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Abstract
In performative prediction, predictions guide
decision-making and hence can influence the dis-
tribution of future data. To date, work on perfor-
mative prediction has focused on finding perfor-
matively stable models, which are the fixed points
of repeated retraining. However, stable solutions
can be far from optimal when evaluated in terms
of the performative risk, the loss experienced by
the decision maker when deploying a model. In
this paper, we shift attention beyond performative
stability and focus on optimizing the performa-
tive risk directly. We identify a natural set of
properties of the loss function and model-induced
distribution shift under which the performative
risk is convex, a property which does not follow
from convexity of the loss alone. Furthermore, we
develop algorithms that leverage our structural as-
sumptions to optimize the performative risk with
better sample efficiency than generic methods for
derivative-free convex optimization.

1. Introduction
Predictions in social settings are rarely made in isolation,
but rather to inform decision-making. This link between
predictions and decisions causes predictive models to often
be performative, meaning they can alter their environment
once deployed. For example, election forecasts impact cam-
paign spending and affect voter turnout, hence influencing
the final election outcome (Westwood et al., 2020). Sim-
ilarly, long-term climate forecasts shape policy decisions
which can then affect future weather patterns.

Performative prediction is a recent framework introduced
by Perdomo et al. (2020) which formalizes the idea that
predictive models can impact the data-generating process.
So far, work in this area has focused on a particular equilib-
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rium notion known as performative stability (Drusvyatskiy
& Xiao, 2020; Mendler-Dünner et al., 2020; Brown et al.,
2020). Stability is a local definition of optimality, by which
a model minimizes the expected risk for the specific dis-
tribution that it induces. However, stability provides no
general guarantees of performance beyond this equilibrium
notion. In fact, stable models can have exceedingly poor
performative risk, the central measure of performance in the
performative prediction framework which captures the true
risk incurred by the learner when deploying the model.

Reasoning by analogy, stable classifiers can be thought of as
an echo chamber in an online platform. In an echo chamber,
one is reassured of their ideas by voicing them, but it’s
not clear whether they are reasonable outside of this niche
community. Similarly, stable classifiers minimize risk on
the distribution that they induce, but they provide no global
guarantees of performance.

Therefore, to develop accurate predictions in performative
settings, we shift attention past performative stability and
study optimizing the performative risk directly. This task
has so far remained elusive due to the complexities of model-
induced distribution shift, i.e. performative effects. In partic-
ular, even in simple settings with convex losses, these distri-
bution shifts can make the performative risk non-convex Per-
domo et al. (2020). Furthermore, optimizing the performa-
tive risk requires a different algorithmic approach than what
was previously studied in performative prediction. For in-
stance, the learner needs to actively anticipate performative
effects rather than myopically retrain until convergence, as
the latter would only lead to stability.

1.1. Our Contributions

In this paper, we provide the first set of results describing
when and how the performative risk may be optimized ef-
ficiently. We identify natural assumptions under which the
performative risk is convex, even in settings where perfor-
mative effects can be arbitrarily strong. Furthermore, we
study optimization algorithms which explicitly model distri-
bution shift and provably minimize the performative risk in
an efficient manner.

To give an overview of our main results, we recall the rele-
vant concepts from the performative prediction framework.
Relative to supervised learning, where the learner observes
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data from a single static distribution, the key conceptual
innovation in the performative prediction framework is the
notion of a distribution mapD(·), which maps model param-
eters θ ∈ Rd to a distribution D(θ) over instances z. Given
a loss `, the quality of a predictive model parameterized by
θ is measured according to its performative risk,

PR(θ)
def
= E

z∼D(θ)
`(z; θ).

A classifier θPO is performatively optimal if it minimizes
the performative risk, i.e θPO ∈ arg minθ PR(θ). On the
other hand, a classifier θPS is performatively stable if it
satisfies the fixed-point condition,

θPS ∈ arg min
θ

E
z∼D(θPS)

`(z; θ).

In other words, stable classifiers are those which are opti-
mal for the particular distribution they induce. However,
stability has little bearing on whether a classifier has low per-
formative risk. More specifically, the following observation
motivates a large part of our later analysis:

Stable classifiers can maximize the performative
risk even when the loss is well-behaved and per-
formative effects are small.

Not only can stable points maximize the performative risk,
but they can also have an arbitrarily large suboptimality gap,
PR(θPS)−PR(θPO). Consequently, we take an alternative
approach and focus on directly optimizing the performative
risk.

The most natural first step towards optimizing the performa-
tive risk is to ensure that it is convex. Our first main result
states that under an appropriate stochastic dominance con-
dition to ensure the distribution map is well-behaved, there
exists a critical threshold on the strength of performative
effects which guarantees convexity:

Theorem 1.1 (Informal). Assume that the loss is β-smooth
in z and γ-strongly convex in θ. If the map D(·) is ε-
Lipschitz and satisfies a certain stochastic dominance con-
dition, then the performative risk is guaranteed to be convex
if and only if ε 6 γ

2β .

Interestingly, previous work has established that ε < γ/β is
a threshold for repeated retraining to provably converge to
a performatively stable point. Our work proves that if we
halve this quantity, we get another threshold which deter-
mines whether the performative risk is convex.

While Theorem 1.1 suggests that performative effects need
to be small in order to guarantee convexity, we prove that
this need not be the case for the setting of location-scale
families. These are natural classes of distribution maps
in which performative effects enter through an additive or

multiplicative factor that is linear in θ. Many examples of
distribution maps that have appeared in prior work are in
fact location-scale families. For this setting, we generalize
Theorem 1.1 to prove the following structural result.

Theorem 1.2 (Informal). If the loss is smooth, strongly
convex and the map D(·) is a location-scale family, then the
performative risk can be convex irrespective of the Lipschitz
constant of D(·).

Finally, having established these structural properties, we
turn to algorithms for finding performative optima. Under
weak regularity assumptions, convexity alone is sufficient
to apply classical zeroth-order algorithms in order to find
optima in polynomial time. That said, the convergence rate
of these algorithms is typically quite slow.

To address this problem, we propose a two-stage approach,
by which the learner first creates an explicit model of the
distribution map D̂, and then optimizes a proxy objective
for the performative risk obtained by “plugging in” D̂ as
if it were really the true distribution map. We instantiate
this two-stage procedure in the context of location families,
and prove that it optimizes the performative risk with sig-
nificantly better sample efficiency then generic zeroth-order
algorithms.

1.2. Related Work

We build on the recent line of work on performative pre-
diction started by Perdomo et al. (2020). While previous
papers in this area have focused on performative stability
(Mendler-Dünner et al., 2020; Drusvyatskiy & Xiao, 2020;
Brown et al., 2020), we move past this solution concept and
instead analyze conditions under which one can compute
performatively optimal classifiers.

Given that strategic classification is formally a special case
of performative prediction (see Section 5 or discussion in
Perdomo et al. (2020) for further details), the study of per-
formative optimality has been implicitly considered in the
growing body of work on strategic classification (Hardt
et al., 2016; Milli et al., 2019; Hu et al., 2019; Shavit et al.,
2020; Bechavod et al., 2021; Miller et al., 2020; Chen et al.,
2020; Tsirtsis & Gomez Rodriguez, 2020; Haghtalab et al.,
2020). More specifically, performatively optimal classifiers
correspond to Stackelberg equilibria in strategic classifica-
tion. In contrast to papers within this literature, our analysis
relies on identifying macro-level assumptions on the loss
and the distribution shift which make the problem tractable,
rather than specific micro-level assumptions on the costs
or utilities of the agents. For example, Dong et al. (2018)
prove that the institution’s objective (performative risk) is
convex by assuming that the agents are rational and com-
pute best-responses according to particular utilities and cost
functions. On the other hand, our conditions are on the



Outside the Echo Chamber: Optimizing the Performative Risk

distribution map and do not directly constrain behavior at
the agent level.

Similarly, several papers in strategic classification (Dong
et al., 2018; Munro, 2020) and policy design (Wager & Xu,
2021) have recognized that one can apply zeroth-order al-
gorithms (Flaxman et al., 2005; Agarwal & Dekel, 2010;
Shamir, 2013) to find optima of the institution’s risk. The
main challenge in applying zeroth-order optimization is the
fact that, in general, the performative risk might not satisfy
any structural properties which would imply that its station-
ary points have low risk. One of the main contributions of
this paper is precisely to identify under what conditions we
can expect this behavior to hold.

Several works within the economics literature (Frankel &
Kartik, 2021; Munro, 2020) have also contrasted fixed points
of retraining and institutional optima; these analyses resem-
ble our comparisons of stability and optimality, albeit in a
more specific setting. Furthermore, there are other settings
beyond strategic classification that have similarly studied
optimality in the face of performative effects, such as in the
context of rankings or selection bias (Rosenfeld et al., 2020;
Kilbertus et al., 2020; Tabibian et al., 2020).

Lastly, our two-stage approach to minimizing the performa-
tive risk, whereby we first estimate a model of the distri-
bution map and then optimize a proxy objective, is closely
related to ideas in neighboring fields. At a high level, this
general principle has appeared in semiparametric statistics
(Levit, 1976; Ibragimov & Has’ Minskii, 2013; Bickel, 1982;
Robinson, 1988; Newey, 1990) and more recently in double
machine learning (Chernozhukov et al., 2018; 2017; Mackey
et al., 2018). Furthermore, this idea has been extensively
studied in the controls literature where it is referred to as
certainty equivalence (Theil, 1957; Simon, 1956; Mania
et al., 2019; Simchowitz & Foster, 2020), or as model-based
planning in reinforcement learning (Agarwal et al., 2020).

1.3. Additional Preliminaries

As done by previous works in this area, we limit ourselves
to considering predictive models parameterized by a finite-
dimensional vector θ ∈ Θ ⊆ Rd, where Θ is a closed,
convex set. The distribution map D(·) maps parameter vec-
tors to data distributions over real-valued instances z ∈ Rm.
While each model θ can induce a potentially distinct distri-
bution D(θ), we expect similar classifiers to induce similar
distributions. This intuition is captured by the notion of
ε-sensitivity, which is essentially a Lipschitz condition on
the distribution map D(·). We state that D(·) is ε-sensitive
for some ε > 0 if for all θ, θ′ ∈ Θ,

W1(D(θ),D(θ′)) 6 ε ‖θ − θ′‖2 . (A1)

Here, W1 denotes the Wasserstein-1 or earth mover’s dis-
tance between two distributions.

2. Contrasting Optimality and Stability
Up until now, all works within the performative predic-
tion literature have focused on analyzing when different
algorithms converge to stable points. While the primary mo-
tivation for stability was eliminating the need for retraining,
it was observed as a useful byproduct that stable points can
approximately minimize the performative risk.

More specifically, Perdomo et al. (2020) prove that all stable
points and performative optima lie within `2-distance at
most 2Lzε/γ of each other, where ε is the sensitivity of the
distribution map, γ denotes the strong convexity parameter
of the loss, and Lz denotes the Lipschitz constant of the loss
in z. At first glance, this result implicitly suggests that stable
points also have good predictive performance. While this
is sometimes the case, in many settings Lz is large enough
to make the bound vacuous. For example, there exist cases
where the loss function is strongly convex, but stable points
actually maximize the performative risk.

Proposition 2.1. For any γ,∆ > 0, there exists a per-
formative prediction problem where the loss is γ-strongly
convex in θ, yet the unique stable point θPS maximizes the
performative risk and PR(θPS)−minθ PR(θ) > ∆.

Proof. We prove the proposition by constructing an exam-
ple. Let z ∼ D(θ) be a point mass at εθ, and define the loss
to be:

`(z; θ) = −β · θ>z +
γ

2
‖θ‖22,

for some β > 0. This loss is γ-strongly convex and the
distribution map is ε-sensitive. A short calculation shows
that the performative risk simplifies to

PR(θ) =
(γ

2
− εβ

)
· ‖θ‖22. (1)

For ε 6= γ/β, there is a unique performatively stable point
at the origin, and if ε > γ

2β this point is the unique max-
imizer of the performative risk. Moreover, for ε > γ

2β ,
minθ PR(θ) = (γ/2− εβ) ·maxθ∈Θ ‖θ‖22. Therefore, de-
pending on the radius of Θ, the suboptimality gap of θPS

can be arbitrarily large. �

In the above example,∇θ`(z; θ) is β-Lipschitz in z, a con-
dition commonly referred to as smoothness in prior work
on performativity. The previous proposition thus shows
that stable points can have an arbitrary suboptimality gap
when ε > γ

2β . This is important since ε < γ
β is the regime

where previously studied algorithms for optimizing under
performativity—such as repeated risk minimization or dif-
ferent variants of gradient descent (Perdomo et al., 2020;
Mendler-Dünner et al., 2020)—converge to stability. Apply-
ing these methods when ε ∈ (γ/(2β), γ/β) would hence
maximize the performative risk on this problem.
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Moreover, we remark that the Lipschitz constant Lz is equal
to β ·maxθ∈Θ ‖θ‖2. Therefore, the results of Perdomo et al.
(2020) imply that stable points and optima are at distance at
most 2Lzε

γ = 2βε
γ maxθ∈Θ ‖θ‖2. When ε > γ

2β , as assumed
in the proof of Proposition 2.1, this bound on the distance
becomes vacuous: ‖θPS − θPO‖2 6 maxθ∈Θ ‖θ‖2.

Lastly, we point out that ε = γ
2β is a sharp threshold for

convexity of the performative risk in this example, as can be
seen in equation (1). In the following section, we show that
this threshold behavior is not an artifact of this particular
setting, but rather a phenomenon that holds more generally.

3. Convexity of the Performative Risk
We now introduce our main structural results illustrating
how the performative risk can be convex in various nat-
ural settings, and hence amenable to direct optimization.
Throughout our presentation, we adopt the following con-
vention. We state that the performative risk is λ-convex, for
some λ ∈ R, if the objective,

PR(θ)− λ

2
‖θ‖22

is convex. In other words, if λ is positive, then PR(θ) is λ-
strongly convex. If λ is negative, then adding the analogous
regularizer λ2 ‖θ‖

2 ensures PR(θ) is convex. Furthermore,
in addition to ε-sensitivity, we will make repeated use of the
following assumptions throughout the remainder of the pa-
per. To facilitate readability, we let Z def

= ∪θ∈Θsupp(D(θ)).

We say that a loss function `(z; θ) is β-smooth in z if for all
θ ∈ Θ and z, z′ ∈ Z ,

‖∇θ`(z; θ)−∇θ`(z′; θ)‖2 6 β ‖z − z′‖2 . (A2)

Furthermore, a loss function `(z; θ) is γ-strongly convex in
θ if for all θ, θ′, θ′′ ∈ Θ,

E
z∼D(θ′′)

`(z; θ) > E
z∼D(θ′′)

`(z; θ′)

+ E
z∼D(θ′′)

∇θ`(z; θ′)>(θ − θ′) +
γ

2
‖θ − θ′‖22 .

(A3a)

If γ = 0, this assumption is equivalent to convexity. Simi-
larly, we say that the loss is γz-strongly convex in z if for
all θ ∈ Θ and z, z′ ∈ Z ,

`(z; θ) > `(z′; θ) +∇z`(z′; θ)>(z′ − z) +
γz
2
‖z − z′‖22 .

(A3b)
Lastly, we state that a distribution map, loss pair (D(·), `)
satisfies mixture dominance if the following condition holds
for all θ, θ′, θ′′ ∈ Θ and α ∈ (0, 1):

E
z∼D(αθ+(1−α)θ′)

`(z; θ′′) 6 E
z∼αD(θ)+(1−α)D(θ′)

`(z; θ′′)

(A4)

Smoothness and strong convexity are standard and have
appeared previously in the context of performative predic-
tion. The mixture dominance condition is novel and plays
a central role in our analysis of when the performative risk
is convex. To provide some intuition for this condition, we
recall the definition of the decoupled performative risk:

DPR(θ, θ′) = E
z∼D(θ)

`(z; θ′).

Notice that asserting convexity of the performative risk is
equivalent to showing convexity of DPR(θ, θ) when both
arguments are forced to be the same. While convexity (A3a)
guarantees that DPR is convex in the second argument, mix-
ture dominance (A4) essentially posits convexity of DPR
in the first argument. Importantly, assuming convexity in
each argument separately does not directly imply that the
performative risk is convex.

On a more intuitive level, this assumption (A4) is essentially
a stochastic dominance statement: the mixture distribution
αD(θ) + (1 − α)D(θ′) “dominates” D(αθ + (1 − α)θ′)
under a certain loss function. Similar conditions have been
extensively studied within the literature on stochastic orders
(Shaked & Shanthikumar, 2007), which we further discuss
in Appendix A. Part of our analysis relies on incorporat-
ing tools from this literature, and we believe that further
exploring technical connections between this field and per-
formative prediction could be valuable. For example, using
results from stochastic orders we can show that (A4) holds
when the loss is convex in z and the distribution map D(·)
forms a location-scale family of the form:

zθ ∼ D(θ) ⇔ zθ
d
= (Σ0 + Σ(θ))z0 + µ0 + µθ, (2)

where z0 ∼ D0 is a sample from a fixed zero-mean distribu-
tion D0, and Σ(θ), µ are linear maps (see Proposition A.4
for a formal proof). Distribution maps of this sort are ubiq-
uitous throughout the performative prediction literature and
hence satisfy mixture dominance if the loss ` is convex. For
instance, the distribution map for the strategic classifica-
tion simulator in Perdomo et al. (2020) is a location family.
Other examples of location families can be found in previ-
ous work on strategic classification (Frankel & Kartik, 2021;
Haghtalab et al., 2020). Mixture dominance can also hold in
discrete settings, e.g. D(θ) = Bernoulli(a>θ + b) satisfies
this condition for any loss. Having provided some context
on the mixture dominance condition, we can now state the
main result of this section:
Theorem 3.1. Suppose that the loss function `(z; θ) is γ-
strongly convex in θ (A3a), β-smooth in z (A2), and that
D(·) is ε-sensitive (A1). If mixture dominance (A4) holds,
then the performative risk is λ-convex for λ = γ − 2εβ.

Together with the example from the proof of Proposition 2.1,
this theorem shows that γ

2β is a sharp threshold for convex-
ity of the performative risk. If ε is strictly less than this
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threshold, then under mixture dominance and appropriate
conditions on the loss, the performative risk is strongly con-
vex by Theorem 3.1. On the other hand, if ε is above this
threshold, the example from Proposition 2.1 shows that there
exists a performative prediction instance which satisfies the
remaining assumptions, yet is non-convex; in particular, for
ε > γ

2β the performative risk is strictly concave in that exam-
ple. This threshold was also implicitly observed by Perdomo
et al. (2020) in the proof of Proposition 4.2 as byproduct of
showing that the performative risk can be non-convex for
ε 6 γ

β . However, they provide no general analysis of when
the performative risk is convex. Note that all of the above
examples satisfy mixture dominance.

While the threshold ε = γ/(2β) is in general tight as argued
above, for certain families of distribution maps the conclu-
sion of Theorem 3.1 can be made considerably stronger.
Indeed, in some cases the performative risk is convex regard-
less of the magnitude of performative effects, as observed
for the following location family.

Example 3.2. Consider the following stylized model of pre-
dicting the final vote margin in an election contest. Features
x, such as past polling averages, are drawn i.i.d. from a
static distribution, x ∼ Dx. Since predicting a large mar-
gin in either direction can dissuade people from voting, we
consider outcomes drawn from the conditional distribution:
y|x ∼ g(x) + µ>θ + ξ, where g : Rd → R is an arbitrary
map, µ ∈ Rd is a fixed vector, and ξ is a zero-mean noise
variable. If ` is the squared loss, `((x, y); θ) = 1

2 (y−x>θ)2,
or the absolute loss, `((x, y); θ) = |y − x>θ|, then the per-
formative risk is convex for any g and µ.

The proof follows by simply observing that in both cases,
the performative risk can be written as a linear function in
θ composed with a convex function. Another interesting
property of this example is that the distribution map is ε-
sensitive with ε = ‖µ‖2, yet the sensitivity parameter plays
no role in the characterization of convexity. Motivated by
this observation, we specialize the analysis in Theorem 3.1
to the particular case of location-scale families, and obtain
a result that is at least as tight as the previous theorem.

Theorem 3.3. Suppose that `(z; θ) is γ-strongly convex
in θ (A3a), β-smooth (A2), and γz-strongly convex in z
(A3b). Furthermore, suppose that D(θ) forms a location-
scale family (2) with ε as its sensitivity parameter1. Define
Σz0 to be the covariance matrix of z0 ∼ D0, and let

σmin(µ) = min
‖θ‖2=1

‖µθ‖2, σmin(Σ) = min
‖θ‖2=1

‖Σ1/2
z0 Σ(θ)>‖F .

Then, the performative risk is λ-convex for λ equal to:

max{γ − β2/γz, γ − 2εβ + γz(σ
2
min(µ) + σ2

min(Σ))}.
1The sensitivity parameter ε for location-scale families can be

explicitly bounded in terms of the parameters µ and Σ(θ); see
Remark C.3 in the Appendix.

Remark 3.4. This tighter bound leverages the fact that
some losses are strongly convex in the performative vari-
ables, such as the squared loss when only the outcome vari-
able exhibits performativity. In general, one can achieve
a tighter analysis of when the performative risk is convex
by distinguishing between variables which are static, whose
distribution is the same under D(θ) for all θ, and performa-
tive variables which are influenced by the deployed classifier.
For example, in strategic classification, the performative ef-
fects are often only present in the strategically manipulated
features, and not in the label. In Example 3.2, on the other
hand, the effects are only present in the label. For simplicity
of exposition, we suppress this distinction between perfor-
mative and static variables, that is, those whose distribution
does not change for different D(θ). However, the reader
should think of all assumptions on z, such as strong con-
vexity or various Lipschitz assumptions, as only having to
apply to the performative variables, while the static ones
can be averaged out. We elaborate on how the analysis can
be strengthened in Appendix B.

We now illustrate an application of Theorem 3.3 on a scale
family example.

Example 3.5. Suppose that x > 0 is a one-dimensional fea-
ture drawn from a fixed distribution Dx with finite second
moment, and let y|x ∼ θx · Exp(1) be distributed as an ex-
ponential random variable with mean θx. Let the loss be the
squared loss, `((x, y); θ) = 1

2 (y − θ · x)2 and let Θ = R+.
Note that this example exhibits a self-fulfilling prophecy
property whereby all solutions are performatively stable. On
the other hand, PR(θ) = θ2 Ex2, and the unique performa-
tive optimum is θPO = 0. Again, we see how stability has
no bearing on whether a solution has low performative risk.

However, we note that the loss is 1-strongly convex in y. Fur-
thermore, by averaging over the static features, we observe
that PR(θ) is Ex2-strongly convex in θ and Ex-smooth
in y. Therefore, according to Theorem 3.3, the performa-
tive risk is convex and hence tractable to optimize, since
γ − β2/γz = Ex2 − (Ex)2 > 0 by Jensen’s inequality.

While this example, like most others in this section, is in-
tended as a toy problem to provide the reader with some
intuition regarding the intricacies of performativity, many
instances of performative prediction in the real world do
exhibit a self-fulfilling prophecy aspect whereby predicting
a particular outcome increases the likelihood that it occurs.
For instance, predicting that a student is unlikely to do well
on a standardized exam may discourage them from studying
in the first place and hence lower their final grade. Settings
like these where stability is a vacuous guarantee of perfor-
mance remind us how developing reliable predictive models
requires going outside the stability echo chamber.

As a final note, to prove the results in this section, we have
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imposed additional assumptions such as mixture dominance,
or analyzed the special case of location-scale families. The
reader might naturally ask whether these settings are so
restrictive that one can optimize the performative risk using
previous optimization methods for performative prediction
which find stable points. Or in particular, whether stable
points and performative optima now identify.

It turns out that both solutions can still have qualitatively
different behavior, regardless of the strength of performa-
tive effects. First, notice that the example in the proof of
Proposition 2.1 is a location family, and as such it satisfies
mixture dominance. In that example, when ε ∈ ( γ2β ,

γ
β ),

methods for finding stable points converge to a maximizer
of the performative risk; however, this is outside the regime
where the performative risk is convex. In what follows, by
relying on Theorem 3.3, we provide another scale family
example where the performative risk is convex regardless
of ε, yet stable points can be arbitrarily suboptimal.

Example 3.6. Suppose that D(θ) = N (µ, ε2θ2) for some
µ ∈ R and ε > 0. This distribution map is ε-sensitive.
If ` is the squared loss, `(z; θ) = 1

2 (z − θ)2, then there
is a unique stable point θPS = µ. We remark how
stability is completely oblivious to the performative ef-
fects, as arg minθ′ Ez∼D(θ) `(z; θ

′) = µ regardless of θ.
The performative optimum is θPO = µ/(1 + ε2). De-
pending on µ, the stable point can be arbitrarily subop-
timal, since PR(θPS) − PR(θPO) = Ω(µ2). Note also
that, according to Theorem 3.3, the performative risk is
γ − 2εβ + γzσ

2
min(Σ) = 1 − 2ε + ε2-convex. Since

1 − 2ε + ε2 = (ε − 1)2 > 0, the performative risk is
always convex and hence tractable to optimize.

4. Optimization Algorithms
Having identified conditions under which the performative
risk is convex, we now consider methods for efficiently op-
timizing it. One of the main challenges of carrying out this
task is that, even in convex settings, the learner can only
access the objective via noisy function evaluations corre-
sponding to classifier deployments. Without knowledge of
the underlying distribution map, it is infeasible to compute
gradients of the performative risk. A naive solution is to
apply a zeroth-order method, however, these algorithms are
in general hard to tune, and their performance scales poorly
with the problem dimension.

Our main algorithmic contribution is to show how one can
address these issues by creating an explicit model of the
distribution map and then optimizing a proxy objective for
the performative risk offline. We refer to this as the two-
stage procedure for optimizing the performative risk and
show it is provably efficient for the case of location families.

To develop further intuition, consider the following simple

example. Let z ∼ N (εθ, 1) be a one-dimensional Gaussian
and let `(z; θ) = 1

2 (z − θ)2 be the squared loss. Then,
the performative risk, PR(θ) = 1

2 (ε − 1)2θ2, is a simple,
convex function for all values of ε (as indeed confirmed by
Theorem 3.3, since γ−2εβ+γzσ

2
min(µ) = 1−2ε+ε2 > 0).

However, gradients are unavailable since they depend on the
density of D(θ), denoted pθ, which is typically unknown:

∇θPR(θ) = E
z∼D(θ)

∇θ`(z; θ) + E
z∼D(θ)

`(z; θ)∇θ log pθ(z)

= E
z∼D(θ)

−(z − θ) + ε(ε− 1)θ.

Despite the simplicity of this example, earlier approaches
to optimization in performative prediction, such as repeated
retraining (Perdomo et al., 2020), fail on this problem. The
reason is that they essentially ignore the second term in the
gradient computation which requires explicitly anticipating
performative effects. For example, retraining computes
the sequence of updates θt+1 = arg minθ Ez∼D(θt)

1
2 (z −

θ)2 = εθt, which diverges for |ε| > 1.

4.1. Generic Derivative-Free Methods

Having observed the difficulty of computing gradients, the
most natural starting point for optimizing the performative
risk is to consider derivative-free methods for convex op-
timization (Flaxman et al., 2005; Agarwal & Dekel, 2010;
Shamir, 2013). These methods work by constructing a
noisy estimate of the gradient by querying the objective
function at a randomly perturbed point around the current
iterate. For instance, Flaxman et al. (2005) sample a vector
u ∼ Unif(Sd−1) to get a slightly biased gradient estimator,

∇θPR(θ) ≈ d

δ
E[PR(θ + δu)u],

for some small δ > 0. Generic derivative-free algorithms
for convex optimization require few assumptions beyond
those given in the previous section to ensure convexity.
Moreover, they guarantee convergence to a performative
optimum given sufficiently many samples. However, their
rate of convergence can be slow and scales poorly with
the problem dimension. In general, zeroth-order meth-
ods require Õ(d2/∆2) samples to obtain a ∆-suboptimal
point (Agarwal & Dekel, 2010; Shamir, 2013), which can
be prohibitively expensive if samples are hard to come by.

4.2. Two-Stage Approach

In cases where we have further structure, an alternative
solution to derivative-free methods is to utilize a two-stage
approach to optimizing the performative risk. In the first
stage, we estimate a coarse model of the distribution map,
D̂(·) via experiment design. Then, in the second stage, the
algorithm optimizes a proxy to the performative risk treating
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Algorithm 1 Two-Stage Algorithm for Location Families
Stage 1: Construct a model of the distribution map
// Estimate location parameter µ with experiment design
for i = 1 to n do

-Sample and deploy classifier θi
i.i.d.∼ N (0, Id).

-Observe zi ∼ D(θi).
end for
-Estimate µ via OLS, µ̂ ∈ arg minµ

∑n
i=1 ‖zi − µθi‖

2
2.

// Gather samples from the base distribution
for j = n+ 1 to 2n do

-Deploy classifier θj = 0, and observe zj ∼ D(0).
end for
Stage 2: Minimize a finite-sample approximation of the
performative risk, arg minθ∈Θ

1
n

∑2n
j=n+1 `(zj + µ̂θ; θ).

the estimated D̂ as if it were the true distribution map:

θ̂PO ∈ arg min
θ

P̂R(θ)
def
= E

z∼D̂(θ)
`(z; θ).

The exact implementation of this idea depends on the prob-
lem setting at hand; to make things concrete, we instantiate
the approach in the context of location families and prove
that it optimizes the performative risk with significantly bet-
ter sample complexity than generic zeroth-order methods.
For the remainder of this section, we assume the distribution
map D is parameterized by a location family

zθ ∼ D(θ) ⇔ zθ
d
= z0 + µθ,

where the matrix µ ∈ Rm×d is an unknown parameter, and
z0 ∼ D0 is a zero-mean random variable.2

As discussed previously, location-scale families encompass
many formal examples discussed in prior work. They cap-
ture the intuition that in performative settings, the data points
are composed of a base component z0, representing the nat-
ural data distribution in the absence of performativity, and
an additive performative term.

In the first stage of our two-stage procedure we build a
model of the distribution map D̂ that in effect allows us to
draw samples z ∼ D̂(θ) ≈ D(θ). To do this, we perform
experiment design to recover the unknown parameter µ
which captures the performative effects. In particular, we
sample and deploy n classifiers θi, i ∈ [n], observe data
zi ∼ D(θi), and then construct an estimate µ̂ of the location
map µ using ordinary least-squares. We then gather samples
from the base distribution D0 by repeatedly deploying the
zero classifier. In the location-family model, deploying the
zero classifier ensures we observe data points z0, without

2The variable z0 being zero-mean is only to simplify the expo-
sition; the same analysis carries over when there is an additional
intercept term.

performative effects. With both of these components, given
any θ′, we can simulate z ∼ D̂(θ′) by taking z = z0 + µ̂θ′.

In the second stage, we use the estimated model to construct
a proxy objective. Define the perturbed performative risk:

P̂R(θ) = E
z∼D̂(θ)

`(z; θ) = E
z0∼D0

`(z0 + µ̂θ; θ).

Note that PR(θ) = Ez0∼D0 `(z0 + µθ; θ). Using the esti-
mated parameter µ̂ and samples zi ∼ D0, we can construct
a finite-sample approximation to the perturbed performative
risk and find the following optimizer:

θ̂n ∈ arg min
θ∈Θ

P̂Rn(θ)
def
=

1

n

2n∑
i=n+1

`(zi + µ̂θ; θ).

The main technical result in this section shows that, under
appropriate regularity assumptions on the loss, Algorithm 1
efficiently approximates the performative optimum. In par-
ticular, when the data dimensionality m is comparable to
the model dimensionality d, i.e. m = O(d), then comput-
ing a ∆-suboptimal classifier requires O(d/∆) samples. In
contrast, the derivative-free methods considered previously
require Õ(d2/∆2) samples to compute a classifier of simi-
lar quality. The formal statement and proof of this result is
deferred to Appendix C.2.

Theorem 4.1 (Informal). Under appropriate smoothness
and strong convexity assumptions on the loss `, if the distri-
bution of z0 is subgaussian, and if the number of samples
n > Ω (d+m+ log(1/δ)), then, with probability 1 − δ,
Algorithm 1 returns a point θ̂n such that

PR(θ̂n)− PR(θPO) 6 O

(
d+m+ log(1/δ)

n
+

1

δn

)
.

While we analyze this two-stage procedure in the context
of location families, the principles behind the approach
can be extended to more general settings. Whenever the
distribution map has enough structure to efficiently estimate
a model D̂ that supports sampling new data, we can always
use the “plug-in” approach above and construct and optimize
a perturbed version of the performative risk.

5. Experiments
We complement our theoretical findings with an empirical
evaluation of different methods on two tasks: the strategic
classification simulator from Perdomo et al. (2020), and a
synthetic linear regression example.

We pay particular attention to understanding the differences
in empirical performance between algorithms which con-
verge to performative optima, such as the two-stage proce-
dure or derivative-free methods from Section 4.1, versus
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Figure 1. Suboptimality gap versus number of samples collected for the two-stage algorithm, DFO algorithm, greedy SGD, and lazy SGD,
for ε = 0.01 (left) and ε = 100 (right).

existing optimization algorithms for finding stable points,
in particular greedy and lazy SGD due to Mendler-Dünner
et al. (2020). In addition, we focus on highlighting the dif-
ferences in the sample efficiency of the different algorithms
and examine their sensitivity to the relevant structural as-
sumptions outlined in Section 3. To evaluate derivative-free
methods, we implement the “gradient descent without a gra-
dient” algorithm from Flaxman et al. (2005), which we refer
to from here on out as the “DFO algorithm.” For each of the
following experiments, we run each algorithm 50 times and
display 95% bootstrap confidence intervals. We provide a
formal description of all the procedures, as well as a detailed
description of the experimental setup in Appendix D.

5.1. Linear Regression

We begin by evaluating how increasing the strength of per-
formative effects affects the behavior of the different opti-
mization procedures in settings where the performative risk
is convex. We recall the setup from Example 3.2, where the
learner attempts to solve a linear regression with performa-
tive labels. Given a parameter θ, data are drawn from D(θ)
according to:

x ∼ N (0,Σx), Uy ∼ N (0, σ2
y), y = β>x+ µ>θ + Uy.

This distribution map is a location family, and is ε-sensitive
with ε = ‖µ‖2. Performance is measured according to the
squared loss, `((x, y); θ) = 1

2 (y− θ>x)2. Furthermore, the
performative risk is convex for all choices of µ.

For small ε, greedy and lazy SGD converge to a stable
point that approximately minimizes the performative risk
(see left panel in Figure 1). However, as the strength of
performative effects increases, these methods fail to make
progress and are outperformed by the DFO algorithm and
the two-stage approach by a considerable margin (see right

panel in Figure 1). The two-stage procedure efficiently
converges after a small number of samples and its behavior
is largely unaffected as we increase the value of ε, while
the DFO algorithm becomes considerably slower when ε is
large.

5.2. Strategic Classification Simulator

We next consider experiments on the credit scoring simula-
tor from Perdomo et al. (2020), which has been employed
as an empirical benchmark for performative prediction in
several works (Mendler-Dünner et al., 2020; Drusvyatskiy
& Xiao, 2020; Brown et al., 2020). The simulator mod-
els a strategic classification problem between a bank and
individual agents seeking a loan. The bank deploys a lo-
gistic regression classifier fθ to determine the individuals’
default probabilities, while agents strategically manipulate
their features to achieve a more favorable classification.

More specifically, individuals correspond to feature, label
pairs (x, y) drawn i.i.d. from a base distributionD0. Given a
classifier fθ, agents compute a best-response set of features
xBR by solving an optimization problem. The bank then
observes the manipulated data points (xBR, y) ∼ D(θ). For
an appropriate choice of the agents’ objective function, the
distribution map forms a location family, xBR = x + εθ,
where ε is a parameter of the agents’ objective. It also serves
as a measure of performativity, since this distribution map
is ε-sensitive. As a final remark, we add `2-regularization
to the logistic loss to ensure strong convexity. See Perdomo
et al. (2020) and Appendix D for full details.

Since the logistic loss is not strongly convex in the fea-
tures, we only have a certificate of convexity when ε is
small enough (namely, ε 6 γ

2β ). We consider two values
of ε: one which is below this critical threshold, and one
large value for which we do not have theoretical guarantees.
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Figure 2. Classification accuracy versus number of samples collected for the two-stage algorithm, DFO algorithm, greedy SGD, and lazy
SGD, for ε = 0.0001 6 γ

2β
(left) and ε = 100 � γ

2β
(right).

When ε is small, both the DFO algorithm and the two-stage
method yield significantly higher accuracy solutions com-
pared to the two variants of SGD (see left panel of Figure 2).
Together with the linear regression experiments, this ob-
servation serves as further evidence that stable points have
significantly worse performative risk relative to performa-
tive optima, even in regimes where ε < γ/(2β). Note also
that, although both the DFO algorithm and the two-stage
algorithm improve upon methods for repeated retraining,
the two-stage algorithm converges with significantly fewer
samples and significantly lower variance. Indeed, a few
thousand samples suffice for convergence of the two-stage
method, whereas the DFO algorithm has still not fully con-
verged after a million samples.

Lastly, on the top right plot, we evaluate these methods for
ε� γ/(2β) which is outside the regime of our theoretical
analysis. Consequently, we have no convergence guarantees
for any of the four algorithms. Despite the lack of guaran-
tees and the increased strength of performative effects, we
see that the two-stage procedure achieves only a slightly
lower accuracy than in the previous setting. On the other
hand, as described in our echo chamber analogy, greedy and
lazy SGD rapidly converge to a local minimum and do not
significantly improve predictive performance after the 10k
sample mark. Despite extensive tuning, we were unable to
improve the performance of the DFO algorithm and achieve
nontrivial accuracy with this method.

6. Discussion and Future Work
Given the stark difference between performative stability
and optimality, the goal of our work was to identify the first
set of conditions and algorithmic procedures by which one
might be able to provably optimize the performative risk.
To this end, we focused on analyzing the problem at a broad

level of generality, identifying simple, structural conditions
under which the optimization problem becomes tractable.

However, when applying these ideas in practice, there are
a number of important considerations determined by the
relevant social context that are not explicitly addressed by
our theoretical analysis and which we believe are an im-
portant direction for future work. For example, in social
domains such as credit scoring or election forecasts, the
choice of loss function must balance predictive accuracy
with any possible externalities of the impact of classifier
deployment (i.e. performative effects) on the observed dis-
tribution. In a similar vein, exploration strategies must be
weighed against the relevant costs of deploying a particular
model. We believe that elucidating these tradeoffs and de-
sign choices in the context of specific applications and case
studies on performative prediction would be of high value
to the community.
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A. Background on Stochastic Orders
In this section we provide the necessary preliminaries from the literature on stochastic orders.

First, we recall the notion of the convex order: for two random vectors z, z′ ∈ Rm, we say that z is less than z′ in the convex
order, denoted z 6cx z′, if for all convex functions g : Rm → R, it holds that

E g(z) 6 E g(z′).

Using a slight abuse of notation, we will also write D1 6cx D2 for two distributions D1,D2 when z ∼ D1, z
′ ∼ D2 and

z 6cx z′.

Therefore, an immediate way to satisfy condition (A4) is to assume that the loss function `(z; θ) is convex in z, and to
require D(αθ + (1− α)θ′) 6cx αD(θ) + (1− α)D(θ′). The latter condition has been long studied in classical statistical
literature and many equivalent characterizations are known (see, e.g., (Shaked & Shanthikumar, 2007; Ross et al., 1996;
Müller & Stoyan, 2002)). This leads to the following corollary of Theorem 3.1.

Corollary A.1. Suppose that the loss function is γ-strongly convex in θ (A3a) and β-smooth in z (A2), and that the
distribution map D(·) is ε-sensitive (A1). Further, assume that `(z; θ) is convex in z and that D(αθ + (1 − α)θ′) 6cx
αD(θ) + (1− α)D(θ′). Then, the performative risk PR(θ) is (γ − 2εβ)-convex.

Now we discuss important families of distributions that satisfy the convex order condition D(αθ + (1 − α)θ′) 6cx
αD(θ) + (1− α)D(θ′).

Example A.2. An obvious example where D (αθ + (1− α)θ′) 6cx αD(θ) + (1−α)D(θ′) is when D(αθ+ (1−α)θ′) =
αD(θ) + (1− α)D(θ′). An important setting which satisfies this linearity property is when the probability of a positive
outcome of a binary variable is linear in θ: zθ ∼ Bern

(
a+ w>θ

)
defines zθ ∼ D(θ). In this case, D(αθ + (1− α)θ′) =

αD(θ) + (1− α)D(θ′).

For further examples, we invoke a convenient characterization of the convex order condition.

Lemma A.3 ((Müller & Rüschendorf, 2001)). Two random vectors z and z′ satisfy z 6cx z′ if and only if there exists a
coupling of z and z′ such that E[z′|z] = z a.s.

By applying Lemma A.3, we show that the important case of location-scale families satisfies the convex order condition.
Therefore, if the loss function is additionally convex in z, condition (A4) follows.

Proposition A.4. Suppose that D(θ) forms a location-scale family (2) such that Σ0 + Σ(θ) has full rank for all θ ∈ Θ.
Then, D(αθ + (1− α)θ′) 6cx αD(θ) + (1− α)D(θ′) for all θ, θ′ ∈ Θ.

Proof. We will construct a coupling (z, z′) such that z ∼ D(αθ+ (1−α)θ′), z′ ∼ αD(θ) + (1−α)D(θ′), and E[z′|z] = z.
Let z ∼ D(αθ + (1− α)θ′); then we define z′ in terms of z as

z′ = (Σ0 + Σ(G))(Σ0 + Σ(αθ + (1− α)θ′))−1 (z − µ0 − µ(αθ + (1− α)θ′)) + µ0 + µG, (3)

where

G =

{
θ, with probability α,
θ′, with probability 1− α

is independent of z. Notice that

E[z′ | z] = E
[
(Σ0 + Σ(G))(Σ0 + Σ(αθ + (1− α)θ′))−1 (z − µ0 − µ(αθ + (1− α)θ′)) + µ0 + µG | z

]
= (Σ0 + E[Σ(G)])(Σ0 + Σ(αθ + (1− α)θ′))−1 (z − µ0 − µ(αθ + (1− α)θ′)) + µ0 + E[µG]

= z,

which follows by linearity of µ and Σ(·) and the fact that E[G] = αθ + (1− α)θ′.

We now only need to verify that z′ ∼ αD(θ) + (1 − α)D(θ′) in order to apply Lemma A.3 and conclude that z′ 6cx z.
Indeed, with probability α we have G = θ, and on that event z′ d= (Σ0 + Σ(θ))z0 + µ0 + µθ; a similar argument applies to
θ′. Therefore, putting everything together we conclude that z 6cx z′. �
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Proposition A.4 implies that for all convex functions g : Rm → R,

E
z∼D(αθ+(1−α)θ′)

[g(z)] 6 E
z∼αD(θ)+(1−α)D(θ′)

[g(z)].

We now show that for strongly convex g, this conclusion can be made even stronger. This result allows for deriving a tighter
version of Theorem 3.1 for the important class of location-scale families, stated in Theorem 3.3.
Proposition A.5. Let g : Rm → R be a γz-strongly convex function for some γz > 0, and let D(θ) form a location-scale
family (2). Then,

E
z∼D(αθ+(1−α)θ′)

[g(z)] 6 E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− α(1− α)γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22.

Proof. Since g is strongly convex, we can write g(z) = g0(z) + γz
2 ‖z‖22, where g0 is a convex function. Thus, we want to

prove

E
z∼D(αθ+(1−α)θ′)

[
g0(z) +

γz
2
‖z‖22

]
6 E
z′∼αD(θ)+(1−α)D(θ′)

[
g0(z′) +

γz
2
‖z′‖22

]
− α(1− α)γz

2
E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22 .

By Proposition A.4, we know that

E
z∼D(αθ+(1−α)θ′)

[g0(z)] 6 E
z∼αD(θ)+(1−α)D(θ′)

[g0(z)].

Therefore, we only need to argue that

E
[
‖z′‖22 − ‖z‖22

]
> α(1− α)E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22.

Without loss of generality, we take z, z′ to be coupled as in equation (3). Then, we can write

E
[
‖z′‖22 − ‖z‖22

]
= E

[
‖z′ − z‖22 + 2(z′ − z)>z

]
= E

[
‖z′ − z‖22

]
= E

[
‖Σ (G− (αθ + (1− α)θ′)) z0 + µ (G− (αθ + (1− α)θ′))‖22

]
,

where the second steps follows by iterating expectations, because E[z′|z] = z.

By further taking an expectation over G, we get:

E
[
‖Σ (G− (αθ + (1− α)θ′)) z0 + µ (G− (αθ + (1− α)θ′))‖22

]
= α(1− α)2 E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22 + (1− α)α2 E ‖Σ(θ′ − θ)z0 + µ(θ − θ′)‖22
= α(1− α)E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22.

�

B. Distinguishing between Static and Performative Variables
In many natural examples, the performative effects are only present in a subset of the variables that make up z. For simplicity
of exposition, we suppress this distinction between performative and static variables, that is, those whose distribution does
not change for different D(θ). However, the reader should think of all assumptions on z, such as strong convexity or various
Lipschitz assumptions, as only having to apply to the performative variables, while the static ones can be averaged out. To
give one example, suppose that z = (zs, zp), where zs denotes the static variables and zp denotes the performative ones.
Using this distinction, the step in equation (5) would proceed as follows:

E
(zs,zp)∼D(θ)

[∇θ`((zs, zp); θ)]>(θ′ − θ)− E
(zs,z′p)∼D(θ′)

[∇θ`((zs, z′p); θ)]>(θ′ − θ)

= E
zs

[(
E[∇θ`((zs, zp); θ)|zs]]− E[∇θ`((zs, z′p); θ)|zs]

)>
(θ′ − θ)

]
6 E
zs

[β(zs)ε(zs)] ‖θ − θ′‖22.
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Here, β(zs) is the Lipschitz constant of ∇θ`((zs, ·); θ), and ε(zs) is the sensitivity parameter of the distribution of zp,
conditional on zs. As clear from the above example, stating all conditions and proofs while emphasizing this distinction
is fairly cumbersome, so we opted for a simplified presentation. Similar calculations can be carried out for the rest of the
proofs of the structural results.

C. Deferred Proofs
C.1. Convexity of the Performative Risk

Proof of Theorem 3.1. We begin by writing out the gradient of the performative risk:

∇θPR(θ) = ∇θ
(∫

`(z; θ)pθ(z)dz

)
=

∫
∇θ`(z; θ)pθ(z)dz +

∫
`(z; θ)∇θpθ(z)dz

=

∫
∇θ`(z; θ)pθ(z)dz +

∫
`(z; θ)∇θ log(pθ(z))pθ(z)dz

= E
z∼D(θ)

[∇θ`(z; θ)] + E
z∼D(θ)

[`(z; θ)∇θ log(pθ(z))].

By the first-order condition for convexity, we know that PR(θ) is (γ − 2εβ)-convex if and only if(
E

z∼D(θ)
[∇θ`(z; θ) + `(z; θ)∇θ log(pθ(z))]

)>
(θ′ − θ) +

γ − 2εβ

2
‖θ − θ′‖22 6 PR(θ′)− PR(θ), (4)

for all θ, θ′ ∈ Θ. By assumption (A4), we know that for all θ, θ′,
theta′′ ∈ Θ,

E
z∼D(αθ+(1−α)θ′)

[`(z; theta′′)] 6 α E
z∼D(θ)

[`(z; theta′′)] + (1− α) E
z∼D(θ′)

[`(z; theta′′)].

This assumption is equivalent to saying that gtheta′′(θ) = Ez∼D(θ)[`(z;
theta′′)] is a convex function of θ, for all
theta′′. We can express this convexity condition using the equivalent first-order characterization:

E
z∼D(θ)

[`(z; theta′′)∇θ log(pθ(z))]
>(θ′ − θ) 6 E

z∼D(θ′)
[`(z; theta′′)]− E

z∼D(θ)
[`(z; theta′′)].

Since the mixture dominance condition holds for all θ, θ′ and
theta′′, we can set
theta′′ equal to θ in the inequality above to conclude that

E
z∼D(θ)

[`(z; θ)∇θ log(pθ(z))]
>(θ′ − θ) 6 E

z∼D(θ′)
[`(z; θ)]− E

z∼D(θ)
[`(z; θ)].

Going back to equation (4), we see that a sufficient condition for (γ − 2εβ)-convexity of the performative risk is

E
z∼D(θ)

[∇θ`(z; θ)]>(θ′ − θ) +
γ − 2εβ

2
‖θ − θ′‖22 6 E

z∼D(θ′)
`(z; θ′)− E

z∼D(θ′)
`(z; θ).

By the assumption that the loss is γ-strongly convex in θ, we know

E
z∼D(θ′)

`(z; θ′)− E
z∼D(θ′)

`(z; θ) > E
z∼D(θ′)

[∇θ`(z; θ)]>(θ′ − θ) +
γ

2
‖θ − θ′‖22,

and thus we have further simplified the sufficient condition to

E
z∼D(θ)

[∇θ`(z; θ)]>(θ′ − θ)− E
z∼D(θ′)

[∇θ`(z; θ)]>(θ′ − θ) 6 2εβ

2
‖θ − θ′‖22.

Since the loss is β-smooth in z, we have that ∇θ`(z; θ)>(θ′ − θ) is β‖θ − θ′‖2-Lipschitz in z. Now, we can use the fact
that the distribution map is ε-sensitive to upper bound the left-hand side by applying the Kantorovich-Rubinstein duality
theorem:

E
z∼D(θ)

[∇θ`(z; θ)]>(θ′ − θ)− E
z∼D(θ′)

[∇θ`(z; θ)]>(θ′ − θ) 6 εβ‖θ − θ′‖22. (5)

Therefore, we can conclude that the performative risk is (γ − 2εβ)-convex.
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Proof of Theorem 3.3. Following the steps of Theorem 3.1, we know that PR(θ) is λ-convex if and only if

E
z∼D(θ)

[∇θ`(z; θ)]>(θ′ − θ) + E
z∼D(θ)

[`(z; θ)∇θ log(pθ(z))]
>(θ′ − θ) +

λ

2
‖θ − θ′‖22 6 PR(θ′)− PR(θ),

for all θ, θ′ ∈ Θ.

We now state a technical lemma which rephrases the conclusion of Proposition A.5 in an equivalent way, deferring its proof
to the end of this section.

Lemma C.1. Suppose that

E
z∼D(αθ+(1−α)θ′)

[g(z)] 6 E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− α(1− α)γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22.

Then,
E

z∼D(θ′)
[g(z)] > E

z∼D(θ)
[g(z)] + (∇θ E

z∼D(θ)
[g(z)])>(θ′ − θ) +

γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22.

Therefore, by Proposition A.5 and Lemma C.1, we know

E
z∼D(θ)

[`(z; θ)∇θ log(pθ(z))]
>(θ′ − θ) 6 E

z∼D(θ′)
[`(z; θ)]− E

z∼D(θ)
[`(z; θ)]

− γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22,

where we take g(z) = `(z; θ).

Thus it suffices to show

E
z∼D(θ)

[∇θ`(z; θ)]>(θ′ − θ) +
λ

2
‖θ − θ′‖22 6 E

z∼D(θ′)
`(z; θ′)− E

z∼D(θ′)
`(z; θ) +

γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22.

By the assumption that the loss is γ-strongly convex, we know

E
z∼D(θ′)

`(z; θ′)− E
z∼D(θ′)

`(z; θ) > E
z∼D(θ′)

[∇θ`(z; θ)]>(θ′ − θ) +
γ

2
‖θ − θ′‖22.

With this, we have simplified the sufficient condition for γ-convexity to

( E
z∼D(θ)

[∇θ`(z; θ)]− E
z∼D(θ′)

[∇θ`(z; θ)])>(θ′ − θ) 6 γ − λ
2
‖θ − θ′‖22 +

γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22. (6)

We bound the left-hand side by applying smoothness of the loss together with the Kantorovich-Rubinstein duality theorem;
for this, we need a bound on W (D(θ),D(θ′)). We will use the bound implied by ε-sensitivity, as well as the bound implied
by the following lemma.

Lemma C.2. Suppose that the distribution map D(θ) forms a location-scale family (2). Then,

W (D(θ),D(θ′)) 6 E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖2.

Proof of Lemma C.2. By definition, W (D(θ),D(θ′)) = infΠ(D(θ),D(θ′)) E(zθ,zθ′ )∼Π(D(θ),D(θ′))[‖zθ − zθ′‖2], where
Π(D(θ),D(θ′)) denotes a coupling of D(θ) and D(θ′). The simplest way to couple D(θ) and D(θ′), or equivalently
zθ and zθ′ , is to sample z0 ∼ D, and set zθ = (Σ0 + Σ(θ))z0 + µ0 + µ(θ) and zθ′ = (Σ0 + Σ(θ′))z0 + µ0 + µ(θ′). With
this choice, ‖zθ − zθ′‖2 = ‖Σ(θ− θ′)z0 + µ(θ− θ′)‖2, and hence W (D(θ),D(θ′)) 6 E ‖Σ(θ− θ′)z0 + µ(θ− θ′)‖2. �

Therefore, the left-hand side in equation (6) can be bounded by

E
z∼D(θ)

[∇θ`(z; θ)]>(θ′ − θ)− E
z∼D(θ′)

[∇θ`(z; θ)]>(θ′ − θ) 6 β E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖2‖θ′ − θ‖2,

but also by applying ε-sensitivity

E
z∼D(θ)

[∇θ`(z; θ)]>(θ′ − θ)− E
z∼D(θ′)

[∇θ`(z; θ)]>(θ′ − θ) 6 βε‖θ′ − θ‖22.
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Finally, to show λ = max
{
γ − β2/γz, γ + γz(σ

2
min(µ) + σ2

min(Σ))− 2βε
}

-convexity it suffices to show both

β E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖2‖θ′ − θ‖2 6
β2/γz

2
‖θ − θ′‖22 +

γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22 (7)

and

βε‖θ′ − θ‖22 6
2βε− γz(σ2

min(µ) + σ2
min(Σ))

2
‖θ − θ′‖22 +

γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22. (8)

By the AM-GM inequality, we have

β E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖2‖θ′ − θ‖2 6
1

2

β2

γz
‖θ′ − θ‖22 +

γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22,

and so condition (7) follows.

For condition (8), we observe that

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22 = E ‖Σ(θ − θ′)z0‖22 + ‖µ(θ − θ′)‖22
= Tr

(
Σ(θ − θ′)Σz0Σ(θ − θ′)>

)
+ ‖µ(θ − θ′)‖22

= ‖Σ1/2
z0 Σ(θ − θ′)>‖2F + ‖µ(θ − θ′)‖22.

Applying σmin(Σ)‖θ − θ′‖2 6 ‖Σ1/2
z0 Σ(θ − θ′)>‖F and σmin(µ)‖θ − θ′‖2 6 ‖µ(θ − θ′)‖2 completes the proof of the

theorem.

Proof of Lemma C.1. The proof follows the standard argument for proving equivalent formulations of strong convexity.

First we show that Ez∼D(θ)[g(z)]− γz
2 E ‖Σ(θ)z0 + µθ‖22 is convex in θ. This follows because:

E
z∼D(αθ+(1−α)θ′)

[g(z)]− γz
2

E ‖Σ(αθ + (1− α)θ′)z0 + µ(αθ + (1− α)θ′)‖22

6 E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− α(1− α)γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22

− γz
2

E ‖Σ(αθ + (1− α)θ′)z0 + µ(αθ + (1− α)θ′)‖22

= E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− γz
2
α2 E ‖Σ(θ)z0 + µθ‖22 −

γz
2

(1− α)2 E ‖Σ(θ′)z0 + µθ′‖22

+
γz
2

2α(1− α)E(Σ(θ) + µθ)>(Σ(θ′) + µθ′)− α(1− α)γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22

= E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− γz
2
αE ‖Σ(θ)z0 + µθ‖22 −

γz
2

(1− α)E ‖Σ(θ′)z0 + µθ′‖22

= α

(
E

z∼D(θ)
[g(z)]− γz

2
E ‖Σ(θ)z0 + µθ‖22

)
− (1− α)

(
E

z∼D(θ′)
[g(z)]

γz
2

E ‖Σ(θ′)z0 + µθ′‖22
)
.

By the equivalent first-order characterization, this means that

E
z∼D(θ′)

[g(z)] >
γz
2

E ‖Σ(θ′)z0 + µθ′‖22 + E
z∼D(θ)

[g(z)]− γz
2

E ‖Σ(θ)z0 + µθ‖22

+ (∇θ E
z∼D(θ)

[g(z)])>(θ′ − θ)− γz
2

2E(Σ(θ)z0 + µθ)>(∇θ(Σ(θ)z0 + µθ))>(θ′ − θ)

>
γz
2

E ‖Σ(θ′)z0 + µθ′‖22 + E
z∼D(θ)

[g(z)]− γz
2

E ‖Σ(θ)z0 + µθ‖22

+ (∇θ E
z∼D(θ)

[g(z)])>(θ′ − θ)− γz E(Σ(θ)z0 + µθ)>(Σ(θ′ − θ)z0 + µ(θ′ − θ))

= E
z∼D(θ)

[g(z)] + (∇θ E
z∼D(θ)

[g(z)])>(θ′ − θ) +
γz
2

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22.

�
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Remark C.3. We note that the sensitivity parameter ε can be bounded in terms of the location and scale parameters for
location-scale families. In particular, in showing condition (8), we saw that

E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22 = ‖Σ1/2
z0 Σ(θ − θ′)>‖2F + ‖µ(θ − θ′)‖22.

If we then denote

σmax(µ) = max
‖θ‖2=1

‖µθ‖2, σmax(Σ) = max
‖θ‖2=1

‖Σ1/2
z0 Σ(θ)>‖F ,

we can see that E ‖Σ(θ − θ′)z0 + µ(θ − θ′)‖22 6 σ2
max(µ)‖θ − θ′‖22 + σ2

max(Σ)‖θ − θ′‖22. Combining this result with
Lemma C.2 and Jensen’s inequality, we get that

W (D(θ),D(θ′)) 6
√
σ2

max(µ) + σ2
max(Σ)‖θ − θ′‖2,

and so ε 6
√
σ2

max(µ) + σ2
max(Σ).

C.2. Two-Stage Algorithm for Location Families

We carefully review the problem setup and introduce the remaining assumptions. The distribution map D parameterizes a
location family

zθ ∼ D(θ) ⇔ zθ
d
= z0 + µθ,

where z0 ∼ D0. We assume the base distribution D0 is zero-mean and subgaussian with parameter K. The loss function
`(z; θ) is Lz-Lipschitz in z, L-Lipschitz and in θ, and β-smooth in (z, θ) in the sense that ∇`(z; θ) ∈ Rm+d is Lipschitz in
(z, θ).

We also assume that λ = max{γ− β2/γz, γ− 2εβ+ γzσ
2
min(µ)} > 0, where γ and γz are the strong convexity parameters

of the loss in θ and z, respectively. By Theorem 3.3, this implies that the performative risk is λ-strongly convex.

We assume that the performative optimum θPO is contained in a ball of radius R, so in the second stage we can set the
domain of optimization to be Θ = {θ : ‖θ‖2 6 R}. Finally, we assume that the minimizer of the perturbed performative
risk at the population level, θ̂ ∈ arg minθ∈Θ P̂R(θ) is contained in the interior of Θ with probability 1.

Theorem C.4. Under the preceding assumptions, if n > Ω (d+m+ log(1/δ)), then, with probability 1− δ, Algorithm 1
returns a point θ̂n such that

PR(θ̂n)− PR(θPO) 6 O

(
d+m+ log(1/δ)

n
+

1

δn

)
.

Before proceeding to the proof of this result, we first state four auxiliary lemmas, which constitute the bulk of our analysis.
The proofs of the lemmas are included in Appendix C.3. The first lemma is a standard result about ordinary least-squares
estimation.

Lemma C.5. If n > Ω(d+m+ log(1/δ)), then with probability 1− δ,

‖µ− µ̂‖ 6 O
(√

(d+m) + log(1/δ)

n

)
.

The next lemma is a simple adaptation from Theorem 2 in (Shalev-Shwartz et al., 2010) controlling the generalization gap
of the empirical risk minimizer for strongly convex losses.

Lemma C.6. Suppose P̂Rn is λ̂-strongly convex. Then, with probability at least 1− δ,

P̂R(θ̂n)− P̂R(θ̂) 6
4(Lz ‖µ̂‖+ L)2

δλ̂n
.

The next lemma controls the difference in gradients between the true performative risk PR and the perturbed performative
risk P̂R.
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Lemma C.7. For any θ ∈ Θ, ∥∥∥∇PR(θ)−∇P̂R(θ)
∥∥∥2

2
6 O(‖µ‖2 ‖µ− µ̂‖2).

Finally, the last lemma shows that the smoothness assumptions on the loss ensure smoothness of the performative risk. Here,
by βθ-smoothness we mean that∇θPR(θ) is βθ-Lipschitz.

Lemma C.8. Under the proceeding assumptions, the performative risk PR(θ) is βθ = O(‖µ‖2)-smooth.

With these lemmas in hand, we are now ready to prove Theorem C.4.

Proof of Theorem C.4. By assumption, the performative risk PR(θ) is λ-strongly convex, for some λ > 0. This implies

PR(θ̂n)− PR(θPO) 6
1

2λ

∥∥∥∇PR(θ̂n)
∥∥∥2

2
.

Since θ̂PO is an interior minimizer of P̂R, we know ∇P̂R(θ̂PO) = 0. Using ‖a+ b‖2 6 2 ‖a‖2 + 2 ‖b‖2,

1

2λ

∥∥∥∇PR(θ̂n)
∥∥∥2

2
=

1

2λ

∥∥∥∇PR(θ̂n)−∇P̂R(θ̂PO)
∥∥∥2

2

=
1

2λ

∥∥∥∇PR(θ̂n)−∇P̂R(θ̂n) +∇P̂R(θ̂n)−∇P̂R(θ̂PO)
∥∥∥2

2

6
1

λ

∥∥∥∇PR(θ̂n)−∇P̂R(θ̂n)
∥∥∥2

2
+

1

λ

∥∥∥∇P̂R(θ̂n)−∇P̂R(θ̂PO)
∥∥∥2

2
. (9)

We bound each of these terms separately. For the first term, by Lemma C.7,∥∥∥∇PR(θ̂n)−∇P̂R(θ̂n)
∥∥∥2

2
6 O(‖µ‖2 ‖µ− µ̂‖2)

By Lemma C.5, with probability 1− δ, we can bound ‖µ− µ̂‖2 6 O
(
d+m+log(1/δ)

n

)
, and thus∥∥∥∇PR(θ̂n)−∇P̂R(θ̂n)

∥∥∥2

2
6 O

(
d+m+ log(1/δ)

n

)
.

For the second term in equation (9), notice that λ = max{γ − β2/γz, γ − 2εβ + γzσ
2
min(µ)} > 0 implies that P̂R is at

least λ̂ = λ−O( 1√
n

)-strongly convex. This follows because |σmin(µ)− σmin(µ̂)| 6 ‖µ− µ̂‖ by Weyl’s inequality (see for

example Theorem 3.3.16 in Roger & Charles (1994)), and P̂R is O(‖µ̂‖)-sensitive, so by Lemma C.5, each term depending
on ε or σmin(µ̂) is within O(1/

√
n) or O(1/n) of the corresponding values for the non-perturbed risk PR.

Hence, when n > Ω(1/λ2), the strong convexity parameter of the perturbed performative risk, λ̂, is at least λ/2.

With this, we can apply the fact that θ̂PO is an interior minimizer of P̂R by assumption to conclude that when n > Ω(1/λ2),∥∥∥θ̂n − θ̂PO

∥∥∥2

2
6

4

λ

(
P̂R(θ̂n)− P̂R(θ̂PO)

)
Now, when P̂R is strongly convex, the finite-sample performative risk P̂Rn is also strongly convex because Theorem 3.3
does not depend on the base distribution D0, and P̂Rn is simply P̂R when the base distribution D0 is replaced with the
uniform distribution on {z1, . . . , zn}. Consequently, by Lemma C.6, with probability 1− δ,∥∥∥θ̂n − θ̂PO

∥∥∥2

2
6 O

(
P̂R(θ̂n)− P̂R(θ̂PO)

)
6 O

(
‖µ̂‖2
δn

)
.

By Lemma C.8, P̂R is O(‖µ̂‖2)-smooth. Applying the previous display then gives us,∥∥∥∇P̂R(θ̂n)−∇P̂R(θ̂PO)
∥∥∥2

2
6 O

(
‖µ̂‖4

∥∥∥θ̂n − θ̂PO

∥∥∥2

2

)
6 O

(
‖µ̂‖6
δn

)
.
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By the triangle inequality and repeated application of (a+ b)2 6 2a2 + 2b2, ‖µ̂‖6 6 128 ‖µ̂− µ‖6 + 128 ‖µ‖6. Therefore,
the above term is O(‖µ‖6 /δn). Putting everything together with a union bound, we have shown that with probability 1− δ,
if n > Ω(d+m+ log(1/δ)), it holds that

PR(θ̂n)− PR(θPO) 6 O

(
d+m+ log(1/δ)

n
+

1

δn

)
,

as desired. �

C.3. Proofs of Lemmas for Two-Stage Algorithm Analysis

The proof of Lemma C.5 is essentially standard (see, e.g., (Matni & Tu, 2019)), but we include it for completeness.

Proof of Lemma C.5. Define Z ∈ Rn×m with rows zi and Θ ∈ Rn×d with rows θi, 1 6 i 6 n. Then, Z = Θµ> + Z0,
where Z0 ∈ Rn×m is a matrix with base samples from D0 as rows. Temporarily assume that Θ>Θ is invertible; we will
later condition on this event. Separately optimizing over each row of µ, we can write the least-squares estimator as

µ̂> =
(
Θ>Θ

)−1
Θ>Z.

Consequently, we can bound the estimation error as

‖µ− µ̂‖ =
∥∥µ> − µ̂>∥∥ =

∥∥∥µ> − (Θ>Θ
)−1

Θ>
(
Θµ> + Z0

)∥∥∥
=
∥∥∥(Θ>Θ

)−1
Θ>Z0

∥∥∥
6

1

λmin(Θ>Θ)

∥∥Θ>Z0

∥∥ .
Since θi ∼ N (0, I), Θ ∈ Rn×d has i.i.d. N (0, 1) entries, and so Θ>Θ is a standard Wishart matrix. The standard bound
on the minimum eigenvalue of a Wishart matrix (see Theorem 4.6.1 in (Vershynin, 2018)) gives, with probability 1− δ,√

λmin(Θ>Θ) > Ω(
√
n−
√
d−

√
log(1/δ)).

Therefore, if n > Ω(d+ log(2/δ)), then, with probability 1− δ/2,√
λmin(Θ>Θ) > Ω(

√
n/2). (10)

Control of the second term,
∥∥Θ>Z0

∥∥, also follows from a standard covering argument followed by the Bernstein bound.
Write Θ>Z0 =

∑n
i=1 θi(z0)>i . Let Bd and Bm denote the unit balls in Rd and Rm, respectively. Then,

∥∥Θ>Z0

∥∥ = sup
x∈Bd,y∈Bm

x>

(
n∑
i=1

θi(z0)>i

)
y = sup

x∈Bd,y∈Bm

n∑
i=1

(
x>θi

) (
(z0)>i y

)
.

Let Nε, and Mε denote ε-coverings of Bd and Bm, respectively. A volumetric bound gives |Nε| 6
(
1 + 2

ε

)d
and

similarly |Mε| 6
(
1 + 2

ε

)m
(see Corollary 4.2.13 in (Vershynin, 2018)). Taking ε = 1/4, |Nε| 6 9d and |Mε| 6 9m.

Approximating the supremum over the ε-nets gives∥∥Θ>Z0

∥∥ 6 2 max
x∈Nε,y∈Mε

n∑
i=1

(
x>θi

) (
(z0)>i y

)
.

Fix x, y ∈ Nε,Mε. Since θi ∼ N (0, I) and ‖x‖2 = 1, x>θi ∼ N (0, 1), which has subgaussian norm 1. Similarly, since
(z0)i is subgaussian with parameter K and ‖y‖2 = 1, the marginal (z0)>i y is subgaussian with parameter K. Since z0 and θ
are independent and zero-mean, the product (x>θi)((z0)>i y) is zero-mean and subexponential with parameter K. Since
each term is subexponential, by the Bernstein bound (see Theorem 2.8.1 in (Vershynin, 2018)), for any t > 0,

P

{
n∑
i=1

(
x>θi

) (
(z0)>i y

)
> t/2

}
6 exp

(
−cmin

{
t2

nK2
,
t

K

})
,
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for some universal constant c. Taking a union bound over the ε-nets,

P
{∥∥Θ>Z0

∥∥ > t
}
6 9d+m exp

(
−cmin

{
t2

nK2
,
t

K

})
.

If n > Ω (d+m+ log(2/δ)), then with probability at least 1− δ/2,∥∥Θ>Z0

∥∥ 6 O(
√
n((d+m) + log(1/δ))). (11)

Combining equations (10) and (11) with a union bound, if n > Ω(d+m+ log(1/δ)), then

‖µ− µ̂‖ 6 O
(√

(d+m) + log(1/δ)

n

)
.

�

Proof of Lemma C.7. Under the location-family parameterization, we can write

PR(θ) = E
z∼D(θ)

`(z; θ) = E
z0∼D0

`(z0 + µθ; θ),

so the gradients are given by

∇PR(θ) = E
z0∼D0

∇`(z0 + µθ; θ) and ∇P̂R(θ) = E
z0∼D0

∇`(z0 + µ̂θ; θ).

This representation allows us to write∥∥∥∇PR(θ)−∇P̂R(θ)
∥∥∥2

2
=

∥∥∥∥ E
z0∼D0

[∇`(z0 + µθ; θ)−∇`(z0 + µ̂θ; θ)]

∥∥∥∥2

2

.

Applying the chain rule, together with the triangle-inequality, gives∥∥∥∇PR(θ)−∇P̂R(θ)
∥∥∥

2
6

∥∥∥∥ E
z0∼D0

[∇θ`(z0 + µθ; θ)−∇θ`(z0 + µ̂θ; θ)]

∥∥∥∥
2

+

∥∥∥∥ E
z0∼D0

[
µ>∇z`(z0 + µθ; θ)− µ̂>∇z`(z0 + µ̂θ; θ)

]∥∥∥∥
2

.

We bound each of these terms separately. For the first term, β-smoothness in z immediately gives∥∥∥∥ E
z0∼D0

[∇θ`(z0 + µθ; θ)−∇θ`(z0 + µ̂θ; θ)]

∥∥∥∥
2

6 β ‖µθ − µ̂θ‖2 6 β ‖µ− µ̂‖ ‖θ‖2 .

For the second term, adding and subtracting µ>∇z`(z0 + µ̂θ; θ) and then using the triangle inequality,∥∥∥∥ E
z0∼D0

[
µ>∇z`(z0 + µθ); θ)− µ̂>∇z`(z0 + µ̂θ; θ)

]∥∥∥∥
2

6 ‖µ‖
∥∥∥∥ E
z0∼D0

[∇z`(z0 + µθ); θ)−∇z`(z0 + µ̂θ; θ)]

∥∥∥∥
2

+ ‖µ− µ̂‖
∥∥∥∥ E
z0∼D0

[∇z`(z0 + µ̂θ; θ)]

∥∥∥∥
2

6 β ‖µ‖ ‖µ− µ̂‖ ‖θ‖2 + Lz ‖µ− µ̂‖ ,

where the last line used β-smoothness in z. Combining both pieces, we have∥∥∥∇PR(θ)−∇P̂R(θ)
∥∥∥

2
6 ((β + β ‖µ‖) ‖θ‖2 + Lz) ‖µ− µ̂‖ .

Using the trivial bound ‖θ‖2 6 R, and then squaring both sides,∥∥∥∇PR(θ̂)−∇P̂R(θ̂)
∥∥∥2

2
6 ((1 + ‖µ‖)βR+ Lz)

2 ‖µ− µ̂‖2 .

�
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Proof of Lemma C.8. By applying the location family parameterization as in the proof of Lemma C.7, we get

‖∇PR(θ)−∇PR(θ′)‖2 =

∥∥∥∥ E
z0∼D0

[∇`(z0 + µθ; θ)−∇`(z0 + µθ′; θ′)]

∥∥∥∥
2

.

Using the chain rule and the triangle inequality,

‖∇PR(θ)−∇PR(θ′)‖2 6
∥∥∥∥ E
z0∼D0

∇θ`(z0 + µθ; θ)−∇θ`(z0 + µθ′; θ′)

∥∥∥∥
2

+

∥∥∥∥ E
z0∼D0

µ>∇z`(z0 + µθ; θ)− µ>∇z`(z0 + µθ′); θ′)

∥∥∥∥
2

. (12)

For the first term in equation (12), adding and subtracting∇θ`(z + µθ′; θ) and using the triangle inequality gives∥∥∥∥ E
z0∼D0

[∇θ`(z0 + µθ; θ)−∇θ`(z0 + µθ′; θ′)]

∥∥∥∥
2

6

∥∥∥∥ E
z0∼D0

∇θ`(z0 + µθ; θ)−∇θ`(z0 + µθ′; θ)

∥∥∥∥
2

+

∥∥∥∥ E
z0∼D0

∇θ`(z0 + µθ′; θ)−∇θ`(z0 + µθ′; θ′)

∥∥∥∥
2

6 β ‖µ‖ ‖θ − θ′‖2 + β ‖θ − θ′‖2 ,

where we used Jensen’s inequality and the assumption that∇θ`(z; θ) is β-Lipschitz in z (for the first term) and β-Lipschitz
in θ (for the second term).

Now, for the second term in equation (12), similarly adding and subtracting µ>∇z`(z + µθ′; θ) and using the triangle
inequality gives∥∥∥∥ E

z0∼D0

[µ>∇z`(z0 + µθ; θ)− µ>∇z`(z0 + µθ′; θ′)]

∥∥∥∥
2

6

∥∥∥∥ E
z0∼D0

µ>∇z`(z0 + µθ; θ)− µ>∇z`(z0 + µθ′; θ)

∥∥∥∥
2

+

∥∥∥∥ E
z0∼D0

µ>∇z`(z0 + µθ′; θ)− µ>∇z`(z0 + µθ′; θ′)

∥∥∥∥
2

6 β ‖µ‖2 ‖θ − θ′‖2 + β ‖µ‖2 ‖θ − θ′‖2 ,

where we used ∇z`(z; θ) is β Lipschitz in z (for the first term) and β Lipschitz in θ (for the second term). This completes
the proof. �

D. Experimental Details
Lastly, we elaborate on the implementation details of the various simulators and algorithms evaluated in Section 5.

D.1. Synthetic Linear Regression Example

Data generating process. Given a parameter vector θ ∈ Rd, as per Example 3.2, feature label pairs (x, y) are generated
according to the following data generating process:

1. x ∼ N (0,Σx).

2. y = β>x+ µ>θ + Uy where Uy ∼ N (0, σ2
y).

In our experiments, we take d = 20, and set σ2
y = 0.01. For each trial, we sample Σx as a random symmetric positive-definite

matrix with operator norm 0.01, sample β ∼ N (0, Id), and sample w uniformly on the sphere of radius ε, where ε is the
sensitivity parameter of the distribution map. In our experiments, we choose ε ∈ {0.01, 100}.
For this example, the performative optimum θPO can be computed in closed-form due to the squared-loss and the linearity
of the performative effects. In particular,

θPO = (Σx + µµ>)−1Σxβ.
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Algorithms. We compare four different algorithms. In all four cases, we set Θ = {θ : ‖θ‖2 6 10}.

1. The two-stage procedure. For a budget of n samples, the two-stage procedure consists of first deploying n/2
classifiers θi ∼ N (0, Id) and observing data (xi, yi). We then compute an estimate µ̂ by solving a least-squares
problem:

µ̂ ∈ arg min
µ,c

n∑
i=1

(yi − µ>θi − c)2.

After computing µ̂, the algorithm collects another n/2 samples (xi, yi) by repeatedly deploying θi = 0 for i =

n+ 1, . . . , 2n, and computes θ̂n by solving another least-squares problem

θ̂n ∈ arg min
θ∈Θ

2n∑
i=n+1

(yi − θ>(xi − µ̂))2.

2. DFO. We run the derivative-free optimization procedure from Flaxman et al. (2005). We initialize θ0 = 1, use step-size
sequence c0/t, c0 = 0.01, a batch size of 20 samples per-step, and take δ = 10. These parameter were chosen via
a small grid search over c0 ∈ [1e − 4, 1], batch size in [1, 500], and δ ∈ [0.1, 100]. However, the algorithm still has
variance across runs, especially in the small ε regime.

3. Greedy SGD. We use the greedy SGD variant introduced by Mendler-Dünner et al. (2020) with initial point θ0 = 1
and step-size sequence 1/

√
t, which we found to slightly outperform the step-sequence 1/t in our experiments. For the

sake of brevity, we omit the full pseudocode of greedy/lazy SGD instead point the reader to Figure 1 in Mendler-Dünner
et al. (2020).

4. Lazy SGD. We use the lazy SGD algorithm (Mendler-Dünner et al., 2020) with initial point θ0 = 1, step-size sequence
c/(k0 + t) with parameters c = 1, k0 = 1, and k2 collected samples in k-th update.

Evaluation. We ran each algorithm for 50 trials, and in Figure 1, we compare the suboptimality gap PR(θ)− PR(θPO)
of each algorithm as a function of the number of samples. For each sample size n, we bootstrap 95% confidence intervals
over the 50 trials.

D.2. Strategic Classification

Data generation. We use the same strategic classification simulator as Perdomo et al. (2020). For detailed information
about the simulator, please refer to Appendix B.2 of Perdomo et al. (2020).

The strategic responses are determined according to

xBR = x+ εBθ,

for some matrix B which determines the subset of features that are performative. Here, θ ∈ R11 parameterizes a logistic
regression classifier. The logistic loss is regularized by an additional `2-penalty, which makes it strongly convex. The
computation of the smoothness parameter can be found in (Perdomo et al., 2020).

We consider two different values of the sensitivity parameter, ε ∈ {0.0001, 100}, and set the magnitude of the regularizer to
be λ = 0.002. We restrict the radius of the optimization domain to be 10, Θ = {θ : ‖θ‖2 6 10}. This choice of parameters
ensures that ε = 0.0001 is below the critical threshold γ

2β , while ε = 100 is above the threshold.

Algorithms. We compare the same four algorithms as the previous section.

1. Two-stage procedure. In the first stage, we deploy random θi ∼ N (0, I) and perform linear regression to estimate µ,

µ̂ = arg min
µ

n∑
i=1

‖zi − µθi‖2
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Then, having collected samples from the base distribution, we solve the proxy logistic regression objective offline by
running gradient descent with a line search procedure until a tolerance criterion is met. In particular, we solve,

arg min
θ∈Θ

1

n

2n∑
j=n+1

`(zj + µ̂θ; θ),

where `(z; θ), is the regularized logistic regression objective, until the improvement between consecutive iterates is
smaller than 1e-10.

2. DFO. We run the derivative-free optimization procedure from Flaxman et al. (2005). We initialize θ0 = 0, use step-size
sequence 1/t, a batch size of 100 samples per-step, and set δ = 1. We tried several other parameter configurations and
found this one to perform best on this problem setting.

3. Greedy SGD. We run the greedy SGD variant with initial point θ0 = 0 and step-size sequence as suggested by
Mendler-Dünner et al. (2020). See Appendix A in (Mendler-Dünner et al., 2020) for details.

4. Lazy SGD. We use the lazy SGD algorithm with initial point θ0 = 0 and k2 collected samples in k-th update. As for
greedy SGD, we use the step-size sequence suggested by Mendler-Dünner et al. (2020).

Evaluation. We ran each algorithm for 50 trials, and in Figure 2, we compare the performative risk PR(θ) of each
algorithm as a function of the number of samples. For each sample size n, we bootstrap 95% confidence intervals over the
50 trials.


