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Supplementary material

A. Notations
Let (Z, d) be a Polish metric space (i.e. complete and separable). We say that (Z, d) is proper if for all z0 2 Z and
R > 0, B(z0, R) := {z | d(z, z0)  R} is compact. For (Z, d) a Polish space, we denote M1

+(Z) the set of Borel
probability measures on Z endowed with k·kTV strong topology. We recall the notion of weak topology: we say that a
sequence (µn)n of M1

+(Z) converges weakly to µ 2 M1
+(Z) if and only if for every bounded continuous function f

on Z ,
R
fdµn !n!1

R
fdµ. Endowed with its weak topology, M1

+(Z) is a Polish space. For µ 2 M1
+(Z), we define

L1(µ) the set of integrable functions with respect to µ. We denote ⇧1 : (z, z0) 2 Z2 7! z and ⇧2 : (z, z0) 2 Z2 7! z0

respectively the projections on the first and second component, which are continuous applications. For a measure µ
and a measurable mapping µ, we denote g]µ the pushforward measure of µ by g. Let L � 1 be an integer and denote
�L := {� 2 RL

+ s.t.
PL

k=1 �k = 1}, the probability simplex of RL.

B. Useful Lemmas
Lemma 1 (Fubini’s theorem). Let l : ⇥ ⇥ (X ⇥ Y) ! [0,1) satisfying Assumption 1. Then for all µ 2 M1

+(⇥),R
l(✓, ·)dµ(✓) is Borel measurable; for Q 2 M1

+(X ⇥ Y),
R
l(·, (x, y))dQ(x, y) is Borel measurable. Moreover:R

l(✓, (x, y))dµ(✓)dQ(x, y) =
R
l(✓, (x, y))dQ(x, y)dµ(✓)

Lemma 2. Let l : ⇥⇥ (X ⇥Y) ! [0,1) satisfying Assumption 1. Then for all µ 2 M1
+(⇥), (x, y) 7!

R
l(✓, (x, y))dµ(✓)

is upper semi-continuous and hence Borel measurable.

Proof. Let (xn, yn)n be a sequence of X ⇥ Y converging to (x, y) 2 X ⇥ Y . For all ✓ 2 ⇥, M � l(✓, ·) is non negative
and lower semi-continuous. Then by Fatou’s Lemma applied:

Z
M � l(✓, (x, y))dµ(✓) 

Z
lim inf
n!1

M � l(✓, (xn, yn))dµ(✓)

 lim inf
n!1

Z
M � l(✓, (xn, yn))dµ(✓)

Then we deduce that:
R
M � l(✓, ·)dµ(✓) is lower semi-continuous and then

R
l(✓, ·)dµ(✓) is upper-semi continuous.

Lemma 3. Let l : ⇥ ⇥ (X ⇥ Y) ! [0,1) satisfying Assumption 1 Then for all µ 2 M1
+(⇥), Q 7!R

l(✓, (x, y))dµ(✓)dQ(x, y) is upper semi-continuous for weak topology of measures.

Proof. �
R
l(✓, ·)dµ(✓) is lower semi-continuous from Lemma 2. Then M �

R
l(✓, ·)dµ(✓) is lower semi-continuous and

non negative. Let denote v this function. Let (vn)n be a non-decreasing sequence of continuous bounded functions such
that vn ! v. Let (Qk)k converging weakly towards Q. Then by monotone convergence:

Z
vdQ = lim

n

Z
vndQ = lim

n
lim
k

Z
vndQk  lim inf

k

Z
vdQk

Then Q 7!
R
vdQ is lower semi-continuous and then Q 7!

R
l(✓, (x, y))dµ(✓)dQ(x, y) is upper semi-continuous for weak

topology of measures.

Lemma 4. Let l : ⇥ ⇥ (X ⇥ Y) ! [0,1) satisfying Assumption 1. Then for all µ 2 M1
+(⇥), (x, y) 7!

sup(x0,y0),d(x,x0)",y=y0
R
l(✓, (x0, y0))dµ(✓) is universally measurable (i.e. measurable for all Borel probability mea-

sures). And hence the adversarial risk is well defined.

Proof. Let � : (x, y) 7! sup(x0,y0),d(x,x0)",y=y0
R
l(✓, (x0, y0))dµ(✓). Then for u 2 R̄:

{�(x, y) > u} = Proj1

⇢
((x, y), (x0, y0)) |

Z
l(✓, (x0, y0))dµ(✓)� c"((x, y), (x

0, y0)) > u

�
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By Lemma 3: ((x, y), (x0, y0)) 7!
R
l(✓, (x0, y0))dµ(✓)� c"((x, y), (x0, y0)) is upper-semicontinuous hence Borel measur-

able. So its level sets are Borel sets, and by (Bertsekas & Shreve, 2004, Proposition 7.39), the projection of a Borel set
is analytic. And then {�(x, y) > u} universally measurable thanks to (Bertsekas & Shreve, 2004, Corollary 7.42.1). We
deduce that � is universally measurable.

C. Proofs
C.1. Proof of Proposition 1

Proof. Let ⌘ > 0. Let Q 2 A"(P). There exists � 2 M+
1

�
(X ⇥ Y)2

�
such that, d(x, x0)  ", y = y0 �-almost surely, and

⇧1]� = P, and ⇧2]� = Q. Then
R
c"d� = 0  ⌘. Then, we deduce that Wc"(P,Q)  ⌘, and Q 2 Bc"(P, ⌘). Reciprocally,

let Q 2 Bc"(P, ⌘). Then, since the infimum is attained in the Wasserstein definition, there exists � 2 M+
1

�
(X ⇥ Y)2

�
such

that
R
c"d�  ⌘. Since c"((x, x0), (y, y0)) = +1 when d(x, x0) > " and y 6= y0, we deduce that, d(x, x0)  " and y = y0,

�-almost surely. Then Q 2 A"(P). We have then shown that: A"(P) = Bc"(P, ⌘).

The convexity of A"(P) is then immediate from the relation with the Wasserstein uncertainty set.

Let us show first that A"(P) is relatively compact for weak topology. To do so we will show that A"(P) is tight and apply
Prokhorov’s theorem. Let � > 0, (X ⇥ Y, d � d0) being a Polish space, {P} is tight then there exists K� compact such
that P(K�) � 1� �. Let K̃� := {(x0, y0) | 9(x, y) 2 K�, d(x0, x)  ", y = y0}. Recalling that (X , d) is proper (i.e. the
closed balls are compact), so K̃� is compact. Moreover for Q 2 A"(P), Q(K̃�) � P(K�) � 1� �. And then, Prokhorov’s
theorem holds, and A"(P) is relatively compact for weak topology.

Let us now prove that A"(P) is closed to conclude. Let (Qn)n be a sequence of A"(P) converging towards some Q for weak
topology. For each n, there exists �n 2 M1

+(X ⇥ Y) such that d(x, x0)  " and y = y0 �n-almost surely and ⇧1]�n = P,
⇧2]�n = Qn. {Qn, n � 0} is relatively compact, then tight, then

S
n �P,Qn is tight, then relatively compact by Prokhorov’s

theorem. (�n)n 2
S

n �P,Qn , then up to an extraction, �n ! �. Then d(x, x0)  " and y = y0 �-almost surely, and by
continuity, ⇧1]� = P and by continuity, ⇧2]� = Q. And hence A"(P) is closed.

Finally A"(P) is a convex compact set for the weak topology.

C.2. Proof of Proposition 2

Proof. Let µ 2 M1
+(⇥). Let f̃ : ((x, y), (x0, y0)) 7! E✓⇠µ [l(✓, (x, y))]� c"((x, y), (x0, y0)). f̃ is upper-semi continuous,

hence upper semi-analytic. Then, by upper semi continuity of E✓⇠µ [l(✓, ·)] on the compact {(x0, y0) | d(x, x0) 
", y = y0} and (Bertsekas & Shreve, 2004, Proposition 7.50), there exists a universally measurable mapping T such
that E✓⇠µ [l(✓, T (x, y))] = sup(x0,y0), d(x,x0)",y=y0 E✓⇠µ [l(✓, (x, y))]. Let Q = T]P, then Q 2 A"(P). And then

E(x,y)⇠P
h
sup(x0,y0), d(x,x0)",y=y0 E✓⇠µ [l(✓, (x0, y0))]

i
 supQ2A"(P) E(x,y)⇠Q [E✓⇠µ [l(✓, (x, y))]].

Reciprocally, let Q 2 A"(P). There exists � 2 M1
+((X ⇥ Y)2), such that d(x, x0)  " and y = y0 �-almost surely, and,

⇧1]� = P and ⇧2]� = Q. Then: E✓⇠µ [l(✓, (x0, y0))]  sup(u,v), d(x,u)",y=v E✓⇠µ [l(✓, (u, v))] �-almost surely. Then,
we deduce that:

E(x0,y0)⇠Q [E✓⇠µ [l(✓, (x
0, y0))]] = E(x,y,x0,y0)⇠� [E✓⇠µ [l(✓, (x

0, y0))]]

 E(x,y,x0,y0)⇠�

"
sup

(u,v), d(x,u)",y=v
E✓⇠µ [l(✓, (u, v))]

#

 E(x,y)⇠P

"
sup

(u,v), d(x,u)",y=v
E✓⇠µ [l(✓, (u, v))]

#

Then we deduce the expected result:

R"
adv(µ) = sup

Q2A"(P)
E(x,y)⇠Q [E✓⇠µ [l(✓, (x, y))]]

Let us show that the optimum is attained. Q 7! E(x,y)⇠Q [E✓⇠µ [l(✓, (x, y))]] is upper semi continuous by Lemma 3 for the
weak topology of measures, and A"(P) is compact by Proposition 1, then by (Bertsekas & Shreve, 2004, Proposition 7.32),
the supremum is attained for a certain Q⇤ 2 A"(P).
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C.3. Proof of Theorem 1

Let us first recall the Fan’s Theorem.

Theorem 2. Let U be a compact convex Haussdorff space and V be convex space (not necessarily topological). Let
 : U ⇥ V ! R be a concave-convex function such that for all v 2 V ,  (·, v) is upper semi-continuous then:

inf
v2V

max
u2U

 (u, v) = max
u2U

inf
v2V

 (u, v)

We are now set to prove Theorem 1.

Proof. A"(P), endowed with the weak topology of measures, is a Hausdorff compact convex space, thanks to Proposition 1.
Moreover, M1

+(⇥) is clearly convex and (Q, µ) 7!
R
ldµdQ is bilinear, hence concave-convex. Moreover thanks to

Lemma 3, for all µ, Q 7!
R
ldµdQ is upper semi-continuous. Then Fan’s theorem applies and strong duality holds.

In the related work (Section 6), we mentioned a particular form of Theorem 1 for convex cases. As mentioned, this result
has limited impact in the adversarial classification setting. It is still a direct corollary of Fan’s theorem. This theorem can be
stated as follows:

Theorem 3. Let P 2 M1
+(X ⇥ Y), " > 0 and ⇥ a convex set. Let l be a loss satisfying Assumption 1, and also,

(x, y) 2 X ⇥ Y , l(·, (x, y)) is a convex function, then we have the following:

inf
✓2⇥

sup
Q2A"(P)

EQ [l(✓, (x, y))] = sup
Q2A"(P)

inf
✓2⇥

EQ [l(✓, (x, y))]

The supremum is always attained. If ⇥ is a compact set then, the infimum is also attained.

C.4. Proof of Proposition 3

Proof. Let us first show that for ↵ � 0, supQi2�i,"
EQi,µ [l(✓, (x, y))] � ↵KL

⇣
Qi

���
��� 1NU(xi,yi)

⌘
admits a solution. Let

↵ � 0, (Qn
↵,i)n�0 a sequence such that

EQn
↵,i,µ

[l(✓, (x, y))]� ↵KL
✓
Qn

↵,i

���
���
1

N
U(xi,yi)

◆
�����!
n!+1

sup
Qi2�i,"

EQi,µ [l(✓, (x, y))]� ↵KL
✓
Qi

���
���
1

N
U(xi,yi)

◆
.

As �i," is tight ((X , d) is a proper metric space therefore all the closed ball are compact) and by Prokhorov’s theorem,
we can extract a subsequence which converges toward Q⇤

↵,i. Moreover, l is upper semi-continuous (u.s.c), thus Q !
EQ,µ [l(✓, (x, y))] is also u.s.c.8 Moreover Q ! �↵KL

⇣
Q
���
��� 1NU(xi,yi)

⌘
is also u.s.c. 9, therefore, by considering the limit

superior as n goes to infinity we obtain that

lim sup
n!+1

EQn
↵,i,µ

[l(✓, (x, y))]� ↵KL
✓
Qn

↵,i

���
���
1

N
U(xi,yi)

◆

= sup
Qi2�i,"

EQi,µ [l(✓, (x, y))]� ↵KL
✓
Qi

���
���
1

N
U(xi,yi)

◆

 EQ⇤
↵,i,µ

[l(✓, (x, y))]� ↵KL
✓
Q⇤

↵,i

���
���
1

N
U(xi,yi)

◆

from which we deduce that Q⇤
↵,i is optimal.

8Indeed by considering a decreasing sequence of continuous and bounded functions which converge towards Eµ [l(✓, (x, y))] and by
definition of the weak convergence the result follows.

9for ↵ = 0 the result is clear, and if ↵ > 0, note that KL
⇣
·
���
��� 1
NU(xi,yi)

⌘
is lower semi-continuous



Mixed Nash Equilibria in the Adversarial Examples Game

Let us now show the result. We consider a positive sequence of (↵(`)
i )`�0 such that ↵(`)

i ! 0. Let us denote Q⇤
↵(`)

i ,i
and Q⇤

i

the solutions of maxQi2�i," EQi,µ [l(✓, (x, y))]�↵
(`)
i KL

⇣
Qi

���
��� 1NU(xi,yi)

⌘
and maxQi2�i," EQi,µ [l(✓, (x, y))] respectively.

Since �i," is tight, (Q⇤
↵(`)

i ,i
)`�0 is also tight and we can extract by Prokhorov’s theorem a subsequence which converges

towards Q⇤. Moreover we have

EQ⇤
i ,µ

[l(✓, (x, y))]� ↵(`)
i KL

✓
Q⇤

i

���
���
1

N
U(xi,yi)

◆
 EQ⇤

↵
(`)
i ,i

,µ [l(✓, (x, y))]� ↵(`)
i KL

✓
Q⇤

↵(`)
i ,i

���
���
1

N
U(xi,yi)

◆

from which follows that

0  EQ⇤
i ,µ

[l(✓, (x, y))]� EQ⇤
↵
(`)
i ,i

,µ [l(✓, (x, y))]  ↵(`)
i

✓
KL
✓
Q⇤

i

���
���
1

N
U(xi,yi)

◆
� KL

✓
Q⇤

↵(`)
i ,i

���
���
1

N
U(xi,yi)

◆◆

Then by considering the limit superior we obtain that

lim sup
`!+1

EQ⇤
↵
(`)
i ,i

,µ [l(✓, (x, y))] = EQ⇤
i ,µ

[l(✓, (x, y))] .

from which follows that

EQ⇤
i ,µ

[l(✓, (x, y))]  EQ⇤,µ [l(✓, (x, y))]

and by optimality of Q⇤
i we obtain the desired result.

C.5. Proof of Proposition 4

Proof. Let us denote for all µ 2 M+
1 (⇥),

bR",m
adv,↵(µ) :=

NX

i=1

↵i

N
log

0

@ 1

mi

miX

j=1

exp
Eµ

h
l(✓, u(i)

j )
i

↵i

1

A .

Let also consider (µ(m)
n )n�0 and (µn)n�0 two sequences such that

bR",m
adv,↵(µ

(m)
n ) �����!

n!+1
bR",m
adv,↵,

bR"
adv,↵(µn) �����!

n!+1
bR",⇤
adv,↵.

We first remarks that

bR",m
adv,↵ � bR",⇤

adv,↵  bR",m
adv,↵ � bR",m

adv,↵(µn) + bR",m
adv,↵(µn)� bR"

adv,↵(µn) + bR"
adv,↵(µn)� bR",⇤

adv,↵

 sup
µ2M+

1 (⇥)

��� bR",m
adv,↵(µ)� bR"

adv,↵(µ)
���+ bR"

adv,↵(µn)� bR",⇤
adv,↵,

and by considering the limit, we obtain that

bR",m
adv,↵ � bR",⇤

adv,↵  sup
µ2M+

1 (⇥)

��� bR",m
adv,↵(µ)� bR"

adv,↵(µ)
���

Simarly we have that

bR",⇤
adv,↵ � bR",m

adv,↵  bR",⇤
adv,↵ � bR"

adv,↵(µ
(m)
n ) + bR"

adv,↵(µ
(m)
n )� bR",m

adv,↵(µ
(m)
n ) + bR",m

adv,↵(µ
(m)
n )� bR",m

adv,↵

from which follows that

bR",⇤
adv,↵ � bR",m

adv,↵  sup
µ2M+

1 (⇥)

��� bR",m
adv,↵(µ)� bR"

adv,↵(µ)
���
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Therefore we obtain that

��� bR",⇤
adv,↵ � bR",m

adv,↵

��� 
NX

i=1

↵

N
sup

µ2M+
1 (⇥)

��� log

0

@ 1

mi

miX

j=1

exp

0

@
E✓⇠µ

h
l(✓, u(i)

j ))
i

↵

1

A

1

A

� log

✓Z

X⇥Y
exp

✓
E✓⇠µ [l(✓, (x, y))]

↵

◆
dU(xi,yi)

◆ ���.

Observe that l � 0, therefore because the log function is 1-Lipschitz on [1,+1), we obtain that

��� bR",⇤
adv,↵ � bR",m

adv,↵

��� 
NX

i=1

↵

N
sup

µ2M+
1 (⇥)

���
1

mi

miX

j=1

exp

0

@
E✓⇠µ

h
l(✓, u(i)

j ))
i

↵

1

A�
Z

X⇥Y
exp

✓
E✓⇠µ [l(✓, (x, y))]

↵

◆
dU(xi,yi)

���.

Let us now denote for all i = 1, . . . , N ,

bRi(µ,u
(i)) :=

miX

j=1

exp

0

@
E✓⇠µ

h
l(✓, u(i)

j ))
i

↵

1

A

Ri(µ) :=

Z

X⇥Y
exp

✓
E✓⇠µ [l(✓, (x, y))]

↵

◆
dU(xi,yi).

and let us define

f(u(1), . . . ,u(N)) :=
NX

i=1

↵

N
sup

µ2M+
1 (⇥)

��� bRi(µ)�Ri(µ)
���

where u(i) := (u(i)
1 , . . . , u(m)

1 ). By denoting z(i) = (u(i)
1 , . . . , u(i)

k�1, z, u
(i)
k+1, . . . , u

(i)
m ), we have that

|f(u(1), . . . ,u(N))� f(u(1), . . . ,u(i�1), z(i),u(i+1), . . . ,u(N))|  ↵

N

��� sup
µ2M+

1 (⇥)

��� bRi(µ,u
(i))�Ri(µ)

���

� sup
µ2M+

1 (⇥)

��� bRi(µ, z
(i))�Ri(µ)

���
���

 ↵

N

���
1

m

2

4exp

0

@
E✓⇠µ

h
l(✓, u(i)

k ))
i

↵

1

A� exp

 
E✓⇠µ

⇥
l(✓, z(i)))

⇤

↵

!3

5
���

 2 exp(M/↵)

Nm

where the last inequality comes from the fact that the loss is upper bounded by l  M . Then by appling the McDiarmid’s
Inequality, we obtain that with a probability of at least 1� �,

��� bR",⇤
adv,↵ � bR",m

adv,↵

���  E(f(u(1), . . . ,u(N))) +
2 exp(M/↵)p

mN

r
log(2/�)

2
.

Thanks to (Shalev-Shwartz & Ben-David, 2014, Lemma 26.2), we have for all i 2 {1, . . . , N}

E(f(u(1), . . . ,u(N)))  2E(Rad(Fi � u(i)))

where for any class of function F defined on Z and point z : (z1, . . . , zq) 2 Zq

F � z :=
n
(f(z1), . . . , f(zq)), f 2 F

o
, Rad(F � z) := 1

q
E�⇠{±1}

"
sup
f2F

qX

i=1

�if(zi)

#

Fi :=
n
u ! exp

✓
E✓⇠µ [l(✓, u))]

↵

◆
, µ 2 M+

1 (⇥)
o
.
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Moreover as x ! exp(x/↵) is exp(M/↵)
↵ -Lipstchitz on (�1,M ], by (Shalev-Shwartz & Ben-David, 2014, Lemma 26.9),

we have

Rad(Fi � u(i))  exp(M/↵)

↵
Rad(Hi � u(i))

where

Hi :=
n
u ! E✓⇠µ [l(✓, u))] , µ 2 M+

1 (⇥)
o
.

Let us now define

g(u(1), . . . ,u(N)) :=
NX

j=1

2 exp(M/↵)

N
Rad(Hj � u(j)).

We observe that

|g(u(1), . . . ,u(N))� g(u(1), . . . ,u(i�1), z(i),u(i+1), . . . ,u(N))|  2 exp(M/↵)

N
|Rad(Hi � u(i))� Rad(Hi � z(i))|

 2 exp(M/↵)

N

2M

m
.

By Applying the McDiarmid’s Inequality, we have that with a probability of at least 1� �

E(g(u(1), . . . ,u(N)))  g(u(1), . . . ,u(N)) +
4 exp(M/↵)Mp

mN

r
log(2/�)

2
.

Remarks also that

Rad(Hi � u(i)) =
1

m
E�⇠{±1}

2

4 sup
µ2M+

1 (⇥)

mX

j=1

�iEµ(l(✓, u
(i)
j ))

3

5

=
1

m
E�⇠{±1}

2

4sup
✓2⇥

mX

j=1

�il(✓, u
(i)
j )

3

5

Finally, applying a union bound leads to the desired result.

C.6. Proof of Proposition 5

Proof. Following the same steps than the proof of Proposition 4, let (µ"
n)n�0 and (µn)n�0 two sequences such that

bR"
adv,↵(µ

"
n) �����!n!+1

bR",⇤
adv,↵,

bR"
adv(µn) �����!

n!+1
bR",⇤
adv.

Remarks that

bR",⇤
adv,↵ � bR",⇤

adv  bR",⇤
adv,↵ � bR"

adv,↵(µn) + bR"
adv,↵(µn)� bR"

adv(µn) + bR"
adv(µn)� bR",⇤

adv

 sup
µ2M+

1 (⇥)

��� bR"
adv,↵(µ)� bR"

adv(µ)
���+ bR"

adv(µn)� bR",⇤
adv

Then by considering the limit we obtain that

bR",⇤
adv,↵ � bR",⇤

adv  sup
µ2M+

1 (⇥)

��� bR"
adv,↵(µ)� bR"

adv(µ)
���.
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Similarly, we obtain that

bR",⇤
adv � bR",⇤

adv,↵  sup
µ2M+

1 (⇥)

��� bR"
adv,↵(µ)� bR"

adv(µ)
���,

from which follows that

��� bR",⇤
adv,↵ � bR",⇤

adv

��� 
1

N

NX

i=1

sup
µ2M+

1 (⇥)

���↵ log

✓Z

X⇥Y
exp

✓
Eµ[l(✓, (x, y))]

↵

◆
dU(xi,yi)

◆
� sup

u2S"
(xi,yi)

Eµ[l(✓, u)]
���.

Let µ 2 M+
1 (⇥) and i 2 {1, . . . , N}, then we have

���↵ log

✓Z

X⇥Y
exp

✓
Eµ[l(✓, (x, y))]

↵

◆
dU(xi,yi)

◆
� sup

u2S"
(xi,yi)

Eµ[l(✓, u)]
���

=
���↵ log

 Z

X⇥Y
exp

 Eµ[l(✓, (x, y))]� supu2S"
(xi,yi)

Eµ[l(✓, u)]

↵

!
dU(xi,yi)

!���

= ↵
��� log

 Z

A
(xi,yi)
�,µ

exp

 Eµ[l(✓, (x, y))]� supu2S"
(xi,yi)

Eµ[l(✓, u)]

↵

!
dU(xi,yi)

+

Z

(A
(xi,yi)
�,µ )c

exp

 Eµ[l(✓, (x, y))]� supu2S"
(xi,yi)

Eµ[l(✓, u)]

↵

!
dU(xi,yi)

!���

 ↵
��� log

⇣
exp(��/↵)U(xi,yi)

⇣
A(xi,yi)

�,µ

⌘⌘ ���

+ ↵
��� log

0

@1 +
exp(�/↵)

U(xi,yi)

⇣
A(xi,yi)

�,µ

⌘
Z

(A
(xi,yi)
�,µ )c

exp

 Eµ[l(✓, (x, y))]� supu2S"
(xi,yi)

Eµ[l(✓, u)]

↵

!
dU(xi,yi)

1

A
���

 ↵ log(1/C�) + � +
↵

C�

 2↵ log(1/C�) + �

C.7. Proof of Proposition 6

Proof. Thanks to Danskin theorem, if Q⇤ is a best response to �, then g⇤ := (EQ⇤ [l(✓1, (x, y))] , . . . ,EQ⇤ [l(✓L, (x, y))])
T

is a subgradient of � ! R"
adv(�). Let ⌘ � 0 be the learning rate. Then we have for all t � 1:

k�t � �⇤k2  k�t�1 � ⌘gt � �⇤k2

= k�t�1 � �⇤k2 � 2⌘hgt,�t�1 � �⇤i+ ⌘2kgtk2

 k�t�1 � �⇤k2 � 2⌘hg⇤
t ,�t�1 � �⇤i+ 2⌘hg⇤

t � gt,�t�1 � �⇤i+ ⌘2M2L

 k�t�1 � �⇤k2 � 2⌘ (R"
adv(�t)�R"

adv(�
⇤)) + 4⌘� + ⌘2M2L

We then deduce by summing:

2⌘
TX

t=1

R"
adv(�t)�R"

adv(�
⇤)  4�⌘T + k�0 � �⇤k2 + ⌘2M2LT

Then we have:

min
t2[T ]

R"
adv(�t)�R"

adv(�
⇤)  2� +

4

⌘T
+M2L⌘



Mixed Nash Equilibria in the Adversarial Examples Game

The left-hand term is minimal for ⌘ = 2
M

p
LT

, and for this value:

min
t2[T ]

R"
adv(�t)�R"

adv(�
⇤)  2� +

2M
p
Lp

T

.

D. Additional Experimental Results
D.1. Experimental setting.

Optimizer. For each of our models, The optimizer we used in all our implementations is SGD with learning rate set to 0.4
at epoch 0 and is divided by 10 at half training then by 10 at the three quarters of training. The momentum is set to 0.9 and
the weight decay to 5⇥ 10�4. The batch size is set to 1024.

Adaptation of Attacks. Since our classifier is randomized, we need to adapt the attack accordingly. To do so we used the
expected loss:

l̃ ((�,✓), (x, y)) =
LX

k=1

�kl(✓k, (x, y))

to compute the gradient in the attacks, regardless the loss (DLR or cross-entropy). For the inner maximization at training
time, we used a PGD attack on the cross-entropy loss with " = 0.03. For the final evaluation, we used the untargeted DLR
attack with default parameters.

Regularization in Practice. The entropic regularization in higher dimensional setting need to be adapted to be more likely
to find adversaries. To do so, we computed PGD attacks with only 3 iterations with 5 different restarts instead of sampling
uniformly 5 points in the `1-ball. In our experiments in the main paper, we use a regularization parameter ↵ = 0.001. The
learning rate for the minimization on � is always fixed to 0.001.

Alternate Minimization Parameters. Algorithm 2 implies an alternate minimization algorithm. We set the number of
updates of ✓ to T✓ = 50 and, the update of � to T� = 25.

D.2. Effect of the Regularization

In this subsection, we experimentally investigate the effect of the regularization. In Figure 4, we notice, that the regularization
has the effect of stabilizing, reducing the variance and improving the level of the robust accuracy for adversarial training for
mixtures (Algorithm 2). The standard accuracy curves are very similar in both cases.

Figure 4. On left and middle-left: Standard accuracies over epochs with respectively no regularization and regularization set to ↵ = 0.001.
On middle right and right: Robust accuracies for the same parameters against PGD attack with 20 iterations and " = 0.03.

D.3. Additional Experiments on WideResNet28x10

We now evaluate our algorithm on WideResNet28x10 (Zagoruyko & Komodakis, 2016) architecture. Due to computation
costs, we limit ourselves to 1 and 2 models, with regularization parameter set to 0.001 as in the paper experiments section.
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Results are reported in Figure 5. We remark this architecture can lead to more robust models, corroborating the results
from (Gowal et al., 2020).

Models Acc. APGDCE APGDDLR Rob. Acc.
1 85.2% 49.9% 50.2% 48.5%
2 86.0% 51.5% 52.1% 49.6%

Figure 5. On left: Comparison of our algorithm with a standard adversarial training (one model) on WideResNet28x10. We reported the
results for the model with the best robust accuracy obtained over two independent runs because adversarial training might be unstable.
Standard and Robust accuracy (respectively in the middle and on right) on CIFAR-10 test images in function of the number of epochs per
classifier with 1 and 2 WideResNet28x10 models. The performed attack is PGD with 20 iterations and " = 8/255.

D.4. Overfitting in Adversarial Robustness

We further investigate the overfitting of our heuristic algorithm. We plotted in Figure 6 the robust accuracy on ResNet18
with 1 to 5 models. The most robust mixture of 5 models against PGD with 20 iterations arrives at epoch 198, i.e. at the end
of the training, contrary to 1 to 4 models, where the most robust mixture occurs around epoch 101. However, the accuracy
against AGPD with 100 iterations in lower than the one at epoch 101 with global robust accuracy of 47.6% at epoch 101 and
45.3% at epoch 198. This strange phenomenon would suggest that the more powerful the attacks are, the more the models
are subject to overfitting. We leave this question to further works.

Figure 6. Standard and Robust accuracy (respectively on left and on right) on CIFAR-10 test images in function of the number of epochs
per classifier with 1 to 5 ResNet18 models. The performed attack is PGD with 20 iterations and " = 8/255. The best mixture for 5
models occurs at the end of training (epoch 198).

E. Additional Results
E.1. Equality of Standard Randomized and Deterministic Minimal Risks

Proposition 7. Let P be a Borel probability distribution on X ⇥ Y , and l a loss satisfying Assumption 1, then:

inf
µ2M1

+(⇥)
R(µ) = inf

✓2⇥
R(✓)
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Proof. It is clear that: infµ2M1
+(⇥) R(µ)  inf✓2⇥ R(✓). Now, let µ 2 M1

+(⇥), then:

R(µ) = E✓⇠µ(R(✓)) � essinf
µ

E✓⇠µ (R(✓))

� inf
✓2⇥

R(✓).

where essinf denotes the essential infimum.

We can deduce an immediate corollary.

Corollary 2. Under Assumption 1, the dual for randomized and deterministic classifiers are equal.

E.2. Decomposition of the Empirical Risk for Entropic Regularization

Proposition 8. Let P̂ := 1
N

PN
i=1 �(xi,yi). Let l be a loss satisfying Assumption 1. Then we have:

1

N

NX

i=1

sup
x, d(x,xi)"

E✓⇠µ [l(✓, (x, y))] =
NX

i=1

sup
Qi2�i,"

E(x,y)⇠Qi,✓⇠µ [l(✓, (x, y))]

where �i," is defined as :

�i," :=
n
Qi |

Z
dQi =

1

N
,

Z
c"((xi, yi), ·)dQi = 0

o
.

Proof. This proposition is a direct application of Proposition 2 for diracs �(xi,yi).

E.3. On the NP-Hardness of Attacking a Mixture of Classifiers

In general, the problem of finding a best response to a mixture of classifiers is in general NP-hard. Let us justify it on a
mixture of linear classifiers in binary classification: f✓k(x) = h✓, xi for k 2 [L] and � = 1L/L. Let us consider the `2
norm and x = 0 and y = 1. Then the problem of attacking x is the following:

sup
⌧, k⌧k"

1

L

LX

k=1

1h✓k,⌧i0

This problem is equivalent to a linear binary classification problem on ⌧ , which is known to be NP-hard.

E.4. Case of Separated Conditional Distribtions

Proposition 9. Let Y = {�1,+1}. Let P 2 M1
+(X ⇥ Y). Let " > 0. For i 2 Y , let us denote Pi the distribution of

P conditionally to y = i. Let us assume that dX (supp(P1+1), supp(P�1)) > 2". Let us consider the nearest neighbor
deterministic classifier : f(x) = d(x, supp(P+1)) � d(x, supp(P�1)) and the 0/1 loss l(f, (x, y)) = 1yf(x)0. Then f
satisfies both optimal standard and adversarial risks: R(f) = 0 and R"

adv(f) = 0.

Proof. Let Let denote pi = P(y = i). Then we have

R"
adv(f) = p+1EP+1

"
sup

x0, d(x,x0)"
1f(x0)0

#
+ p�1EP�1

"
sup

x0, d(x,x0)"
1f(x0)�0

#

For x 2 supp(P+1), we have, for all x0 such that d(x, x0) 6= 0, f(x0) > 0, then: EP+1

h
supx0, d(x,x0)" 1f(x0)0

i
= 0.

Similarly, we have EP�1

h
supx0, d(x,x0)" 1f(x0)�0

i
= 0. We then deduce the result.


