚M1Yr´Q
˚
M1Yprď

`

ISˆA´γ
1P 1π˚

˘´1
pr´prq,

Q˚M1Yr´Q
˚
M1Yprě

`

ISˆA´γ
1P 1pπ˚

˘´1
pr´prq.

In particular, it holds that:
›

›

›
Q˚M1Yr´Q

˚
M1Ypr

›

›

›

8
ď max
πPtπ˚,pπ˚u

›

›

›

`

ISˆA´γ
1P 1π

˘´1
pr´prq

›

›

›

8
.

Proof. We exploit the facts: Q˚M1YprěQ
π˚

M1Ypr and Q˚M1Yr“Q
π˚

M1Yr:

Q˚M1Yr´Q
˚
M1YprďQ

π˚

M1Yr´Q
π˚

M1Ypr

“
`

ISˆA´γ
1P 1π˚

˘´1
r´

`

ISˆA´γ
1P 1π˚

˘´1
pr

“
`

ISˆA´γ
1P 1π˚

˘´1
pr´prq.

For the second inequality, we exploit the facts: Q˚M1YrěQ
pπ˚

M1Yr and Q˚M1Ypr“Q
pπ˚

M1Ypr . The result is obtained by the very same
derivation reversing the roles of π˚ and pπ˚.

For the L8-norm inequality, we simply observe:
›

›Q˚M1Yr´Q
˚
M1Ypr

›

›

8
ďmax

!
›

›

›

`

ISˆA´γ
1P 1π˚

˘´1
pr´prq

›

›

›

8
,
›

›

›

`

ISˆA´γ
1P 1pπ˚

˘´1
pr´prq

›

›

›

8

)

“ max
πPtπ˚,pπ˚u

›

›

›

`

ISˆA´γ
1P 1π

˘´1
pr´prq

›

›

›

8
.

Lemma 4.2 (Simulation Lemma 2). Let M1“pS,A,p1,γ1q be an MDPzR, let r,prPRSˆA be two reward functions, and let
pπ˚PΠ˚M1Ypr be an optimal policy for M1Ypr. Then, for every π˚PΠ˚M1Yr optimal policy for MDP M1Yr, the following
inequality holds element-wise:

V ˚M1Yr´V
pπ˚

M1Yrď
`

IS´γ
1
pπ˚P 1

˘´1
pπ˚´pπ˚q

ˆpQ˚M1Yr´Q
˚
M1Yprq.

(1)

In particular, it holds that:
›

›

›
V ˚M1Yr´V

pπ˚

M1Yr

›

›

›

8
ď

2

1´γ1

›

›

›
Q˚M1Yr´Q

˚
M1Ypr

›

›

›

8
. (2)

Proof. To perform the derivation we introduce the maximum operatorM , i.e., pMgqpsq“maxaPAgps,aq for gPRSˆA and the following
Bellman operators, defined in terms of a policy πP∆A

S , a reward function rPRSˆA and for f PRS :

T˚M1Yrf“M pr`γPfq,

TπM1Yrf“πpr`γPfq.

Let us now consider the following derivation in which we omit the M1
Y subscript for simplicity:

V ˚r ´V
pπ˚

r “T˚r V
˚
r ´T

pπ˚

r V pπ˚

r (P.1)

“T˚r V
˚
r ˘T

π˚

r V ˚
pr ˘T

π˚

pr V ˚
pr ˘T

˚
pr V

˚
pr ˘T

pπ˚

r V ˚
pr ´T

pπ˚

r V pπ˚

r

“Tπ
˚

r V ˚r ´T
π˚

r V ˚
pr `T

π˚

r V ˚
pr ´T

π˚

pr V ˚
pr `T

π˚

pr V ˚
pr ´T

˚
pr V

˚
pr `T

pπ˚

pr V ˚
pr ´T

pπ˚

r V ˚
pr `T

pπ˚

r V ˚
pr ´T

pπ˚

r V pπ˚

r (P.2)

“γ1π˚P 1
`

V ˚r ´V
˚
pr

˘

`π˚pr´prq`pπ˚ppr´rq`γ1pπ˚P 1
´

V ˚
pr ´V

pπ˚

r

¯

(P.3)

“γ1pπ˚´pπ˚qP 1
`

V ˚r ´V
˚
pr

˘

`pπ˚´pπ˚qpr´prq`γ1pπ˚P 1
´

V ˚r ´V
pπ˚

r

¯

“pπ˚´pπ˚q
`

Q˚r ´Q
˚
pr

˘

`γ1pπ˚P 1
´

V ˚r ´V
pπ˚

r

¯

(P.4)

“
`

IS´γ
1
pπ˚P 1

˘´1
pπ˚´pπ˚q

`

Q˚r ´Q
˚
pr

˘

, (P.5)
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where line (P.1) follows from the fixed-point equations V ˚r “T˚r V ˚r and V pπ˚

r “T pπ˚

r V pπ˚

r . Line (P.2) follows by observing that
T˚r V

˚
r “T

π˚

r V ˚r since π˚ is an optimal policy for r and that T˚
pr V

˚
pr “T

pπ˚

pr V ˚
pr since pπ˚ is an optimal policy for pr. Line (P.3) de-

rives from the definition of the Bellman operators and having observed that Tπ
˚

pr V ˚
pr ´T

˚
pr V

˚
pr ď0. Line (P.4) derives from the definition of

Q-function and line (P.5) is obtained by exploiting the recursion over the term V ˚r ´V
pπ˚

r .

For the L8 inequality, we simply observe:
›

›

›
V ˚M1Yr´V

pπ˚

M1Yr

›

›

›

8
ď

›

›

›

`

IS´γ
1
pπ˚P 1

˘´1
pπ˚´pπ˚q

`

Q˚M1Yr´Q
˚
M1Ypr

˘

›

›

›

8

ď

›

›

›

`

IS´γ
1
pπ˚P 1

˘´1
›

›

›

8

›

›π˚´pπ˚
›

›

8

›

›Q˚M1Yr´Q
˚
M1Ypr

›

›

8

ď
2

1´γ1
›

›Q˚M1Yr´Q
˚
M1Ypr

›

›

8
,

where we exploited the fact that
›

›

›

`

IS´γ
1
pπ˚P 1

˘´1
›

›

›

8
“ 1

1´γ1
and that

›

›π˚´pπ˚
›

›

8
ď2 being the maximum over the states of the total

variation divergence between two policies.

Lemma B.3 (Sum of losses (Zanette et al., 2019)). Let M1“pS,A,p1,γ1q be an MDPzR, let rPRSˆA be a reward function,
and let πP∆A

S be a policy. Then, the following equality holds element-wise:

V ˚M1Yr´V
π
M1Yr“´

`

IS´γ
1P 1π

˘´1
πA˚M1Yr,

where A˚M1Yr“Q
˚
M1Yr´EV

˚
M1Yr is the advantage function.

Proof. The result is proved in Lemma 6.1 of (Kakade & Langford, 2002).

B.3. Proofs of Section 5

Lemma 5.1. Let S be a sampling strategy. Let RP be the exact feasible set and R
pP be the feasible set recovered after

observing ně0 samples collected in the source MDPzR M. Let pr,qrqPRPˆR
pP be a pair of target rewards, if S is

pε,δ,nq-correct for MDPzR M1 and for the target rewards pr,qrq, as in Definition 5.1, then it holds that:

inf
prPR

xP

sup
pπ˚PΠ˚M1Ypr

›

›

›
V ˚M1Yr´V

pπ˚

M1Yr

›

›

›

8
ď

2ε

1´γ1
,

inf
rPRP

sup
π˚PΠ˚M1Yr

›

›

›
V ˚M1Yqr´V

π˚

M1Yqr

›

›

›

8
ď

2ε

1´γ1
.

Proof. The proof simply combines Definition 5.1 and the L8 inequality of Lemma 4.2. Suppose that S is an pε,δ,nq-correct sampling
strategy w.r.t. to M and pr,qrq as target reward functions. Thus, it holds that:

inf
prPR

xP

›

›

›
Q˚M1Yr´Q

˚
M1Ypr

›

›

›

8
ďε and inf

rPRP

›

›

›
Q˚M1Yqr´Q

˚
M1Yr

›

›

›

8
ďε.

Let us now consider the following derivation:

inf
prPR

xP

sup
pπ˚PΠ˚M1Ypr

›

›

›
V ˚M1Yr´V

pπ˚

M1Yr

›

›

›

8
ď

2

1´γ1
inf

prPR
xP

sup
pπ˚PΠ˚M1Ypr

›

›Q˚M1Yr´Q
˚
M1Ypr

›

›

8
“

2

1´γ1
inf

prPR
xP

›

›Q˚M1Yr´Q
˚
M1Ypr

›

›

8
ď

2ε

1´γ1
,

where the supremum over the policies pπ˚ was removed since the L8-norm of the difference between the Q-functions does not depend on
the specific policy pπ˚, but just on pr. For the second inequality the derivation is analogous.

We introduce the notion of good event, i.e., the event under which the confidence intervals hold uniformly over SˆA and
for every kě1. At each iteration kPrKs, we need to guarantee that the good event holds simultaneously for one target
reward rPRP (for instance the expert’s reward function rE) and one target reward qrkPR pPk

(for instance the one outputted

by an IRL algorithm A pR
pPk
q. We decompose the reward functions based on Lemma 3.2 as r“´B

πE

ζ`pE´γP qV and

qrk“´B
pπE
k
pζk`pE´γ pPkqpVk.

Lemma 5.2 (Good Event). Let δPp0,1q, define the good event E as the event such that the following inequalities hold
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simultaneously for all ps,aqPSˆA and kě1:
`

B
πE

BpπE
k ζ

˘

ps,aqď
Rmax

1´γ
1tNkpsq“0u,

`

B
pπE
k Bπ

E
pζk
˘

ps,aqď
Rmax

1´γ
1tNkpsq“0u,

ˇ

ˇ

ˇ

´

P´ pPk

¯

V
ˇ

ˇ

ˇ
ps,aqď

Rmax

1´γ

d

2`kps,aq

N`k ps,aq
,

ˇ

ˇ

ˇ

´

P´ pPk

¯

pVk

ˇ

ˇ

ˇ
ps,aqď

Rmax

1´γ

d

2`kps,aq

N`k ps,aq
,

where ζ, pζk, V , and pVk are defined in Theorem 3.1 and `kps,aq“log
´

12SApN`k ps,aqq
2

δ

¯

. Then, PrpEqě1´δ.

Proof. First of all, we observe that the bound for the policy term is independent on the probability and that }ζ}8,}pζk}8ď Rmax
1´γ

. Thus,
we focus on the transition model. As explained in (Lattimore & Szepesvári, 2020, Section 4.4), suppose we visit m times a state-action
pair ps,aqPSˆA, thus we will change at most m times the estimate of pp¨|s,aq. For this reason, we will denote with prms the estimate

of the transition model made with m samples. For the sake of brevity, we denote βNkps,aqps,aq“
Rmax
1´γ

c

2`kps,aq

N`
k
ps,aq

. We just prove the

statement for V enforcing to hold with probability δ
2

:

Pr
´

Dkě1,Dps,aqPSˆA :
ˇ

ˇ

ˇ

´

P´ pPk
¯

V
ˇ

ˇ

ˇ
ps,aqąβNkps,aqps,aq

¯

ď
ÿ

ps,aqPSˆA
Pr

´

Dkě1:
ˇ

ˇ

ˇ

´

P´ pPk
¯

V
ˇ

ˇ

ˇ
ps,aqąβNkps,aqps,aq

¯

(P.6)

“
ÿ

ps,aqPSˆA
Pr

´

Dmě0:
ˇ

ˇ

ˇ

´

P´ pPrms

¯

V
ˇ

ˇ

ˇ
ps,aqąβmps,aq

¯

(P.7)

ď
ÿ

ps,aqPSˆA

ÿ

mě0

δ

6SApm`q2
(P.8)

“
δ

6

ˆ

1`
π2

6

˙

ď
δ

2
,

where line (P.6) derives from a union bound over SˆA, line (P.7) follows from observing that we just need to enforce the condition when
the transition model estimate changes, line (P.8) from a union bound over the possible values of m and applying Höeffding’s inequality,
having recalled that }V }8,}pVk}8ď Rmax

1´γ
.

Corollary B.1. Let S be an iterative sampling strategy. Let RP be the exact feasible set and R
pPK

the estimated feasible
set after K iterations. Under the good event E , the conditions of Definition 5.1 are satisfied when either of the following
conditions are satisfied:

(i) sup
ps,aqPSˆA

1

1´γ1
CKps,aqďε;

(ii) sup
πPΠ:

sup
µ0P∆SˆA

µ0
ᵀ
`

ISˆA´γ
1P 1π

˘´1CKďε, where Π:“
´

Ş

rPRP
Π˚M1Yr

¯

Y

´

Ş

prPR
xPK

Π˚M1Ypr

¯

.

Proof. We apply Lemma 4.1 followed by the reward error propagation of Theorem 3.1:

inf
prKPR

xPK

›

›Q˚M1Yr´Q
˚
M1YprK

›

›

8
ď inf

prKPR
xPK

max
πPtπ˚,pπ˚

K
u

›

›

›

`

ISˆA´γ
1P 1π

˘´1
pr´prKq

›

›

›

8
ď max
πPtπ˚,pπ˚

K
u

›

›

›

`

ISˆA´γ
1P 1π

˘´1CK
›

›

›

8
,

inf
rPRP

›

›Q˚M1YqrK
´Q˚M1Yr

›

›

8
ď inf
rPRP

max
πPtqπ˚

K
,π˚u

›

›

›

`

ISˆA´γ
1P 1π

˘´1
prK´rq

›

›

›

8
ď max
πPtqπ˚

K
,π˚u

›

›

›

`

ISˆA´γ
1P 1π

˘´1CK
›

›

›

8
,

holding for policies arbitrarily selected in the corresponding sets: π˚PΠ˚M1Yr , pπ˚KPΠ˚M1YprK
, qπ˚KPΠ˚M1YqrK

, and π˚PΠ˚M1Yr , with
also prKParginf

prKPR
xPK

|r´prK | and rParginfrPRP
|qrK´r|. Since r,rPRP and prK ,qrKPR

pPK
, we can select:

π˚,π˚PΠ:M1YRP
:“

č

rPRP

Π˚M1Yr and pπ˚K ,qπ
˚
KPΠ:M1YR

xPK

:“
č

prPR
xPK

Π˚M1Ypr.
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Therefore, having defined Π:“Π:M1YRP
YΠ:M1YR

xPK

, we have:

max

#

inf
prKPR

xPK

›

›Q˚M1Yr´Q
˚
M1YprK

›

›

8
, inf
rPRP

›

›Q˚M1YqrK
´Q˚M1Yr

›

›

8

+

ď sup
πPΠ:

›

›

›

`

ISˆA´γ
1P 1π

˘´1CK
›

›

›

8

“ sup
πPΠ:

sup
µ0P∆SˆA

µ0
ᵀ`ISˆA´γ

1P 1π
˘´1CK .

This proves the statement (ii). For the statement (i), it suffices to observe that:

sup
πPΠ:

sup
µ0P∆SˆA

µ0
ᵀ`ISˆA´γ

1P 1π
˘´1CKď 1

1´γ1
sup

ps,aqPSˆA
CKps,aq,

having observed that
›

›

›
µ0

ᵀ
`

ISˆA´γ
1P 1π

˘´1
›

›

›

8
ď 1

1´γ1
.

We now move to study the sample complexity of the uniform sampling strategy.

Theorem 5.1 (Sample Complexity of Uniform Sampling IRL). If Algorithm 1 stops at iteration K with accuracy εK , then
with probability at least 1´δ it fulfills Definition 5.1, for arbitrary target reward functions r and qr, with a number of samples
upper bounded by:

nď rO
ˆ

γ2R2
maxSA

p1´γ1q2p1´γq2ε2K

˙

.

Proof. We start from Corollary B.1 and we further bound:

1

1´γ1
sup

ps,aqPSˆA
Ckps,aq“ Rmax

p1´γ1qp1´γq
sup

ps,aqPSˆA

˜

1tNkpsq“0u`γ

d

2`kps,aq

N`k ps,aq

¸

.

After K iterations having collected a total of NK“Knmax samples, we know that N`Kps,aqě
NK
SA
ě1 and, therefore, 1tNKpsq“0u“0.

Thus, it suffices to enforce for every ps,aqPSˆA:

Rmaxγ

p1´γ1qp1´γq

d

2`Kps,aq

N`Kps,aq
“εK ùñ NKps,aq“

2γ2R2
max`Kps,aq

p1´γ1q2p1´γq2ε2K
.

From Lemma B.8, we conclude that the following number of samples is sufficient to ensure the accuracy ε:

NKps,aqď
´4γ2R2

max

p1´γ1q2p1´γq2ε2K
W´1

˜

´
p1´γ1q2p1´γq2ε2K

4γ2R2
max

c

δ

12SA

¸

ď
8γ2R2

max

p1´γ1q2p1´γq2ε2K
log

˜

4γ2R2
max

p1´γ1q2p1´γq2ε2K

c

12SA

δ

¸

“ rO
ˆ

γ2R2
max

p1´γ1q2p1´γq2ε2K

˙

.

By summing n“
ř

ps,aqPSˆANKps,aq, we obtain the result.

B.4. Proofs of Section 6

In this section, we perform the sample complexity analysis of the TRAVEL algorithm.

B.4.1. CORRECTNESS OF THE ALGORITHM

The goal of this section is to prove that the algorithm will retain, in every iteration k, some optimal policy π˚ of MDP
M1Yr, some optimal policy pπ˚k`1 of MDP M1Yqrk, and prk“A pR

pPk
q is obtained by using IRL algorithm A . For every

iteration kPrKs, we define the following symbols:

ε0“
1

4p1´γ1q
,

επk“ sup
µ0P∆SˆA

µ0
ᵀ
`

ISˆA´γ
1P 1π

˘

Ck,

εk“ max
πPΠA

k´1

επk ,
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ΠA
k “

#

πP∆A
S : sup

µ0P∆S
µ0

ᵀ
`

V ˚M1Yprk
´V πM1Yprk

˘

ď4εk

+

,

Moreover, we recall the two special sets of policies, for every kPrKs:

π˚PΠ:M1YRP
“

č

rPRP

Π˚M1Yr, pπ˚k PΠ:M1YR
xPk

“
č

prPR
xPk

Π˚M1Ypr

The following analysis will be conducted by using the symbols π˚ and pπ˚k as arbitrary policies belonging to the corresponding
sets. Notice, by the way, that, under Assumption 4.1, we have pπ1qEPΠ:M1YRP

.

Lemma B.4 (π˚ propagation). Under the good event E , if π˚,pπ˚k PΠA
k´1 then π˚PΠA

k .

Proof. Let us start with the following inequality, defined in terms of rPRP, that will be specified later:

V ˚M1Yprk
´V π

˚

M1Yprk
“V ˚M1Yprk

´V ˚M1Yr
looooooooomooooooooon

(a)

`V ˚M1Yr´V
π˚

M1Yprk
looooooooomooooooooon

(b)

.

For (b) we observe that V ˚M1Yr“V
π˚

M1Yr , that follows by definition of π˚. Now we have:
ˇ

ˇ

ˇ
V π

˚

M1Yr´V
π˚

M1Yprk

ˇ

ˇ

ˇ
ď
`

IS´γ
1π˚P 1

˘´1
π˚ |prk´r| (P.9)

ď
`

IS´γ
1π˚P 1

˘´1
π˚Ck, (P.10)

where line (P.9) derives from Lemma B.2, line (P.10) from the reward error propagation (Theorem 3.1), having taken rParginfrPRP
|prk´

r|, and from the good event definition (Lemma 5.2). By taking the L8-norm, and recalling that π˚PΠA
k´1, we deduce:

sup
µ0P∆S

µ0
ᵀ
´

V ˚M1Yr´V
π˚

M1Yprk

¯

“επ
˚

k ď max
πPΠA

k´1

επk“εk. (P.11)

For (a) instead we observe that:

V ˚M1Yprk
´V ˚M1Yr“V

pπ˚
k

M1Yprk
´V π

˚

M1Yr (P.12)

“

ˇ

ˇ

ˇ

ˇ

ˇ

max
πPΠA

k´1

V πM1Yprk
´ max
πPΠA

k´1

V πM1Yr

ˇ

ˇ

ˇ

ˇ

ˇ

(P.13)

ď max
πPΠA

k´1

ˇ

ˇV πM1Yprk
´V πM1Yr

ˇ

ˇ,

where line (P.12) follows by definitions of pπ˚k and π˚ and line (P.13) is obtained by recalling that π˚,pπ˚k PΠA
k´1. Thus, we have:

sup
µ0P∆S

max
πPΠA

k´1

µ0
ᵀ`V πM1Yprk

´V πM1Yr

˘

“εk,

with an analogous derivation as the one employed starting from line (P.9), taking again rParginfrPRP
|prk´r|. It follows that

supµ0P∆S µ0
ᵀ
´

V ˚M1Yprk
´ pV π

˚

M1Yprk

¯

ď2εkď4εk, from which π˚PΠA
k .

Lemma B.5 (Accuracy Improvement). Under the good event E , for every πP∆A
S and k1ąk there exists prk1PR pPk1

such
that:

sup
µ0P∆S

µ0
ᵀ
´

V πM1Yprk1
´V πM1Yprk

¯

ď2επk .

Proof. Under the good event, the confidence intervals are non-increasing in k, i.e., for k1ąk we have Ck1ďCk. Consequently, having
fixed a policy πP∆A

S , it follows that επk1ďε
π
k . Thus, let rPRP, that will be specified later, and prk1 PR pPk1

. We have:

V πM1Yprk1
´V πM1Yprk

“V πM1Yprk1
´V πM1Yr`V

π
M1Yr´V

π
M1Yprk

ď
`

IS´γ
1πP 1

˘´1
πp|prk1´r|`|r´prk|q (P.14)

ď
`

IS´γ
1πP 1

˘´1
πpCk1`Ckq, (P.15)

where line (P.14) is obtained from Lemma B.2, line (P.15) derives from the reward error propagation (Theorem 3.1), having taken
prk1 Parginf

prk1PRxPk

|prk1´r| for the first addendum and rParginfrPRP
|r´prk| for the second addendum, and from the good event
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definition (Lemma 5.2). Thus, we have:

sup
µ0P∆S

µ0
ᵀ
´

V πM1Yprk1
´V πM1Yprk

¯

ď sup
µ0P∆S

µ0
ᵀ`IS´γ

1πP 1
˘´1

πCk1` sup
µ0P∆S

µ0
ᵀ`IS´γ

1πP 1
˘´1

πCk“επk1`επkď2επk ,

having just recalled that επk1ďε
π
k .

Lemma B.6. Under the good event E , if pπ˚k ,ξPΠA
k´1 and ξRΠA

k then ξ is suboptimal for some reward prk1PR pPk1
for all

k1ěk.

Proof. Let us consider the following decomposition:

V ξM1Yprk1
´V ˚M1Yprk1

ďV ξM1Yprk1
´V

pπ˚
k

M1Yprk1

“V ξM1Yprk1
´V ξM1Yprk

loooooooooomoooooooooon

(a)

`V ξM1Yprk
´V

pπ˚
k

M1Yprk
loooooooooomoooooooooon

(b)

`V
pπ˚
k

M1Yprk
´V

pπ˚
k

M1Yprk1
loooooooooomoooooooooon

(c)

,

where the inequality follows from V ˚M1Yprk1
ěV

pπ˚
k

M1Yprk1
. For (a) and (c) we apply Lemma B.5, having taken prk1 Parginf

prk1PRxPk

|prk1´r|

and rParginfrPRP
|r´prk| and we recall that ξ,pπ˚k PΠA

k´1 obtaining:

sup
µ0P∆S

µ0
ᵀ
´

V ξM1Yprk1
´V ξM1Yprk

¯

ď2εξkď2εk,

sup
µ0P∆S

µ0
ᵀ
ˆ

V
pπ˚
k

M1Yprk
´V

pπ˚
k

M1Yprk1

˙

ď2ε
pπ˚
k
k ď2εk.

For (b),we first note that V
pπ˚
k

M1Yprk
“V ˚M1Yprk

and then we observe that ξRΠA
k from which:

sup
µ0P∆S

µ0
ᵀ
ˆ

V
pπ˚
k

M1Yprk
´V ξM1Yprk

˙

“ sup
µ0P∆S

µ0
ᵀ
´

V ˚M1Yprk
´V ξM1Yprk

¯

ą4εk.

Putting all together we have that V ξM1Yprk1
´V ˚M1Yprk1

ă0 from which we conclude that ξ cannot be optimal for k1ěk.

Corollary B.2. If ε0“ 1
4p1´γq , then for every kě0, it holds that π˚,pπ˚k`1PΠA

k .

Proof. We prove the result by induction on k. For k“0 we have that for every policy πP∆A
S we have

supµ0P∆S µ0
ᵀ
´

V ˚M1Ypr0
´V πM1Ypr0

¯

ď 1
1´γ

ď4ε0. Thus, ΠA
0 “∆A

S , and in particular π˚,pπ˚1 PΠA
0 . Suppose that for every k1ăk the

statement hold, we prove it that it holds for k. Take k1“k´1, from the inductive hypothesis we have that π˚,pπ˚k PΠA
k´1. Then, from

Lemma B.4 it holds that π˚PΠA
k . By contradiction, suppose pπ˚k`1RΠA

k . Then, let jďk be the iteration such that pπ˚k`1PΠA
j´1 and

pπ˚k`1RΠA
j . From the inductive hypotesis, we have that pπ˚j PΠA

j´1. Thus, from Lemma B.6, it must be that pπ˚k`1 is suboptimal for all
j1ěj, in particular for j1“k`1, that is a contradiction.

Lemma B.7. Under the good event, let rrParginfrPRP
}r´prk}8 where prk“A pR

pPk
q, if πPΠA

k and π˚,pπ˚k PΠA
k´1 then

supµ0P∆S µ0
ᵀ
`

V ˚M1Yrr´V
π
M1Yrr

˘

ď6εk.

Proof. Let us consider the following derivation for prkPA pR pPk
q and rrParginfrPRP

}r´prk}8:

V ˚M1Yrr´V
π
M1Yrr“V

˚
M1Yrr´V

˚
M1Yprk

looooooooomooooooooon

(a)

`V ˚M1Yprk
´V πM1Yprk

loooooooooomoooooooooon

(b)

`V πM1Yprk
´V πM1Yrr

looooooooomooooooooon

(c)

.

For (b), we have that supµ0P∆S µ0
ᵀ
´

V ˚M1Yprk
´V πM1Yprk

¯

ď4εk since πPΠA
k . For (a), we have already proved in Equation (P.11) that

supµ0P∆S µ0
ᵀ
´

V ˚M1Yrr´V
˚
M1Yprk

¯

ďεk recalling the definition of rr. For (c), by definition of επk and recalling the definition of rr we have

that supµ0P∆S µ0
ᵀ
`

V πM1Yprk
´V πM1Yrr

˘

ďεπkďεk.

B.4.2. SAMPLE COMPLEXITY

Theorem 6.1 (Sample Complexity of TRAVEL). If Algorithm 2 stops at iteration K with accuracy εK and accuracy εK´1

at the previous iteration, then with probability at least 1´δ it fulfills Definition 5.1, for arbitrary target reward functions r
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and qr, with a number of samples upper bounded by n“
ř

ps,aqPSˆANKps,aq where:

NKps,aqď rO
ˆ

min

"

γ2R2
max

p1´γ1q2p1´γq2ε2K
,

γ2R2
maxε

2
K´1

p1´γq2p´A˚M1Yrrps,aqq
2ε2K

*˙

.

Proof. First of all, we observe that TRAVEL is optimizing a tighter bound (Corollary B.1 (ii)) compared to that of Uniform Sampling
IRL (Corollary B.1 (i)). Thus, it follows that the sample complexity of Uniform Sampling IRL applies to TRAVEL too. We now turn to
the problem-dependent analysis. Let us recall the definition of advantage function A˚M1Yrrps,aq“Q

˚
M1Yrrps,aq´V

˚
M1Yrrpsq. We first

derive a value of NKps,aq so that for all ps,aqPSˆA it holds that:

CKps,aq“Rmax

1´γ

˜

1tNkpsq“0u`γ

d

2`kps,aq

N`k ps,aq

¸

ď
´A˚M1Yrrps,aqεK

6εK´1
.

From which we obtain, having applied Lemma B.8:

NKps,aq“
72γ2R2

max`Kps,aqε
2
K´1

p1´γq2p´A˚M1Yrrps,aqq
2ε2K

ď
288γ2R2

maxε
2
K´1

p1´γq2p´A˚M1Yrrps,aqq
2ε2K

log

˜

144γ2R2
maxε

2
K´1

p1´γq2p´A˚M1Yrrps,aqq
2ε2K

c

12SA

δ

¸

“ rO
ˆ

γ2R2
maxε

2
K´1

p1´γq2p´A˚M1Yrrps,aqq
2ε2K

˙

.

From Lemma B.7, we know that supµ0P∆S µ0
ᵀ
`

V ˚M1Yrr´V
π
M1Yrr

˘

ď6εK . Thus, we have for every πPΠA
K :

`

IS´γ
1πP 1

˘´1
πCK´1ď´

εK
6εK´1

`

IS´γ
1πP 1

˘´1
πA˚M1Yrr

“
εK

6εK´1

`

V ˚M1Yrr´V
π
M1Yrr

˘

ďεK ,

where the equality follows from Lemma B.3.

B.5. Technical Lemmas

Lemma B.8. Let a,bě0 such that 2a
?
bąe. Then, the inequality xěalogpbx2q is satisfied for all xě´2aW´1

´

´ 1
2a
?
b

¯

,

where W´1 is the secondary component of the Lambert W function. Moreover, ´2aW´1

´

´ 1
2a
?
b

¯

ď4alogp2a
?
bq.

Proof. Let us consider the following derivation:

xěalogpbx2
q ùñ exěbax2a

ùñ ´
x

2a
e´

x
2a ě´

1

2a
?
b
.

Now we apply the Lambert W function, under the assumption ´ 1

2a
?
b
ď´ 1

e
:

xď´2aW0

ˆ

´
1

2a
?
b

˙

or xě´2aW´1

ˆ

´
1

2a
?
b

˙

,

where W0 is the principal component of the Lambert W function. We consider only the second inequality. Now, we bound the Lambert W
function starting from the inequality (Chatzigeorgiou, 2013): W´1p´e

´u´1
qě´1´

?
2u´u. From which, we obtain:

´2aW´1

ˆ

´
1

2a
?
b

˙

ď2
?

2a

b

logp2a
?
bq´1`2alogp2a

?
bqď4alogp2a

?
bq,

having bounded
?
x´1ď 1

2
x.

C. Max-Gap IRL
In this appendix, we report the formulation of Max-Gap IRL. The basic idea consists in applying the conditions of Lemma 3.1
and using as objective the minimum advantage function. We limit the search to state-only reward functions. This idea leads
to the linear program:

max
ζPRě0,rPRS

ζ
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s.t.
`

EπE´ISˆA
˘`

ISˆA´γPπ
E
˘´1

ErěζB
πE

1SˆA

}r}8ďRmax

C.1. Random IRL

In this appendix, we report the formulation of Random IRL, that selects a random reward function within the feasible set.
The idea is to generate a random reward rrPRS with }rr}8ďRmax and to find a reward in the feasible set that minimizes the
distance from rr. This leads to the quadratic problem:

min
rPRS

}r´rr}
2
2

s.t.
`

EπE´ISˆA
˘`

ISˆA´γPπ
E
˘´1

Erě0SˆA

}r}8ďRmax

D. Experimental Evaluation
D.1. Gridworld Description

In Figure 6, the environment of the gridworld is shown. The gridworld is a 3ˆ3 gridworld with an obstacle in the cell p2,2q,
which with a probability pPr0,1s causes the agent action right not to be performed.

Figure 6. Configurable gridworld with increasing values of obstacle’s probabilities: pPt0,0.2,0.5,0.8u.

D.2. Experiment with different nmax

In this appendix, we report an additional experiment in which we compare the behavior of different values of nmax in
the Gridworld domain. We can see in Figure 7, as expected by theory, that the larger the value of nmax the slower the
convergence. This is because larger values of nmax tend to make TRAVEL behave similarly to Uniform Sampling IRL. The
counterpart is that small values of nmax require, given a fixed total number of samples, a larger number of iterations K, that
translate into a larger number of times in which the optimization problem needs to be solved.
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Figure 7. Error as a function of the number of samples collected for different values of nmax. 100 runs, 98% c.i.
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E. Efficient Implementation
In this appendix, we provide a formulation of the optimization problem in Equation (4) that is convex. We follow an
implementation similar to (Zanette et al., 2019). As first step, we move the optimization from the policies π on the visitation
distribution µ. This allow, as in (Zanette et al., 2019), to put the inner maximization into a matrix form:

max
x

»

–

Ck`1

0SˆA
0S

fi

fl

ᵀ

x

s.t.

»

–

Eᵀ´γ1pP 1q
ᵀ

´IS 0S
0SˆA

ᵀ 1S
ᵀ 0

prᵀk ´pEV ˚M1Yprk
q
ᵀ
´1

fi

flx“

»

–

0S
1

´4εk

fi

fl

xě0

where x“

»

–

µ
µ0

t

fi

flPRSˆA`S`1 and Ck`1 is equal to:

Ck`1ps,aq“
Rmax

1´γ

˜

1tNk`1psq“0u`

d

2`kps,aq

N`k`1ps,aq

¸

Now we formulate the dual of this linear program:

min
y

»

–

0S
1

´4εk

fi

fl

T

y

s.t.

»

–

Eᵀ´γ1pP 1q
ᵀ

´IS 0S
0SˆA

ᵀ 1S
ᵀ 0

prᵀk ´pEV ˚M1Yprk
q
ᵀ
´1

fi

fl

ᵀ

yě

»

–

Ck`1

0SˆA
0S

fi

fl

From that we can formulate the minimax optimization problem in Equation (4) as a convex minimization problem, recalling
that Nk`1ps,aq“Nkps,aq`nk`1ps,aq:

min
nk`1,y

»

–

0S
1

´4εk

fi

fl

T

y

s.t.

»

–

Eᵀ´γ1pP 1q
ᵀ

´IS 0S
0SˆA

ᵀ 1S
ᵀ 0

prᵀk ´pEV ˚M1Yprk
q
ᵀ
´1

fi

fl

ᵀ

yě

»

–

Ck`1

0SˆA
0S

fi

fl

nk`1ps,aqě0
ÿ

ps,aqPSˆA

nk`1ps,aqďnmax


