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Abstract
For machine learning systems to be reliable, we
must understand their performance in unseen, out-
of-distribution environments. In this paper, we
empirically show that out-of-distribution perfor-
mance is strongly correlated with in-distribution
performance for a wide range of models and distri-
bution shifts. Specifically, we demonstrate strong
correlations between in-distribution and out-of-
distribution performance on variants of CIFAR-
10 & ImageNet, a synthetic pose estimation task
derived from YCB objects, FMoW-WILDS satel-
lite imagery classification, and wildlife classi-
fication in iWildCam-WILDS. The correlation
holds across model architectures, hyperparame-
ters, training set size, and training duration, and
is more precise than what is expected from exist-
ing domain adaptation theory. To complete the
picture, we also investigate cases where the cor-
relation is weaker, for instance some synthetic
distribution shifts from CIFAR-10-C and the tis-
sue classification dataset Camelyon17-WILDS.
Finally, we provide a candidate theory based on a
Gaussian data model that shows how changes in
the data covariance arising from distribution shift
can affect the observed correlations.

1. Introduction
Machine learning models often need to generalize from
training data to new environments. A kitchen robot should
work reliably in different homes, autonomous vehicles
should drive reliably in different cities, and analysis software
for satellite imagery should still perform well next year. The
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standard paradigm to measure generalization is to evaluate a
model on a single test set drawn from the same distribution
as the training set. But this paradigm provides only a narrow
in-distribution performance guarantee: a small test error
certifies future performance on new samples from exactly
the same distribution as the training set. In many scenarios,
it is hard or impossible to train a model on precisely the dis-
tribution it will be applied to. Hence a model will inevitably
encounter out-of-distribution data on which its performance
could vary widely compared to in-distribution performance.
Understanding the performance of models beyond the train-
ing distribution therefore raises the following fundamental
question: how does out-of-distribution performance relate
to in-distribution performance?

Classical theory for generalization across different distri-
butions provides a partial answer (Mansour et al., 2009;
Ben-David et al., 2010). For a model f trained on a distribu-
tion D, known guarantees typically relate the in-distribution
test accuracy on D to the out-of-distribution test accuracy
on a new distribution D1 via inequalities of the form

|accDpfq ´ accD1pfq| ď dpD,D1q

where d is a distance between the distributions D and D1

such as the total variation distance. Qualitatively, these
bounds suggest that out-of-distribution accuracy may vary
widely as a function of in-distribution accuracy unless the
distribution distance d is small and the accuracies are there-
fore close (see Figure 1 (top-left) for an illustration). More
recently, empirical studies have shown that in some set-
tings, models with similar in-distribution performance can
indeed have different out-of-distribution performance (Mc-
Coy et al., 2019; Zhou et al., 2020; D’Amour et al., 2020).

In contrast to the aforementioned results, recent dataset re-
constructions of the popular CIFAR-10, ImageNet, MNIST,
and SQuAD benchmarks showed a much more regular pat-
tern (Recht et al., 2019; Miller et al., 2020; Yadav & Bottou,
2019; Lu et al., 2020). The reconstructions closely followed
the original dataset creation processes to assemble new test
sets, but small differences were still enough to cause substan-
tial changes in the resulting model accuracies. Nevertheless,
the new out-of-distribution accuracies are almost perfectly
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Figure 1. Out-of-distribution accuracies vs. in-distribution accuracies for a wide range of models, datasets, and distribution shifts. Top left:
A sketch of the current bounds from domain adaptation theory. These bounds depend on distributional distances between in-distribution
and out-of-distribution data, and they are loose in that they limit the deviation away from the y = x diagonal but do not prescribe a
specific trend within these wide bounds (see Section 7). Remaining panels: In contrast, we show that for a wide range of models and
datasets, there is a precise linear trend between out-of-distribution accuracy and in-distribution accuracy. Unlike what we might expect
from theory, the linear trend does not follow the y “ x diagonal. The different panels represent different pairs of in-distribution and
out-of-distribution datasets. Within each panel, we plot the performances of many different models, with different model architectures
and hyperparameters. These datasets capture a variety of distribution shifts from dataset reproduction (CIFAR-10.2, ImageNet-V2); a
real-world spatiotemporal distribution shift on satellite imagery (FMoW-WILDS); using a different benchmark test dataset (CINIC-10);
synthetic perturbations (CIFAR-10-C and YCB-Objects); and a real-world geographic shift in wildlife monitoring (iWildCam-WILDS).
Interestingly, for iWildCam-WILDS, models pretrained on ImageNet follow a different linear trend than models trained from scratch
in-distribution, and we plot a separate trend line for ImageNet pretrained models in the iWildCam-WILDS panel. We explore this
phenomenon more in Section 5.

linearly correlated with the original in-distribution accura-
cies for a range of deep neural networks. Importantly, this
correlation holds despite the substantial gap between in-
distribution and out-of-distribution accuracies (see Figure
1 (top-middle) for an example). However, it is currently
unclear how widely these linear trends apply since they
have been mainly observed for dataset reproductions and

common variations of convolutional neural networks.

In this paper, we conduct a broad empirical investigation to
characterize when precise linear trends such as in Figure 1
(top-middle) may be expected, and when out-of-distribution
performance is less predictable as in Figure 1 (top-left).
Concretely, we make the following contributions:
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• We show that precise linear trends occur on several
datasets and associated distribution shifts (see Figure 1).
Going beyond the dataset reproductions in earlier work,
we find linear trends on

– popular image classification benchmarks (CIFAR-10
(Krizhevsky, 2009), CIFAR-10.1 (Recht et al., 2019),
CIFAR-10.2 (Lu et al., 2020), CIFAR-10-C (Hendrycks
& Dietterich, 2018), CINIC-10 (Darlow et al., 2018),
STL-10 (Coates et al., 2011), ImageNet (Deng et al.,
2009), ImageNet-V2 (Recht et al., 2019)),

– a pose estimation testbed based on YCB-Objects (Calli
et al., 2015),

– and two distribution shifts derived from concrete appli-
cations of image classification: satellite imagery and
wildlife photos via the FMoW-WILDS and iWildCam-
WILDS variants from WILDS (Christie et al., 2018;
Beery et al., 2020; Koh et al., 2020).

• We show that the linear trends hold for many models rang-
ing from state-of-the-art methods such as convolutional
neural networks, visual transformers, and self-supervised
models, to classical methods like logistic regression, near-
est neighbors, and kernel machines. Importantly, we find
that classical methods follow the same linear trend as
more recent deep learning architectures. Moreover, we
demonstrate that varying model or training hyperparam-
eters, training set size, and training duration all result in
models that follow the same linear trend.

• We also identify three settings in which the linear trends
do not occur or are less regular: some of the synthetic dis-
tribution shifts in CIFAR-10-C (e.g., Gaussian noise), the
Camelyon17-WILDS shift of tissue slides from different
hospitals, and a version of the aforementioned iWildCam-
WILDS wildlife classification problem with a different
in-distribution train-test split (Beery et al., 2020). We
analyze these cases in detail via additional experiments to
pinpoint possible causes of the linear trends.

• Pre-training a model on a larger and more diverse dataset
offers a possibility to increase robustness. Hence we
evaluate a range of models pre-trained on other datasets
to study the impact of pre-training on the linear trends.
Interestingly, even pre-trained models sometimes follow
the same linear trends as models trained only on the in-
distribution training set. Two examples are ImageNet
pre-trained models evaluated on CIFAR-10 and FMoW-
WILDS. In other cases (e.g., iWildCam-WILDS), pre-
training yields clearly different relationships between in-
distribution and out-of-distribution accuracies.

• As a starting point for theory development, we provide a
candidate theory based on a simple Gaussian data model.
Despite its simplicity, this data model correctly identi-
fies the covariance structure of the distribution shift as

one property affecting the performance correlation on the
Gaussian noise corruption from CIFAR-10-C.

Overall, our results show a striking linear correlation be-
tween the in-distribution and out-of-distribution perfor-
mance of many contemporary ML models on multiple dis-
tribution shift benchmarks. This raises the intriguing pos-
sibility that, despite their different creation mechanisms,
a diverse range of distribution shifts may share common
phenomena. In particular, improving in-distribution perfor-
mance reliably improves out-of-distribution performance
as well. However, it is unclear whether improving in-
distribution performance is the only way, or even the best
way, to improve out-of-distribution performance. More re-
search is needed to understand the extent of the linear trends
observed in this work and whether robustness interventions
can improve over the baseline given by empirical risk mini-
mization. We hope that our work serves as a step towards a
better understanding of how distribution shifts affect model
performance and how we can train models that perform
robustly out-of-distribution.

2. Experimental setup
In each of our main experiments, we compare performance
on two data distributions. The first is the training distribu-
tion D, which we refer to as “in-distribution” (ID). Unless
noted otherwise, all models are trained only on samples
from D (the main exception is pre-training on a different
distribution). We compute ID performance via a held-out
test set sampled from D. The second distribution is the “out-
of-distribution” (OOD) distribution D1 that we also evaluate
the models on. For a loss function ` (e.g., error or accu-
racy), we denote the loss of model f on distribution D with
`Dpfq “ Ex,y„D r`pfpxq, yqs.

Experimental procedure. The goal of our paper is to
understand the relationship between `Dpfq and `D1pfq for
a wide range of models f (convolutional neural networks,
kernel machines, etc.) and pairs of distributions D,D1 (e.g.,
CIFAR-10 and the CIFAR-10.2 reproduction). Hence for
each pair D,D1, our core experiment follows three steps:

1. Train a set of models tf1, f2, . . .u on samples drawn
from D. Apart from the shared training distribution, the
models are trained independently with different training
set sizes, model architectures, random seeds, optimiza-
tion algorithms, etc.

2. Evaluate the trained models fi on two test sets drawn
from D and D1, respectively.

3. Display the models fi in a scatter plot with each model’s
two test accuracies on the two axes to inspect the result-
ing correlation.
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An important aspect of our scatter plots is that we apply a
non-linear transformation to each axis. Since we work with
loss functions bounded in r0, 1s, we apply an axis scaling
that maps r0, 1s to r´8,`8s via the probit transform. The
probit transform is the inverse of the cumulative density
function (CDF) of the standard Gaussian distribution, i.e.,
ltransformed “ Φ´1plq. Transformations like the probit or
closely related logit transform are often used in statistics
since a quantity bounded in r0, 1s can only show linear
trends for a bounded range. The linear trends we observe in
our correlation plots are substantially more precise with the
probit (or logit) axis scaling. Unless noted otherwise, each
point in a scatter plot is a single model (not averaged over
random seeds) and we show each point with 95% Clopper-
Pearson confidence intervals for the accuracies.

We assembled a unified testbed that is shared across exper-
iments and includes a multitude of models ranging from
classical methods like nearest neighbors, kernel machines,
and random forests to a variety of high-performance convo-
lutional neural networks. Our experiments involved more
than 3,000 trained models and 100,000 test set evaluations
of these models and their training checkpoints. Due to the
size of these experiments, we defer a detailed description of
the testbed used to Appendix A.

3. The linear trend phenomenon
In this section, we show precise linear trends between
in-distribution and out-of-distribution performance occur
across a diverse set of models, data domains, and distri-
bution shifts. Moreover, the linear trends holds not just
across variations in models and model architectures, but
also across variation in model or training hyperparameters,
training dataset size, and training duration.

3.1. Distribution shifts with linear trends

We find linear trends for models in our testbed trained on five
different datasets—CIFAR-10, ImageNet, FMoW-WILDS,
iWildCam-WILDS, and YCB-Objects—and evaluated on
distribution shifts that fall into four broad categories.

Dataset reproduction shifts. Dataset reproductions involve
collecting a new test set by closely matching the creation
process of the original. Distribution shift arises as a result
of subtle differences in the dataset construction pipelines.
Recent examples of dataset reproductions are the CIFAR-
10.1 and ImageNet-V2 test sets from Recht et al. (2019),
who observed linear trends for deep models on these shifts.
In Figure 1, we extend this result and show both deep and
classical models trained on CIFAR-10 and evaluated on
CIFAR-10.2 (Lu et al., 2020) follow a linear trend. In Ap-
pendix B, we further show linear trends occur for deep and
classical CIFAR-10 models evaluated on CIFAR-10.1 and

for ImageNet models evaluated on ImageNet-V2.

Distribution shifts between machine learning bench-
marks. We also consider distribution shifts between distinct
benchmarks which are drawn from different data sources,
but which use a compatible set of labels. For instance,
both CIFAR-10 and CINIC-10 (Darlow et al., 2018) use the
same set of labels, but CIFAR-10 is drawn from TinyIm-
ages (Torralba et al., 2008) and CINIC-10 is drawn from Im-
ageNet (Deng et al., 2009) images. We show CIFAR-10
models exhibit linear trends when evaluated on CINIC-10
(Figure 1) or on STL-10 (Coates et al., 2011) (Appendix B).

Synthetic perturbations. Synthetic distribution shifts arise
from applying a perturbation, such as adding Gaussian noise,
to existing test examples. CIFAR-10-C (Hendrycks & Di-
etterich, 2018) applies 19 different synthetic perturbations
to the CIFAR-10 test set. For many of these perturbations,
we observe linear trends for CIFAR-10 trained models, e.g.
the Fog shift in Figure 1. However, there are several ex-
ceptions, most notably adding isotropic Gaussian noise. We
give further examples of linear trends on synthetic CIFAR-
10-C shifts in Appendix B, and we more thoroughly discuss
non-examples of linear trends in Section 4. In Figure 1, we
also show that pose-estimation models trained on rendered
images of YCB-Objects (Calli et al., 2015) follow a linear
trend when evaluated on a images rendered with perturbed
lighting and texture conditions.

Distribution shifts in the wild. We also find lin-
ear trends on two of the real-world distribution shifts
from the WILDS benchmark (Koh et al., 2020): FMoW-
WILDS and iWildCam-WILDS. FMoW-WILDS is a satel-
lite image classification task derived from Christie et al.
(2018) where in-distribution data is taken from regions (e.g.,
the Americas, Africa, Europe) across the Earth between
2002 and 2013, the out-of-distribution test-set is sampled
from each region during 2016 to 2018, and models are eval-
uated by their accuracy on the worst-performing region. In
Figure 1, we show models trained on FMoW-WILDS ex-
hibit linear trends when evaluated out-of-distribution under
both of these temporal and subpopulation distribution shifts.

iWildCam-WILDS is an image dataset of animal photos
taken by camera traps deployed in multiple locations around
the world (Koh et al., 2020; Beery et al., 2020). It is a
multi-class classification task, where the goal is to identify
the animal species (if any) within each photo. The held-out
test set comprises photos taken by camera traps that are
not seen in the training set, and the distribution shift arises
because different camera traps vary markedly in terms of
angle, lighting, and background. In Figure 1, we show
models trained on iWildCam-WILDS also exhibit linear
trends when evaluated OOD across different camera traps.
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Figure 2. The linear trend between ID and OOD accuracy is invariant to changes in model hyperparameters, the number of training steps,
and training set size. In each panel, we compare models with the linear fit from Figure 1. Left: For each model family, we vary model-size,
regularization, and optimization hyperparameters. Middle: We evaluate each network after every epoch of training. Right: We train
models on randomly sampled subsets of the training data, ranging from 1% to 80% of the CIFAR-10 training set size. In each setting,
variation in hyperparameters, training duration, or training set size moves models along the trend line, but does not affect the linear fit.

3.2. Variations in model hyperparameters, training
duration, and training dataset size

The linear trends we observe hold not just across different
models, but also across variation in model and optimization
hyperparameters, training dataset size, and training duration.

In Figure 2, we train and evaluate both classical and neural
models on CIFAR-10 and CIFAR-10.2 while systematically
varying (1) model hyperparameters, (2) training duration,
and (3) training dataset size. When varying hyperparameters
controlling the model size, regularization, and the optimiza-
tion algorithm, the model families continue to follow the
same trend line (R2 “ 0.99). We also find models lie on
the same linear trend line throughout training (R2 “ 0.99).
Finally, we observe models on trained on random subsets of
CIFAR-10 lie on the same linear trend line as models trained
on the full CIFAR-10 training set, despite their correspond-
ing drop in in-distribution accuracy (R2 “ 0.99). In each
case, hyperparameter tuning, early stopping, or changing
the amount of i.i.d. training data moves models along the
trend line, but does not alter the linear fit.

While we focus here on CIFAR-10 models evaluated on
CIFAR-10.2, in Appendix B, we conduct an identical set
of experiments for CINIC-10, CIFAR-10-C Fog, YCB-
Objects, and FMoW-WILDS. We find the same invariance to
hyperparameter, dataset size, and training duration shown in
Figure 2 also holds for these diverse collection of datasets.

4. Distribution shifts with weaker correlations
We now investigate distribution shifts with a weaker cor-
relation between ID and OOD performance than the ex-
amples presented in the previous section. We will discuss
the Camelyon17-WILDS tissue classification dataset and

specific image corruptions from CIFAR-10-C. Further dis-
cussion of a version of the iWildCam-WILDS wildlife clas-
sification dataset with a different in-distribution train-test
split can be found in Appendix C.4.

4.1. Camelyon17-WILDS

Camelyon17-WILDS (Bandi et al., 2018; Koh et al., 2020)
is an image dataset of metastasized breast cancer tissue
samples collected from different hospitals. It is a binary
image classification task where each example is a tissue
patch. The corresponding label is whether the patch contains
any tumor tissue. The held-out OOD test set contains tissue
samples from a hospital not seen in the training set. The
distribution shift largely arises from differences in staining
and imaging protocols across hospitals.

In Figure 3, we plot the results of training different Ima-
geNet models and random features models from scratch
across a variety of random seeds. There is significant vari-
ation in OOD performance. For example, the models with
95% ID accuracy have OOD accuracies that range from
about 50% (random chance) to 95%. This high degree of
variability holds even after averaging each model over ten
independent training runs (see Appendix C.1).

Appendix C.1 also contains additional analyses exploring
the potential sources of OOD performance variation, includ-
ing ImageNet pretraining, data augmentation, and similarity
between test examples. Specifically, we observe that Ima-
geNet pretraining does not increase the ID-OOD correlation,
while strong data augmentation significantly reduces, but
does not eliminate, the OOD variation. Another potential
reason for the variation is the similarity between images
from the same slide / hospital, as similar examples have
been shown to result in analogous phenomena in natural
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Figure 3. A range of neural network and random feature models
trained on Camelyon17-WILDS and evaluated on the ID and OOD
test sets. OOD accuracy is highly variable across the spectrum of
ID accuracies, and there is no precise linear trend.

language processing (Zhou et al., 2020). We explore this
hypothesis in a synthetic CIFAR-10 setting, where we simu-
late increasing the similarity between examples by taking
a small seed set of examples and then using data augmen-
tations to create multiple similar versions. We find that in
this CIFAR-10 setting, shrinking the effective test set size in
this way increases OOD variation to a substantially greater
extent than shrinking the effective training set size.

4.2. CIFAR-10-Corrupted

CIFAR-10-C (Hendrycks & Dietterich, 2018) corrupts
CIFAR-10 test images with various image perturbations.
The choice of corruption can have a significant impact on
the correlation between ID and OOD accuracy. Interestingly,
the mathematically simple corruption with Gaussian noise
is one of the corruptions with worst ID-OOD correlation.
Appendix C.2 details experiments for each corruption.

In Appendix C.3, we also investigate how the relationship
between the ID and OOD data covariances impacts the
linear trend. We find the linear fit is substantially better
when the ID and OOD covariances match up to a scaling
factor, which is consistent with the theoretical model we
propose and discuss in Section 6.

5. The effect of pretrained models
In this section we expand our scope to methods that leverage
models pretrained on a third auxiliary distribution different
from the ones we refer to in-distribution (ID) and out-of-
distribution (OOD). Fine-tuning pretrained models on the
task-specific (ID) training set is a central technique in mod-
ern machine learning (Donahue et al., 2014; Razavian et al.,

2014; Kornblith et al., 2019; Peters et al., 2018; Devlin et al.,
2018), and zero-shot prediction (using the pretrained model
directly without any task-specific training) is showing in-
creasing promise as well (Brown et al., 2020; Radford et al.,
2021). Therefore, it is important to understand how the use
of pretrained models affects the robustness of models to
OOD data, and whether fine-tuning and zero-shot inference
differ in that respect.

The dependence of the pretrained model on auxiliary data
makes the ID/OOD distinction more subtle. Previously,
“ID” simply referred to the distribution of the training set,
while OOD referred to an alternative distribution not seen
in training. In this section, the training set includes the
auxiliary data as well, but we still refer to the task-specific
training set distributions as ID. This means, for example,
that when fine-tuning an ImageNet model on the CIFAR-10
training set, we still refer to accuracy on the CIFAR-10 test
set as ID accuracy. In other words, the “ID” distributions we
refer to in this section are precisely the “ID” distributions of
the previous sections (displayed on the x-axes in our scatter
plots), but the presence of auxiliary training data alters the
meaning of the term.

With the effect of auxiliary data on the meaning of “ID” in
mind, it is reasonable to expect that ID/OOD linear trends
observed when training purely on ID data will change or
break down when pretrained models are used. In this sec-
tion we test this hypothesis empirically and reveal a more
nuanced reality: the task and the use of the pretrained model
matter, and sometimes models pre-trained on seemingly
broader distributions still follow the same linear trend as
the models trained purely on in-distribution data. We first
present our findings for fine-tuning pretrained ImageNet
models and subsequently discuss results for zero-shot pre-
diction. See Appendix D for more experimental details.

Fine-tuning pretrained models on ID data. Figure 4
plots OOD performance vs. ID performance for models
trained from-scratch (purely on ID data) and fine-tuned mod-
els whose initialization was pretrained on ImageNet. Across
the board, pretrained models attain better performance on
both the ID and OOD test sets. However, fine-tuning affects
ID-OOD correlations differently across tasks. In particu-
lar, for CIFAR-10 reproductions and for FMoW-WILDS,
fine-tuning produces results that lie on the same ID-OOD
trend as purely ID-trained models (Figure 4 left and center).
On the other hand, a similar fine-tuning procedure yields
models with a different ID-OOD relationship on iWildCam-
WILDS than models trained from scratch on this dataset.
Moreover, the weight decay used for fine-tuning seems to
also affect the linear trend (Figure 4 right).

One conjecture is that the qualitatively different behavior
of fine-tuning on iWildCam-WILDS is related to the fact
that ImageNet is a more diverse dataset that may encode
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Figure 4. The effect of pre-training with additional data on CIFAR-10.2 (left), FMoW-WILDS (middle), and iWildCam-WILDS (right).
On CIFAR-10.2 and FMoW-WILDS, fine-tuning pretrained models moves the models along the predicted ID-OOD line. However, on
CIFAR-10.2, zero-shot prediction using pretrained models deviates from this line. On iWildCam-WILDS, fine-tuning pretrained models
changes the ID-OOD relationship observed for models trained from scratch. Moreover, the weight decay hyperparameter affects the
ID-OOD relationship in fine-tuned models.

robustness-inducing invariances that are not represented in
the iWildCam-WILDS ID training set. For instance, both
ImageNet and iWildCam-WILDS contain high-resolution
images of natural scenes, but the camera perspectives in
iWildCam-WILDS may be more limited compared to Ima-
geNet. Hence ImageNet classifiers may be more invariant
to viewpoint, which may aid generalization to previously
unseen camera viewpoints in the OOD test set of iWildCam-
WILDS. On the other hand, the satellite images in FMoW-
WILDS are all taken from an overhead viewpoint, so learn-
ing invariance to camera viewpoints from ImageNet might
not be as beneficial. Investigating this and related conjec-
tures (e.g., invariances such as lighting, object pose, and
background) is an interesting direction for future work.

Zero-shot prediction on pretrained models. A common
explanation for OOD performance drop is that training on
the ID training set biases the model toward patterns that
are more predictive on the ID test set than on its OOD
counterpart. With that explanation in mind, the fact that
fine-tuned models maintain the same ID/OOD linear trend
as from-scratch models is surprising: once could reasonably
expect that an initialization determined independently of
either ID or OOD data would produce models that are less
biased toward the former. Indeed, in the extreme scenario
that no fine-tuning takes place, the model should have no
bias toward either distribution, and we therefore expect to
see a different ID/OOD trend.

The CIFAR-10 allows us directly test this expectation di-
rectly by performing zero-shot inference on models pre-
trained on ImageNet: since the CIFAR-10 classes form a
subset of the ImageNet classes, we simply feed (resized)
CIFAR-10 images to these models, and limit the prediction
to the relevant class subset. The resulting classifiers have
no preference for either the ID or OOD test set because they

depend on neither distribution. We plot the zero-shot predic-
tion results in Figure 4 (left) and observe that, as expected,
they deviate from the basic linear trend. Moreover, they
form a different linear trend closer—but not identical—to
x “ y. The fact that the zero-shot linear trend is closer to
x “ y supports the hypothesis that the performance drop
partially stems from bias in ID training. However, the fact
that this trend is still below x “ y suggests that the drop is
also partially due to CIFAR-10 reproductions being harder
than CIFAR-10 for current methods (interestingly, humans
show similar performance on both test sets (Recht et al.,
2019; Miller et al., 2020; Shankar et al., 2020)). These
finding agree with prior work (Lu et al., 2020).

As another test of zero-shot inference, we apply two
publically-available CLIP models on CIFAR-10 by creat-
ing last-layer weights out of natural language descriptions
of the classes (Radford et al., 2021). As Figure 4 (left)
shows, these models are slightly above the basic ID/OOD
linear trend, but below the trend of zero-shot inference with
ImageNet models.

Additional experiments. In Appendix D we describe ad-
ditional experiments with pretrained models. To explore a
middle ground between zero-shot prediction and full-model
fine-tuning, we consider a linear probe on CLIP for both
CIFAR-10 and FMoW-WILDS. For CIFAR-10, we also con-
sider models trained on a task-relevant subset of ImageNet
classes (Darlow et al., 2018) and models trained in a semi-
supervised fashion using unlabeled data from 80 Million
Tiny Images (Torralba et al., 2008; Carmon et al., 2019; Au-
gustin & Hein, 2020). Generally, we find that, compared to
zero-shot prediction, these techniques deviate less from the
basic linear trend. We also report results on additional OOD
settings, namely CIFAR-10.1 and different region subsets
for FMoW-WILDS, and reach similar conclusions.
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6. Theoretical models for linear fits
In this section we propose and analyze a simple theoretical
model that distills several of the empirical phenomena from
the previous sections. Our goal here is not to obtain a gen-
eral model that encompasses complicated real distributions
such as the images in CIFAR-10. Instead, our focus is on
finding a simple model that is still rich enough to exhibit
some of the same phenomena as real data distributions.

6.1. A simple Gaussian distribution shift setting

We consider a simple binary classification problem where
the label y is distributed uniformly on t´1, 1u both in
the original distribution D and shifted distribution D1.
Conditional on y, we consider D such that x P Rd is an
isotropic Gaussian, i.e.,

x | y „ N pµ ¨ y; σ2Idˆdq,

for mean vector µ P Rd and variance σ2 ą 0.

We model the distribution shift as a change in σ and µ.
Specifically, we assume that the shifted distribution D1 cor-
responds to shifted parameters

µ1 “ α ¨ µ` β ¨∆ and σ1 “ γ ¨ σ (1)

where α, β, γ ą 0 are fixed scalars and ∆ is uniformly
distributed on the sphere in Rd. Note that in our setting D1

is a random object determined by the draw of ∆.

Within the setup describe above, we focus on linear classi-
fiers of the form x ÞÑ signpθJxq. The following theorem
states that, as long as θ depends only on the training data
and is thereby independent of the random shift direction
∆, the probit-transformed accuracies on D and D1 have
a near-linear relationship with slope α{γ. (Recall that the
probit transfrom is the inverse of the standard Normal cdf
Φpxq “

şx

´8
1?
2π
e´t

2
{2dt). The deviation from linearity is

of order d´1{2 and vanishes in high dimension.

Theorem 1. In the setting described above where ∆ is
independent of θ, let δ P p0, 1q. With probability at least
1´ δ, we have∣∣∣∣Φ´1paccD1pθqq ´

α

γ
Φ´1paccDpθqq

∣∣∣∣ ď β

γσ

c

2 log 2{δ

d
.

The theorem is a direct consequence of the concentration of
measure; see proof in Appendix E.1.

We illustrate Theorem 1 by simulating its setup and training
different linear classifiers by varying the loss function and
regularization. Figure 5 shows good agreement between
the performance of linear classifiers and the theoretically-
predicted linear trend. Furthermore, conventional nonlinear
classifiers (nearest neighbors and random forests) also sat-
isfy the same linear relationship, which does not directly
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Figure 5. Illustration of the theoretical distribution shift model in
Section 6.1 with d “ 105, α “ 0.7, β “ 0.5 and γ “ 1 (see
Appendix E.3 for details). The accuracies for linear models (logis-
tic and ridge regression) agree with the prediction of Theorem 1.
Moreover, nonlinear models (nearest neighbors and random fea-
tures) exhibit the same probit trend we prove for linear classifiers.

follow from our theory. Nevertheless, if the decision bound-
ary of the nonlinear becomes nearly linear in our setting a
similar theoretical analysis might be applicable. Our simple
Gaussian setup thus illustrates how linear trends can arise
across a wide range of models.

6.2. Modeling departures from the linear trend

In the previous section, we identified a simple Gaussian
setting that showed linear fits across a large range of models.
Now we discuss small changes to the setting that break linear
trends and draw parallels to the empirical observations on
complex datasets presented in this paper. In Appendix E.2,
we discuss each of these modifications in further detail.

Adversarial distribution shifts. Previously, the direction
∆ which determines the distribution shift as defined above
in eq. (1), was chosen independent of the tested models
θ1, . . . ,θk. However, when ∆ is instead chosen by an ad-
versary with knowledge of the tested models, the ID-OOD
relationship can be highly non-linear. This is reminiscent
of adversarial robustness notions where models with com-
parable in-distribution accuracies can have widely differing
adversarial accuracies depending on the training method.

Pretraining data. Additional training data from a different
distribution available for pretraining could contain informa-
tion about the shift ∆. In this case, the pretrained models are
not necessarily independent of ∆ and these models could
lie above the linear fit of classifiers without pretraining. See
Section 5 for a discussion of when such behavior arises in
practice.

Shift in covariance. Previously, we assumed that x | y is al-
ways an isotropic Gaussian. Instead consider a setting where
the original distribution is of the form x|y „ N pµy; Σq
where Σ is not scalar (i.e., has distinct eigenvalues). Then,
the linear trend breaks down even when the distribution shift
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is simple additive white Gaussian noise corresponding to
x|y „ N pµy; Σ` pσ1q2Idˆdq. For example, ridge regular-
ization turns out to be an effective robustness intervention
in this setting. However, if the shifted distribution is of
the form x|y „ N pµy; γΣq for some scalar γ ą 0, it is
straightforward to see that a linear trend holds.

These theoretical observations suggest that a covariance
change in ID/OOD the distribution shift could be a possi-
ble explanation for some departures from the linear trends
such as additive Gaussian noise corruptions in CIFAR-10-
C. To test this hypothesis, we created a new distribution
shift by corrupting CIFAR-10 with noise sampled from the
same covariance as the original CIFAR-10 distribution. As
discussed in Section 4.2, we find that the correlation be-
tween ID and OOD accuracy is substantially higher with
the covariance-matched noise than with isotropic Gaussian
noise with similar magnitude.

While the theoretical setting we study in this work is much
simpler than real-world distributions, the analysis sheds
some light on when to expect linear trends and what leads to
departures. Ideally, a theory would precisely explain what
differentiates CIFAR-10.2, CINIC-10, and the CIFAR-10-
C-Fog shift (see Figure 1) where we see linear trends from
simply adding Gaussian noise to the images as in CIFAR-
10-C-Gaussian where we do not observe linear trends. A
possible direction may be to characterize shifts by their
generation process, and we leave this to future work.

7. Related work
Due to the large body of research on distribution shifts,
domain adaptation, and reliable machine learning, we only
summarize the most directly related work here. Appendix F
contains a more detailed discussion of related work.

Domain generalization theory. Prior work has theoreti-
cally characterized the performance of classifiers under dis-
tribution shift. Ben-David et al. (2006) provided the first VC-
dimension-based generalization bound. They bound the dif-
ference between a classifier’s error on the source distribution
(D) and target distribution (D1) via a classifier-induced di-
vergence measure. Mansour et al. (2009) extended this work
to more general loss functions and provided sharper gener-
alization bounds via Rademacher complexity. These results
have been generalized to include multiple sources (Blitzer
et al., 2007; Hoffman et al., 2018; Mansour et al., 2008).
The philosophy underlying these works is that robust mod-
els should aim to minimize the induced divergence measure
and thus guarantee similar OOD and ID performance.

The linear trends we observe in this paper are not captured
by such analyses. As illustrated in Figure 1 (left), the bounds
described above can only state that OOD performance is
highly predictable from ID performance if they are equal

(i.e., when the gray region is tight around the x “ y line). In
contrast, we observe that OOD performance is both highly
predictable from ID performance and significantly different
from it. Our Gaussian model in Section 6.1 demonstrates
how the linear trend phenomenon can come about in a sim-
ple setting. However, unlike the above-mentioned domain
generalization bounds, it is limited to particular distributions
and the hypothesis class of linear classifiers.

Mania & Sra (2020) proposed a condition that implies an
approximately linear trend between ID and OOD accuracy,
and empirically checked their condition in dataset reproduc-
tion settings. The condition is related to model similarity,
and requires the probability of certain multiple-model error
events to remain invariant under distribution shift. It is un-
clear whether their condition can predict a priori whether a
distribution shift will show a linear trend, and the predicted
linearity does not improve under probit accuracy scaling.

Empirical observations of linear trends. Precise linear
trends between in-distribution and out-of-distribution gen-
eralization were first discovered in the context of dataset
reproduction experiments. Recht et al. (2018; 2019); Yadav
& Bottou (2019); Miller et al. (2020) constructed new test
sets for CIFAR-10 (Krizhevsky, 2009), ImageNet (Deng
et al., 2009; Russakovsky et al., 2015), MNIST (LeCun
et al., 1998), and SQuAD (Rajpurkar et al., 2016) and found
linear trends similar to those in Figure 1.

However, these studies were limited in their scope, as they
just focused on dataset reproductions. While Taori et al.
(2020) later showed that linear trends still occur for Ima-
geNet models on datasets like ObjectNet, Vid-Robust, and
YTBB-Robust (Barbu et al., 2019; Shankar et al., 2019), all
of their experiments were limited to ImageNet-like tasks.
We significantly broaden the scope of the linear trend phe-
nomenon by including a range of additional distribution
shifts such as CINIC-10, STL-10, FMoW-WILDS, and
iWildCam-WILDS, as well as identifying negative examples
like Camelyon17-WILDS and some CIFAR-10-C shifts. In
addition, we also include a pose estimation task with YCB-
Objects. The results show that linear trends not only occur
in academic benchmarks but also in distribution shifts com-
ing from applications “in the wild.” We also show that linear
trends hold across different learning approaches, training
durations, and hyperparameters.

Kornblith et al. (2019) study linear fits in the context of
transfer learning and train or fine-tune models on the dis-
tribution corresponding to the y-axis in our setting. On a
variety of image classification tasks, they show a model’s
ImageNet test accuracy linearly correlates with the model’s
accuracy on the new task after fine-tuning. The similar be-
tween their results and those in this work suggest that they
may both be part of a broader phenomenon of predictable
generalization in machine learning.
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A. Experimental Testbeds
A rigorous empirical investgation of the correlation between in-distribution and out-of-distribution performance requires
a broad set of experiments. To measure the behavior of many models on a variety of datasets, we utilized three different
experimental “testbeds.” A testbed consists of a collection of one or more “dataset universes” and a compatible set of
models that can be trained and evaluated on these “universes.” Each dataset universe itself consists of a training set
(e.g. CIFAR-10 train), an in-distribution test-set (CIFAR-10 test), and a collection of out-of-distribution test-sets (e.g.
CIFAR-10.2, CIFAR-10-C, etc). Within a universe, models trained on one dataset can be tested on all other datasets, with
each test set representing a different distribution. The three testbeds we use are:

1. A new custom-built test for experiments with CIFAR-10 and WILDS (FMoW-WILDS, Camelyon17-WILDS, and
iWildCam-WILDS)

2. An ImageNet testbed based on Taori et al. (2020), and

3. A testbed for pose estimation in the context of the YCB-Objects dataset (Calli et al., 2015).

In the rest of this section, we first detail the custom-built CIFAR-10 and WILDS testbed since it forms the basis for most
experiments in this paper. We then describe our modifications to the ImageNet testbed of Taori et al. (2020) in Section A.2,
and finally we describe our testbed for YCB-Objects in Section A.4.

A.1. CIFAR-10 and WILDS testbed

We now describe the datasets in our main testbed and summarize the models it contains. Our main testbed contains four
distinct “universes.” Each universe consists of at least three datasets that we use for training and testing models both
in-distribution and out-of-distribution.

The four universes are CIFAR-10, FMoW-WILDS, Camelyon17-WILDS, and iWildCam-WILDS, which we now describe
in more detail. The latter three datasets are taken from the WILDS benchmark (Koh et al., 2020), and we use the train/test
splits and evaluation procedures therein.

A.1.1. CIFAR-10

The CIFAR-10 universe comprises 32 ˆ 32 pixel color images used in an image classification task. The ten classes are
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The CIFAR-10 universe contains the following
datasets:

• CIFAR-10 is the main dataset in the CIFAR-10 universe and was introduced by Krizhevsky (2009). CIFAR-10 is
derived from the larger Tiny Images dataset (Torralba et al., 2008). Since its introduction, CIFAR-10 has become one
of the most widely used image classification benchmarks.

• CIFAR-10.1 is a reproduction of the CIFAR-10 dataset. Recht et al. (2019) closely followed the dataset creation
process of CIFAR-10 and assembled a new dataset also using Tiny Images as a source. CIFAR-10.1 contains only about
2,000 images and is therefore usually used only as a test set. The distribution shift from CIFAR-10 to CIFAR-10.1
poses an interesting challenge since many parameters of the data generation process are held constant but a standard
ResNet model still sees an 8 to 9 percentage points accuracy drop.

• CIFAR-10.2 is a second reproduction of the CIFAR-10 dataset. Lu et al. (2020) again closely followed the dataset
creation process of CIFAR-10 to assemble a new dataset from Tiny Images, this time with different annotators
compared to CIFAR-10.1. CIFAR-10.2 contains 12,000 images with a suggested split into 10,000 training images
and 2,000 test images. We conduct all of our experiments using the 2,000 image test set. Similar to CIFAR-10.1,
CIFAR-10.2 is a distribution shift arising from changes in the filtering process conducted by the human annotators.

• CINIC-10 (Darlow et al., 2018) is a dataset in CIFAR-10 format that supplements CIFAR-10 with additional images
from the full ImageNet dataset (not only the 2012 competition set). In total, CINIC-10 contains 270,000 images. Here,
we limit CINIC-10 to the images coming from ImageNet in order to keep the distribution more clearly separate from
CIFAR-10. The resulting test set has size 70,000. CINIC-10 represents a distribution shift because the source of the
images changed from Tiny Images to ImageNet.
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• STL-10 (Coates et al., 2011) is another CIFAR-10-inspired dataset derived from ImageNet. Since the focus of STL-10
is unsupervised learning, the dataset contains 100,000 unlabeled and 13,000 labeled images. We only use the labeled
subset because we are mainly interested in STL-10 as a test set with distribution shift (as in CINIC-10, the data source
changed from Tiny Images to ImageNet). The class structure of STL-10 is slightly different from the CIFAR-10
classes: instead of the frog class, STL-10 contains a monkey class. When experimenting with STL-10, we therefore
limit the dataset to the remaining nine classes. This yields an overall test set size of 11,700.

• CIFAR-10-C contains a range of synthetic distribution shifts derived from CIFAR-10. Hendrycks & Dietterich (2018)
created CIFAR-10-C by applying perturbations such as Gaussian noise, motion blur, or synthetic weather patterns (fog,
snow, etc.) to the CIFAR-10 test set. In total, CIFAR-10-C contains 19 different perturbations, each with five different
severity levels.

A.1.2. FMOW-WILDS

In FMoW-WILDS, which is adapted from the Functional Map of the World dataset (Christie et al., 2018), the task is to
classify land or building use from satellite images taken in different geographical regions (Africa, Americas, Oceania, Asia,
and Europe) and in different years. Specifically, the input is an RGB satellite image and the label is one of 62 different land
or building use categories (e.g., ‘shopping mall’ or ‘road bridge’).

The training set comprises 76,863 images taken around the world between 2002 and 2013. The in-distribution test set
comprises 11,327 images from the same distribution, i.e., also taken around the world between 2002 and 2013, and we
evaluate models by their average accuracy. The out-of-distribution validation set comprises 19,915 images taken around the
word between 2013 and 2016, and the out-of-distribution test set consists of 22,108 images taken around the world between
2016 and 2018.

We evaluate models out-of-distribution by either their average accuracy or their worst accuracy over all five geographical
regions. When evaluating models using their worst-region accuracy, the out-of-distribution test set reflects both a distribution
shift across time (from 2002–2013 to 2016–2018) and across regions (from images that are distributed across the world to
images that are only from a given region). In our experiments, the worst-performing region is generally Africa, which has
the second smallest number of training examples, ahead of Oceania.

A.1.3. CAMELYON17-WILDS

In Camelyon17-WILDS, which is a patch-based variant of the CAMELYON17 dataset (Bandi et al., 2018), the task is
to classify whether a given patch of tissue contains any tumor tissue. Specifically, the input is a 96 ˆ 96 patch of tissue
extracted from a whole-slide image (WSI) of a breast cancer metastasis in a lymph node section, and the label is whether
any pixel in the central 32 ˆ 32 region of the patch has been labeled as part of a tumor in the ground-truth pathologist
annotations.

The training set comprises 302,436 patches taken from 30 WSIs across 3 hospitals (10 WSIs per hospital). The in-distribution
test set comprises 33,560 patches taken from the same set of 30 WSIs; this corresponds to the “in-distribution validation
set” in the WILDS benchmark (Koh et al., 2020). The out-of-distribution test set comprises 85,054 patches taken from 10
WSIs from a different hospital. All of the above sets are class-balanced. We evaluate models by their average accuracy;
performance on the out-of-distribution test set reflects a model’s ability to generalize to different hospitals from the ones it
was trained on.

A.1.4. IWILDCAM-WILDS

In iWildCam-WILDS, which is adapted from the iWildCam 2020 Competition Dataset (Beery et al., 2020), the task is to
classify which animal species (if any) is present in a camera trap photo. Specifically, the input is a (resized) 448ˆ 448 pixel
color image from a camera trap, and the label is one of 182 animal species (including “no animal”).

The training set comprises 129,809 images taken by 243 camera traps; the in-distribution test set comprises 8,154 images
taken by those same 243 camera traps; and the out-of-distribution training set comprises 42,791 images taken by 48 different
camera traps. As images taken by different camera traps can vary greatly in terms of camera angle, illumination, background,
and animal distribution, the performance on the out-of-distribution test set reflects a model’s ability to generalize to different
camera traps from the ones it was trained on.
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While we study the current version of iWildCam-WILDS unless noted otherwise, we also study an earlier version of
iWildCam-WILDS with a different in-distribution train-test split in C.4.

Evaluation metric and confidence interval calculation. Following Koh et al. (2020), we evaluate models by their macro
F1 score, as this better captures model performance on rare species. Macro F1 is the average of the per class F1 scores for
all classes appearing in the test data. We obtain confidence interval for this metric using the following heuristic. Suppose
class i has empirical F1 score fi and ni examples in the test set. As an approximate confidence interval for the F1 score
of this class, we consider rfi ´ δi, fi ` δis where δi is such that r0.5´ δi, 0.5` δis is a 95% Clopper-Pearson confidence
interval for a Bernoulli success probability given ni{2 positive observation out of ni total observations. The size of this
confidence interval is guaranteed to be larger than the size of the confidence intervals for both recall and precision for
this class. Since the F1 score is the harmonic mean of recall and precision, the interval should provide adequate coverage
for the F1 score as well. Finally, we combine the per class intervals to obtain a macro F1 confidence interval of the form
rf̄ ´ C´1{2δ̄, f̄ ` C´1{2δ̄s, where C is the number of classes in the test data and f̄ , δ̄ are the averages of f1, . . . , fC and
δ1, . . . , δC , respectively. This expression makes the approximation that individual F1 estimates are independent, which is
not entirely accurate because the per-class precision estimates rely on overlapping samples.

As Figures 1 and 10 show, the confidence intervals computed with the above heuristic are fairly large. This may be in part
due to a somewhat pessimistic approximation of the individual F1 confidence intervals, but it also reflects the fact that many
of the iWildCam-WILDS classes are very rare (with 10 or fewer examples in the test set), and we simply do not have a good
estimate for how models perform on them. The high level of class rarity was also the reason we chose not to use a bootstrap
confidence interval: re-sampling the test sets with replacement leads to entire classes being dropped and biases the macro F1
estimates.

Label noise reduction. The iWildCam-WILDS labels contain errors that stem primarily due to the fact they are derived
from video-level annotation indicating whether a motion-activation event contains a particular animal. As consequence,
many video frames that are in fact empty (showing no animal) are mislabeled as containing an animal that appeared in
a temporally adjacent frame. To reduce this noise, we used auxiliary the auxiliary MegaDetector data provided as part
of iWildCam 2020 Competition Dataset. More specifically, we performed our evaluation only on frames that were either
labeled as empty or contained a MegaDetector detection with confidence at least 0.95.1 This filtering step provided a modest
improvement to strength of the observed correlations (with R2 increasing by one or two points).

A.1.5. MODELS FOR CIFAR-10 AND WILDS EXPERIMENTS

To probe how widely the linear trend phenomena apply, we integrated a large number of classification models into our
testbed. At a high level, we divide these models into two types: deep neural networks (predominantly convolutional neural
networks) and classical approaches. Due to the wide range of neural network architectures and training approaches emerging
over the past decade, we further subdivide the neural network models based on their training set.

Convolutional neural networks for CIFAR-10. We integrated the following model architectures into our testbed. Unless
noted otherwise, we used the implementations from https://github.com/kuangliu/pytorch-cifar. The
models span a range of manually designed architectures and the results of automated architecture searches. We refer the
reader to the respective references for details about the individual architectures.

• DenseNet, with depths 121 and 169 (Huang et al., 2017).

• Dual Path Networks (DPN), with depths 26 and 92 (Chen et al., 2017).

• EfficientNet, specifically the B0 variant (Tan & Le, 2019).

• GoogLeNet, a member of the Inception family (Szegedy et al., 2015).

• MobileNet, both the original and the MobileNetV2 variant (Sandler et al., 2018).

• MyrtleNet, which are optimized for particularly fast training times. The code for these networks is from https:
//github.com/davidcpage/cifar10-fast.

1We still performed the model training using precisely the same data, splits and labels as Koh et al. (2020); the filtering step was done
at the evaluation stage only.

https://github.com/kuangliu/pytorch-cifar
https://github.com/davidcpage/cifar10-fast
https://github.com/davidcpage/cifar10-fast
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• PNASNet, both A and B variants (Liu et al., 2018).

• RegNet, configurations X 200, X 400, and Y 400 (Radosavovic et al., 2020).

• ResNet, varying the number of layers (18, 34, 50, and 101), and including the PreAct variant for each depth (He et al.,
2016a;b).

• ResNeXT models with various widths and depths (2x64d, 32x4d, 4x64d) (Xie et al., 2017).

• Squeeze-and-Excitation Networks with 18 layers (Hu et al., 2018).

• ShuffleNet, specifically the G2, G3, and V2 variants, with network scale factors 0.5, 1, 1.5, and 4 for the ShuffleNetV2
architecture (Zhang et al., 2018; Ma et al., 2018).

• VGG with 11, 13, 16, and 19 layers (Simonyan & Zisserman, 2015).

Convolutional neural networks pre-trained on ImageNet. We explored the use of models pre-trained on ImageNet both
in the CIFAR-10-universe and in the WILDS datasets. In some experiments, we also trained the following architectures
from scratch to quantify the effect of pre-training in detail (see Section 5). The code for the following models is from
https://github.com/creafz/pytorch-cnn-finetune.

• AlexNet (Krizhevsky et al., 2012).

• DenseNet with 121, 161, 169, and 201 layers (Huang et al., 2017)

• Dual Path Networks (DPN), variants 68, 68b, and 92 (Chen et al., 2017).

• GoogLeNet, a member of the Inception family (Szegedy et al., 2015).

• MobileNetV2 (Sandler et al., 2018).

• Neural Architecture Search Networks (NASNets), specifically NASNet-A-Large and PNASNet-5-Large (Zoph
et al., 2018; Liu et al., 2018)

• ResNet with 18, 34, 50, 101, and 152 layers (He et al., 2016a;b).

• ResNeXT, configurations 50 32x4d and 101 32x4d (Xie et al., 2017).

• Squeeze-and-Excitation Networks, specifically se resnext50 32x4d and se resnext101 32x4d (Hu et al., 2018).

• ShuffleNetV2, scale factors 0.5 and 1 (Zhang et al., 2018; Ma et al., 2018).

• SqueezeNet, version 1.0 and 1.1 (Iandola et al., 2016).

• VGG with 11, 13, and 16 layers, including variants with batch normalization for 13 and 16 layers (Simonyan &
Zisserman, 2015).

Convolutional neural networks only trained on ImageNet. For the zero-shot generalization experiments in Section 5,
we also utilized a set of models trained on ImageNet without any further fine-tuning to CIFAR-10. As above, the models are
from https://github.com/creafz/pytorch-cnn-finetune.

• AlexNet (Krizhevsky et al., 2012)

• DenseNet with 121, 161, 169, and 201 layers (Huang et al., 2017).

• Dual Path Networks (DPN), variants 68, 68b, 92, 98, 107, and 131 (Chen et al., 2017).

• Inception models: GoogleNet, InceptionV3, and InceptionResNetV2 (Szegedy et al., 2015; 2016; 2017).

• MobileNetV2 (Sandler et al., 2018).

https://github.com/creafz/pytorch-cnn-finetune
https://github.com/creafz/pytorch-cnn-finetune
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• PolyNet (Zhang et al., 2016).

• ResNet with 18, 34, 50, 101, and 152 layers (He et al., 2016a;b).

• Squeeze-and-Excitation Networks specifically senet154, se resnet50, se resnet101, se resnet152,
se resnext50 32x4d, and se resnext101 32x4d (Hu et al., 2018).

• ShuffleNetV2, scale factors 0.5 and 1 (Zhang et al., 2018; Ma et al., 2018).

• SqueezeNet, version 1.0 and 1.1 (Iandola et al., 2016).

• ResNeXT, configurations 50 32x4d, 101 32x4d, 101 32x8d, and 101 64x4d (Xie et al., 2017).

• VGG with 11, 13, 16, and 19 layers, all with and without batch normalization (Simonyan & Zisserman, 2015).

• Xception (Chollet, 2017).

Further models trained on extra data. To measure the effect of extra training data more broadly than only relying on
ImageNet for pre-training, we also included the following three models utilizing data from different sources:

• CLIP: We evaluate the two publicly released CLIP models (Radford et al., 2021). These models were trained with
400 million image-caption pairs scraped from the web. We evaluate the two ResNet50 and VisionTransformer variants
released by the CLIP team. CLIP models are particularly interesting since they can be evaluated zero-shot: image
classification labels can be turned into textual prompts so that the model can be evaluated on downstream tasks without
needing to look at the training data.

• Self-training on 80 Million Tiny Images: Carmon et al. (2019) introduced robust self-training (RST) and showed that
unlabeled data can improve adversarial robustness. In the context of their work, they also trained baseline CIFAR-10
models that used data from 80 Million Tiny Images (Torralba et al., 2008) in addition to the standard CIFAR-10
training set. This baseline model is an interesting addition to our testbed since the extra training data from a potentially
more diverse source may move the model away from the linear trend given by models only trained on CIFAR-10.

• Out-distribution aware self-training (ODST): Augustin & Hein (2020) develop an iterative self-training approach to
leverage unlabeled data when some of the unlabeled data is not relevant to the classification task of interest. They also
instantiate their approach on CIFAR-10, using 80 Million Tiny Images as an unlabeled data source. As before, the
ODST models are relevant for our experiments because they use extra training data beyond the standard CIFAR-10
training set.

Classical methods. In addition to the neural network methods discussed previously, we also integrated several classical,
non-neural network methods into our testbed. Unless noted otherwise, we used the implementations from scikit-learn (Pe-
dregosa et al., 2011). Each of these methods works directly on the image pixels, which are each scaled to have zero-mean
and unit variance on the training set. We included the following methods into our testbed:

• Random features (Coates & Ng, 2012), using the implementation from https://github.com/modestyacht
s/nondeep.

• AdaBoost from Hastie et al. (2009), using an scikit-learn decision tree classifier to build the boosted ensemble.

• Ridge regression classifiers with varying `2 regularization parameter

• Support vector machines with linear, gaussian, and polynomial kernels and varying regularization penalty term.

• Logistic regression with varying regularization parameter and using both `1 and `2 regularization.

• Quadratic discriminant analysis.

• Random forests (Breiman, 2001) with varying maximum tree depth, number of trees in the forest, and using both
entropy and gini impurity as the splitting criterion.

• Nearest neighbor with varying number of k nearest-neighbors and using `2 distance between points.

https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
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Dataset Number of trained models

CIFAR-10 1,895

iWildCam-WILDS 197

FMoW-WILDS 592

Camelyon17-WILDS 461

Table 1. Number of trained models (of all types) by training set. The model counts include only fully trained models, not intermediate
checkpoints.

Dataset Number of model evaluations

CIFAR-10 6,814

CIFAR-10.1 5,315

CIFAR-10.2 11,212

CIFAR-10-C 39,677

CINIC-10 4,259

STL-10 507

iWildCam-WILDS 15,147

FMoW-WILDS 12,127

Camelyon17-WILDS 7,056

Table 2. Number of model evaluations by test set type. Some of the rows, e.g., CIFAR-10-C, correspond to multiple individual test sets.
We count evaluations of a model and its training checkpoints separately here.

A.1.6. SUMMARY STATISTICS

The following two tables give a brief overview of the number of experiments we ran with our testbed. Table 1 shows how
many distinct models we trained for each of our training sets (a total of about 3,000). Each of these models was then
evaluated on a range of test sets to generate the scatter plots in this paper.

Table 2 shows the total number of evaluations for each family of datasets. Besides being tested on multiple datasets, one
trained model can also have led to several evaluations since we sometimes evaluated all training checkpoints of a model on
multiple datasets as well to study whether the linear trends are reliable when varying training duration (see Section 3.2).
This lead to an overall total of about 100,000 model evaluations, each of which corresponds to one point in a scatter plot in
our paper.

A.2. ImageNet Testbed

A.2.1. DATASETS

ImageNet-V2. ImageNet-V2 is a reproduction of the ImageNet test set collected by Recht et al. (2019).

A.3. ImageNet Testbed Models

We include all of the existing models in the testbed from Taori et al. (2020), and add a few others:

1. CLIP: We add the two CLIP models released by Radford et al. (2021) and evaluate them zero-shot using the publicly
released textual prompts.

2. Self-supervised models: We add models trained using a few different self-supervised methods: SimSiam (Chen & He,
2020), SimCLRv2 (Chen et al., 2020), and SwAV (Caron et al., 2020). For SimSiam and SwAV, we use the ResNet50
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variants pretrained on ImageNet without labels and then final-layer finetuned on ImageNet. For SimCLRv2, we use a
ResNet50 and a ResNet152 variant, and for each use a model final-layer finetuned and whole-network finetuned on
ImageNet.

3. Classical models: We add three low-accuracy classical models: random features (Coates & Ng, 2012), random forests
(Breiman, 2001), and a linear model trained with least squares. Both the random forests model and the linear model
were trained directly on pixels of images downsampled to 32x32.

A.4. YCB-Objects Testbed

We describe the 6D pose estimation task, our synthetic dataset, and the models in our testbed below.

A.4.1. 6D POSE ESTIMATION

In 6D pose estimation, the task is to determine the three-dimensional position and orientation of an object in a scene.
Concretely, for our purposes, models are given as input a single 128ˆ 128 RGB image of an object and must determine the
object’s 6 degree-of-freedom pose (rotation and translation) relative to the scene. For more background on pose estimation,
see Lepetit & Fua (2005) or Xiang et al. (2017) and the references therein.

We evaluate each model using the accuracy metric from Hinterstoisser et al. (2012). Specifically, given a ground truth
rotation R and translation t, estimated rotation R̃ and translation t̃, and a 3D model M consisting of m points x P M,
then average distance (ADD) metric of Hinterstoisser et al. (2012) is the mean of the distances between 3D model points
transformed under the ground-truth and estimated poses

ADD “
1

m

ÿ

xPM
}pRx` tq ´ pR̃x` t̃q}2.

An estimated 6D pose is consider to be correct if the ADD is less than 10% of the diameter of the 3D model M.

A.4.2. YCB-OBJECTS DATASETS.

Similar to Xiang et al. (2017) and Tremblay et al. (2018), we construct a synthetic datasets for 6D pose estimation by
rendering images of known object models from Calli et al. (2015) and Hashimoto et al. (2020) using Blender (Blender
Online Community, 2021). We use the subset of 16 non-symmetric YCB objects from Xiang et al. (2017), as well as the
two non-symmetric objects from Hashimoto et al. (2020) in our experiments.

In our datasets, each object is placed on a plane with one of 60 textures from texturehaven.com and rendered with
lighting from one of 60 HDRIs from hdrihaven.com. To generate distribution shift, we separate the textures into two,
non-overlapping subsets based on their material properties. The in-distribution test set uses one subset of textures, and the
out-of-distribution test set uses the other. See Figure 12 for example images corresponding to the in and out-of-distribution
textures and corresponding datasets.

We generate datasets by uniformly sampling an object, a background lighting environment, a background texture (from the
in or out-of-distribution subset), an object pose, and a camera pose. We generate in-distribution training sets of 50,000 and
100,000 images and both in and out-of-distribution test sets of 10,000 images. In this section, we use the 50,000 example
training set for our experiments. We use the 100,000 example training set to explore the effect of adding more i.i.d. training
set in Appendix B.2.

In simulation, the object model, the object pose, and the camera pose are all known in advance, so we can easily compute
a ground truth pose for each object relative to the scene. We additionally annotate each image in our dataset with 9 2D
keypoints corresponding to projection of the 3D bounding box and the 3D center of the object onto the 2D image. Figure 12
visualizes these annotations for a random sample of images from the training set.

A.4.3. YCB-OBJECTS MODELS

The neural pose estimation models in our testbed are all based on semantic segmentation networks for predicting 2D
keypoints. In essence, each network predicts the nine keypoints previously described and shown in Figure 12. Given 2D
keypoints predictions, each model then uses the PnP algorithm (Lepetit et al., 2009) to recover the 3D object pose. This
approach, developed by Rad & Lepetit (2017) and Pavlakos et al. (2017) is also used in high-performing implementations

texturehaven.com
hdrihaven.com
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like Tremblay et al. (2018). Our testbed contains several models for the semantic segmentation backbone. Unless otherwise
noted, the implementation is taken from https://github.com/qubvel/segmentation models.pytorch.

1. UNet (Ronneberger et al., 2015) with ResNet (He et al., 2016a), MobileNet (Sandler et al., 2018), and EfficientNet-
b7 (Tan & Le, 2019) as the encoder.

2. UNet++ (Zhou et al., 2018).

3. FCN ResNet with varing depths 18, 34, 50, and 101 (Long et al., 2015), using the implementation from https:
//github.com/pytorch/vision/tree/master/torchvision/models/segmentation.

4. LinkNet (Chaurasia & Culurciello, 2017).

5. PSPNet (Zhao et al., 2017).

6. PoseNet (Kendall et al., 2015).

7. 2-layer CNN

Each of these models outputs a set of nine heatmaps, one corresponding to each keypoint prediction. For each model, we
use the PnP implementation from Bradski (2000).

B. The linear trend phenomenon
In this section, we present additional examples of linear trends between in-distribution and out-of-distribution performance
across each of the testbeds discussed in Appendix A. In Appendix B.1, we first highlight examples of linear trends across
a variety of distribution shifts for models in each of the CIFAR-10, FMoW-WILDS, ImageNet, and the YCB-Objects
“universes” discussed previously. Then, in Appendix B.2, we show these linear trends are invariant to changes in model
hyperparameters, training duration, and training set size.

B.1. Further examples of linear trends

B.1.1. CIFAR-10

Dataset reproduction shifts. In Figure 6, we plot out-of-distribution test accuracy vs. in-distribution CIFAR-10 test
accuracy for each of the CIFAR-10 testbed models described in Appendix A.1.5 on two different dataset reproduction shifts:
CIFAR-10.1, CIFAR-10.2. For each shift, the relationship between in-distribution and out-of-distribution test accuracy for
both classical and neural models is well captured by a linear fit, and the corresponding R2 statistic is greater than 0.99 for
each example.

Distribution shifts between machine learning benchmarks. In Figure 6, we also plot out-of-distribution test accuracy
vs. in-distribution CIFAR-10 test accuracy for each of the CIFAR-10 testbed models described in Appendix A.1.5 on two
different machine learning benchmark shifts: CINIC-10, and STL-10. The class structure of STL-10 differs slightly from
CIFAR-10 and includes a monkey class instead of a frog class. For the STL-10 experiment we therefore consider nine-class
variants of STL-10 and CIFAR-10, omitting instances with monkey or frog labels, and, for each model, we mask the frog
class (or logit) and predict only among the remaining nine classes. The relationship between ID and OOD accuracy is
well-captured by a linear fit and the R2 statistic is greater than 0.99 in each case.

Synthetic perturbations. In Figure 7, we plot out-of-distribution test accuracy vs. in-distribution CIFAR-10 test accuracy
for the same collection of CIFAR-10 testbed models on a subset of eight different synthetic dataset shifts from CIFAR-10-
C (Hendrycks & Dietterich, 2018) where very clean linear trends occur— fog, brightness, snow, defocus blur, spatter, elastic
transform, frost, and saturate. For each shift, the linear fit well-approximates the relationship between in-distribution and
out-of-distribution accuracy, and the R2 statistic is greater than 0.94 for each example. However, the fits are not as clean as
the machine learning benchmark shifts discussed previously, and, moreover, for several of the synthetic perturbations in
CIFAR-10-C, there is no linear trend at all. We discuss examples from CIFAR-10-C where linear trends fail to hold further
in Section 4 and Appendix C.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/pytorch/vision/tree/master/torchvision/models/segmentation
https://github.com/pytorch/vision/tree/master/torchvision/models/segmentation
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Figure 6. Out-of-distribution accuracies vs. in-distribution CIFAR-10 test accuracies for a wide range of models across two different
dataset reproduction shifts, CIFAR-10.1 and CIFAR-10.2, as well as two different shifts between machine learning benchmarks, CINIC-10,
and STL-10. Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson confidence intervals (mostly covered by
the point markers). For the STL-10 experiment, we consider nine-class subsets of both STL-10 and CIFAR-10, omitting the monkey and
frog class, respectively, and restrict each model to predict only from the remaining nine-classes.
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Figure 7. Out-of-distribution accuracies vs. in-distribution CIFAR-10 test accuracies for a wide range of models from our CIFAR-10
testbed across eight synthetic perturbation shifts from CIFAR-10-C. Each point corresponds to a model evaluation, shown with 95%
Clopper-Pearson confidence intervals (mostly covered by the point markers).

B.1.2. FMOW-WILDS

In Figure 8, we plot out-of-distribution test accuracy vs. in-distribution FMoW-WILDS test accuracy for both the classical
methods and the ImageNet networks from the main testbed described in Appendix A. We evaluate each model on both the
out-of-distribution validation and the out-of-distribution test set from FMoW-WILDS using two metrics: average accuracy
and worst accuracy over five geographical regions (for more details on FMoW-WILDS, see Appendix A). To remove
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noise from very low accuracy models, we restrict our attention to models with FMoW-WILDS test set accuracy at least
10%. Across both out-of-distribution datasets and both metrics, the linear fit well-captures the relationship between in and
out-of-distribution performance with an R2 statistic of a least 0.98.

Experimental details. Below, we provide additional technical details about our FMoW-WILDS experiments.

• Datasets. We train each model on the training split of the FMoW-WILDS dataset (Christie et al., 2018) defined by Koh
et al. (2020), and perform testing on the in-distribution (ID) and out-of-distribution (OOD) validation and test splits
defined by Koh et al. (2020).

• Worst-region accuracy confidence intervals. We heuristically obtain confidence intervals for the worst-region
accuracy by computing standard 95% Clopper-Pearson confidence intervals for accuracy in the region with the lowest
accuracy on the test set for each model.

• Training hyperparameters. Unless otherwise noted, we train all of the neural models using learning rate 10´4 and
weight decay 0 for 50 epochs. We use Adam throughout with all other parameters set to their default PyTorch values.
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Figure 8. Out-of-distribution accuracies vs. in-distribution FMoW-WILDS test accuracies for a wide range of classical methods and
ImageNet networks from our main testbed. Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson confidence
intervals (mostly covered by the point markers). Left: In the left two plots, we evaluate each model on the FMoW-WILDS OOD validation
set using both average and worst-region accuracy. Right: In the right two plots, we evaluate each model on the FMoW-WILDS OOD test
set using both average and worst-region accuracy. In all four cases, a linear fit well captures the relationship between in-distribution and
out-of-distribution performance with R2 statistics greater than 0.98 in each setting.

B.1.3. IMAGENET

In Figure 9, we plot the existing models from Taori et al. (2020) alongside the new models in our testbed (CLIP, self-
supervised models, and classical methods like random features and random forests). First, we observe that the two CLIP
models are significantly robust (these models are the two green points above the line at around 60% ImageNet accuracy).
This is interesting and is in line with our conclusions that pretraining on extra data can increase model robustness to
distribution shift. Second, we observe that all three low-accuracy models lie relatively near the predicted fit line. Note that
this line is fit only to the standard neural networks (blue points). We do see that the line fit under logit axis scaling (Figure 9
right) gives a better prediction for low-accuracy model performance than the line fit under probit axis scaling (Figure 9 left).
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Figure 9. Model accuracies on the ImageNetV2 distribution shift (ImageNetv2 vs ImageNet). Each point corresponds to a model
evaluation, shown with 95% Clopper-Pearson confidence intervals (mostly covered by the point markers). The linear fit is fit to only
standard neural networks following (Taori et al., 2020). Left: We scale the axes with probit scaling. Right: We scale the axes with logit
scaling. We observe that the low-accuracy models lie relatively near the predicted fit in both plots.

B.1.4. IWILDCAM-WILDS

Experiment details. The models reported in the iWildCam-WILDS panel of Figure 1 were obtained using the following
parameters. We trained 10 neural network architectures on the iWildCam-WILDS training set (see legend of Figure 10
below). For each architecture, we perform both training from scratch and fine-tuning from a model pretrained on ImageNet.
The fine-tuning configurations are similar to the setting of Koh et al. (2020): we train for 12 epochs with batch size 16 using
Adam and sweep over learning rate and weight decay values in the grid t3 ¨10´5, 10´4, 10´3, 10´2uˆt0, 10´3, 10´2u. The
other Adam parameters were set to the Pytorch defaults. For models trained from scratch we use the same hyperparameter
grid except we train for 15 epochs, which seems to suffice for convergence for each model with at least some of the learning
rates. For details on error bar calculation and label noise reduction, see Appendix A.1.4.

Architecture variation with fixed weight decay. Figure 10 provides a more detailed view of the iWildCam-WILDS
experiments, wherein we plot the final epoch performance of the models we train, where the weight decay is set to zero. As
the figure shows, the error bars for all model intersect the fitted linear trend line (in probit domain), with the exception of
AlexNet when training from scratch, which is slightly below the linear trend. Varying the weight decay parameter appears to
affect the ID/OOD trend of fine-tuned model; see Section 5 and Appendix D.3 for additional discussion and plots.
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Figure 10. OOD vs. ID macro F1 scores for iWildCam-WILDS models trained from scratch (left) or fine-tuned from pretrained ImageNet
models (right), with varying model architecture and learning rate, but weight decay fixed to zero. Contrast with Figure 32 for results when
varying the weight decay parameter.

B.1.5. YCB-OBJECTS

In Figure 11, we plot out-of-distribution accuracy versus in-distribution accuracy for a synthetic 6D pose estimation task
using the YCB object models from Calli et al. (2015) and a testbed of neural models for 6D pose estimation. As in the
previous examples, a linear fit well-approximates the relationship between in and out-of-distribution accuracy with an R2

statistic of 0.99.
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Figure 11. Out-of-distribution accuracy vs. in-distribution accuracy for a synthetic 6D pose estimation task based on the YCB object
models from Calli et al. (2015) across a testbed of neural pose estimation networks. Each point corresponds to a model evaluation shown
with 95% Clopper-Pearson confidence intervals. The distribution shift corresponds to varying the background texture for rendered images
of the YCB objects. See Figure 12 for example images both in and out-of-distribution. Appendix B.1.5 describes the dataset and the
model testbed in more detail.
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(a) Example images from the YCB-Objects in-distribution test set.
Each object is rendered on a background whose texture has similar
material properties.

(b) Example images from the YCB-Objects out-of-distribution test
set. The distribution shift corresponds to rendering objects on a held
out set of textures with a different set of material properties than the
in-distribution textures. Aside from the texture change, the set of
objects, the lighting environments, and the sampling distribution for
objects, poses, and lighting is held fixed between datasets.

(c) Examples images from the YCB-Objects in-distribution test set shown with
keypoint annotations. Each image is annotated with nine keypoints corresponding
to the corners of the 3D bounding box and the object center. Models in the testbed
predict these keypoints, and the object’s 6D pose is recovered from keypoints using
the PnP algorithm (Lepetit et al., 2009).

Figure 12. Examples images and keypoint annotations from the YCB-Objects in-distribution and out-of-distribution (texture shift)
datasets.
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Experimental details. We train two variants of each model. The first variant is trained with standard `2 loss on the distance
between the predicted heatmap and the ground truth keypoint location (with a Gaussian blur of σ “ 0.2). These models
predict keypoint locations by taking an arg max over the heatmap. The other variant is trained with and makes predictions
using the integral pose regression technique of (Sun et al., 2018). We train each model using SGD with momentum and
learning rate annealing. For each model, we optimized the learning rate in r10´4, 10´1s and weight decay in r10´4, 1s.

B.2. Variations in model hyperparameters, training duration, and training dataset size

In this section, we explore the sensitivity of the linear trends discussed in Appendix B.1 to variation in model hyperparameters,
training duration, and training set size.

We focus much of our exploration on two datasets CIFAR-10 and FMoW-WILDS. We selected CIFAR-10 for ease of
experimentation, and we selected FMoW-WILDS in order to understand the sensitivity of the linear trends outside the
context of machine learning benchmark or synthetic shifts.

B.2.1. CIFAR-10

In Figures 13, 14, and 15, we probe the sensitivity of the linear trend between in and out-of-distribution test accuracy for
CIFAR-10 models to three types of variation: variation in hyperparameters, variation in training duration, and variation in
training set size. For ease of visualization, we focus our experiments on three model families spanning low, moderate, and
high accuracy regimes: a ridge regression classifier on image pixels, the random feature model from Coates et al. (2011),
and a ResNet (He et al., 2016b). The results are virtually identical, but harder to visualize, when considering a larger number
of model families simultaneously.

We systematically vary the hyperparameters, number of training epochs (for the ResNets), and the size of the training set
for models from each class. We plot model evaluations on the same linear trend line as found in Appendix B.1. We show
variation along these three dimensions moves models along the linear trend line for each dataset, but does not change the
linear fit. For each of the dataset reproduction shift CIFAR-10.2 (Figure 13), the benchmark shift CINIC-10 (Figure 14), and
the synthetic CIFAR-10-C fog shift (Figure 15), the R2 statistic of the fit is greater than 0.99.

Experimental details. We briefly provide details about the specific variations we consider for each model class.

1. Hyperparameter variation: For the ridge regression classifier, we vary the `2 regularization parameter in r10´6, 1010s.
For the random features models, we vary the `2 regularization parameter in r10´4, 106s and the number of random
features in r20, 214s. For the ResNet model, we vary network depth in t18, 34, 50, 101u, learning rate in r10´5, 10s,
momentum in r0.33, 0.99s, and weight decay in r10´5, 105s.

2. Training duration variation: To understand sensitivity to training duration, we save and evaluate each ResNet model
after every epoch of training. We train each model for 350 epochs, giving 350 evaluations per run.

3. Training set size variation: To understand sensitivity to the amount of training data, we subsample the CIFAR-10
dataset from the original 50,000 samples to i.i.d. class-balanced subsets of size 1000, 5000, 10000, 15000, 25000, and
40000 examples. We train each of the hyperparameter configurations for each model class on each of the 6 subsets of
the original dataset and evaluate them on the same in and out-of-distribution test sets as before.
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Figure 13. Out-of-distribution CIFAR-10.2 accuracies vs. in-distribution CIFAR-10 test accuracies under variations in model hyperparam-
eters, training duration, and the size of the training set. Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson
confidence intervals (mostly covered by the point markers). In each panel, we compare models with the linear trend line from Appendix B.1.
Left: For each model family, we vary model-size, regularization, and optimization hyperparameters. Middle: We evaluate each network
after every epoch of training. Right: We train models on randomly sampled subsets of the training data, ranging from 2% to 80% of the
original CIFAR-10 training set size. In each setting, variation in hyperparameters, training duration, or training set size moves models
along the trend line, but does not affect the linear fit.
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Figure 14. Out-of-distribution CINIC-10 accuracies vs. in-distribution CIFAR-10 test accuracies under variations in model hyperparame-
ters, training duration, and the size of the training set. Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson
confidence intervals (mostly covered by the point markers). In each panel, we compare models with the linear trend line from Appendix B.1.
Left: For each model family, we vary model-size, regularization, and optimization hyperparameters. Middle: We evaluate each network
after every epoch of training. Right: We train models on randomly sampled subsets of the training data, ranging from 2% to 80% of the
original CIFAR-10 training set size. In each setting, variation in hyperparameters, training duration, or training set size moves models
along the trend line, but does not affect the linear fit.
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Figure 15. Out-of-distribution CIFAR-10-C fog accuracies vs. in-distribution CIFAR-10 test accuracies under variations in model
hyperparameters, training duration, and the size of the training set. Each point corresponds to a model evaluation, shown with 95%
Clopper-Pearson confidence intervals (mostly covered by the point markers). In each panel, we compare models with the linear trend line
from Appendix B.1. Left: For each model family, we vary model-size, regularization, and optimization hyperparameters. Middle: We
evaluate each network after every epoch of training. Right: We train models on randomly sampled subsets of the training data, ranging
from 2% to 80% of the original CIFAR-10 training set size. In each setting, variation in hyperparameters, training duration, or training set
size moves models along the trend line, but does not affect the linear fit.
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B.2.2. FMOW-WILDS

As in the previous section, in Figure 16, we probe the sensitivity of the linear trend for FMoW-WILDS models to variation
in hyperparameters, variation in training duration, and variation in training set size. For ease of visualization, we focus our
experiments on three model families spanning low, moderate, and high accuracy regimes: a random forest model on image
pixels, the random feature model from Coates et al. (2011), and a ResNet (He et al., 2016b). We plot model evaluations on
the same linear trend line as found in Appendix B.1. We show variation along these three dimensions moves models along
the linear trend line for each dataset, but does not change the linear fit: the R2 statistic of the fit is greater than 0.99 for every
setting under the accuracy metric and greater than 0.91 for the worst-region accuracy metric.

Experimental details. We briefly provide details about the specific variations we consider for each model class.

1. Hyperparameter variation: For the random forest classifier, we vary the maximum depth in t1, 3, 10, 20u, the number
of trees in t10, 20, 50, 200u, and the splitting criterion between entropy and gini impurity. For the random features
models, we vary the `2 regularization parameter in r10´4, 106s and the number of random features in r20, 28s. For
the ResNet model, we vary network depth in t18, 34, 50, 101u, learning rate in r10´5, 10s, momentum in r0.33, 0.99s,
and weight decay in r10´5, 105s.

2. Training duration variation. We train each configuration of the ResNet for 70 epochs and evaluate each model after
every epoch of training.

3. Training set size variation. We i.i.d. subsample the FMoW-WILDS train dataset from the original 76,863 examples to
subsets of size 1000, 5000, 10000, 20000, and 50000 examples. We train each of the hyperparameter configurations for
each model class on each of the 5 subsets of the original dataset and evaluate them on the same in and out-of-distribution
test sets as before.
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Figure 16. Out-of-distribution FMoW-WILDS test accuracies vs. in-distribution FMoW-WILDS test accuracies under variations in model
hyperparameters, training duration, and the size of the training set. Each point corresponds to a model evaluation, shown with 95%
Clopper-Pearson confidence intervals. In each panel, we compare models with the linear trend line from Appendix B.1. The top row
compares model trends using average accuracy as the OOD metric, and the bottom rows uses worst-region accuracy as the OOD metric.
Left: For each model family, we vary model-size, regularization, and optimization hyperparameters. Middle: We evaluate each network
after every epoch of training. Right: We train models on randomly sampled subsets of the training data, ranging from 2% to 80% of the
original CIFAR-10 training set size. In each setting, variation in hyperparameters, training duration, or training set size moves models
along the trend line, but does not affect the linear fit.

B.2.3. YCB-OBJECTS

In Figure 17, we see that the linear fit for the YCB-Objects experiment from Appendix B.1.5 is also invariant to changes in
the amount of training data.
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Figure 17. Out-of-distribution YCB-Objects test accuracies vs. in-distribution YCB-Objects test accuracies under variations in training set
size. Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson confidence intervals. The linear trend line is the
same as Figure 11. The linear trend still well explains the data (R2

“ 0.98), and increasing training set size moves models along the
linear trend, but does not affect the linear fit.
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B.3. Comparison of axis scaling
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Figure 18. Out-of-distribution test accuracies vs. in-distribution test accuracies for several pairs of in-distribution and out-of-distribution
test sets visualized with three different axis scalings. Left: The left column shows model accuracies with a linear axis scaling. Middle:
The middle column shows model accuracies with a probit scale on both axes. In other words, model accuracy x appears at Φ´1

pxq where
Φ´1 is the inverse Gaussian CDF. Right: The right column shows model accuracies with a logit scale on both axes: model accuracy x
appears at σ´1

pxq where σ´1 is the inverse logistic function. Visual inspection shows the linear fit is better in the logit or probit domain,
especially when model accuracies span a wide range. Quantitatively, the R2 statistics are higher in the probit or logit domains than with
linear axis scaling. For instance, on ImageNetV2 and CIFAR-10.2, the R2 is 0.98 in the linear domain compared to 1.0 in the probit or
logit domains.
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C. Distribution shifts with weaker correlations
C.1. Camelyon17-WILDS

In this section, we first explore the role of training randomness on the observed ID-OOD correlation for Camelyon17-WILDS.
Remember that in Figure 3, we found a very high degree of variability between ID and OOD performance. To see if the
performance variation was due to training randomness, we train each model ten times and then average the final model
accuracies together. The result of these averaged runs is displayed in Figure 19 (left). The R2 value for the averaged runs
comes in at R2 “ 0.39, which is approximately equivalent to the R2 value in Figure 3 (R2 “ 0.40); this suggests that
training randomness is not enough to account for the performance variability.

In Figure 19 (right), we also attempted early-stopping each trained model on a separate OOD validation set (different in
distribution from the OOD test set), as is recommended in (Koh et al., 2020), before averaging model accuracies; the result
is largely unchanged and comes in at R2 “ 0.46. Early-stopping on the in-distribution validation set, however, does increase
ID-OOD correlation significantly to R2 “ 0.77, as seen in Figure 19 (middle); further investigating the mechanisms at play
here is an interesting direction for future work.
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Figure 19. Model accuracies on the Camelyon17-WILDS distribution shift. Each point gives average accuracies for models trained with
ten different random seeds, and error bars give the standard deviation. Left: Models trained to convergence and then averaged over seeds.
Middle: Each model is early-stopped on the ID validation set then averaged over seeds. Right: Each model is early-stopped on the OOD
validation set then averaged over seeds.

As a next step, to study the role of the training data distribution on the observed trends, we conduct two specific training-time
interventions: pretraining on ImageNet, and training using a specific color-jitter data augmentation.

We show results for models pretrained on ImageNet in Figure 20 (left). As is evident, the variability in model performance
is still extremely high (R2 “ 0.05). Averaging over training randomness does not seem to help either (R2 “ 0.14).

We also train using a domain-specific color-jitter data augmentation designed to mimic the visual differences in samples
from different hospitals, a technique that has previously been found to have been beneficial on a similar task (Tellez et al.,
2018; 2019). As seen in Figure 20 (middle right), training with the data augmentation both considerably increases average
OOD performance and significantly reduces the amount of OOD accuracy variation (R2 “ 0.77). However, even with
the targeted data augmentation, large OOD accuracy fluctuations still exist. Averaging over training randomness greatly
increases the correlation further and mitigates these fluctuations (R2 “ 0.95), as seen in Figure 20 (right); however, the data
augmentation causes all models to have relatively high ID accuracy, and it is unclear whether this tight trend would hold for
models in the low accuracy regime as well.

One possible reason for the high variation in accuracy is the correlation across image patches. Image patches extracted from
the same slides and hospitals are correlated because patches from the same slide are from the same lymph node section,
and patches from the same hospital were processed with the same staining and imaging protocol. In addition, patches in
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Figure 20. Model accuracies on the Camelyon17-WILDS distribution shift. Left: ImageNet pretrained models finetuned to convergence.
Middle Left: ImageNet pretrained model accuracies averaged over ten random seeds. Middle Right: Models trained with targeted color
jitter data augmentation. Right: Data augmentation model accuracies averaged over ten random seeds.

Camelyon17-WILDS are extracted from a relatively small number of slides (the dataset includes 50 slides total, and there
are 10 slides from a single hospital in the OOD test set (Koh et al., 2020)). Prior work in the context of natural language
processing tasks have shown that these correlations can result in instabilities in both training and evaluation (Zhou et al.,
2020), and investigating their effect on OOD variation in Camelyon17-WILDS is interesting future work.

As an initial exploration of the effect of highly correlated test examples, we observe that correlated examples can result in
high OOD variation in a simulated environment on CIFAR-10 and CIFAR-10.2. Concretely, we subsample CIFAR-10 and
CIFAR-10.2 and then apply data augmentation to each example to generate a test set of the same size as the original but
with significant correlation between examples. In each panel in Figure 21, we train models on CIFAR-10 and then evaluate
them on CIFAR-10 and CIFAR-10.2 with effective test size k for varying k. Concretely, we subsample k images from each
class, and then apply RandAugment rand-m9-mstd0.5-inc1 (Cubuk et al., 2020) to each example to generate test
sets of size 10,000. We work with a binary version of CIFAR-10 and CIFAR-10.2, restricting both datasets to two classes:
airplanes and cats. When the effective test set size is small, e.g. k “ 1 or k “ 2, the linear fit is very poor. However,
as the effective test set size k increases to k “ 100 or k “ 500, the linear fit is much better (R2 “ 0.94 vs. R2 “ 0.66), and
the variance between model evaluations is substantially smaller.

In contrast to highly correlated test examples, highly correlated training examples appears to have substantially less effect
on the amount of OOD variation or the quality of the linear fit. Using the same simulated CIFAR-10 and CIFAR-10.2
environment as the previous paragraph, we generate a sequence of training sets with varying degrees of correlation between
training examples. Concretely, we subsample the CIFAR-10 and CIFAR-10.2 training sets and then apply data augmentation
(RandAugment (Cubuk et al., 2020)) to each example to generate a training set of the same size as the original but with
significant correlation between examples. In each panel in Figure 22, we train models on CIFAR-10 and then evaluate them
on CIFAR-10. Even with the effective training set size is small, e.g. k “ 2, the linear fit is fairly good (R2 “ 0.89), and
there is substantially smaller variance between model evaluations than in the corresponding effective test-size experiment.

C.2. CIFAR-10-C

In this section, we look at distribution shifts induced by image corruptions in more detail. Specifically, in Figures 23–27,
we plot neural networks trained on either CIFAR-10 or ImageNet and evaluated on a similar set of image corruptions.
Interestingly, the choice of corruption can have a significant effect on the strength of the linear trend between ID and OOD
accuracy, as we have already explored in Sections 3 and 4. Comparing the plots in Figures 23–27 side-by-side, we also
observe that many corruptions behave more linearly on ImageNet-C than on CIFAR-10-C. Investigating this discrepancy
further is an interesting direction for future work.
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Figure 21. Models trained on CIFAR-10 and evaluated on CIFAR-10.2 for binary classification: airplanes vs cats. Each panel
depicts evaluating the models with varying effective test set sizes k, where k images are subsampled from each class and then repeated
data-augmented using RandAugment (Cubuk et al., 2020) to generate a consistent test set size of 10,000 examples. For smaller effective
test set sizes, the linear fit is very poor, and this variance decreases substantially for larger k.
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Figure 22. Models trained on CIFAR-10 and evaluated on CIFAR-10.2 for binary classification: airplanes vs cats. Each panel
depicts evaluating the models with varying effective train set sizes k, where k images are subsampled from each class and then repeatedly
data-augmented using RandAugment (?) to generate a consistent train set size of 50,000 examples. In contrast to varying the effective test
set size (see Figure 22), varying the effective train set has little effect on the quality of the linear fit. For instance, with as few as two
effective examples per class, the linear fit is fairly precise (R2

“ 0.89).
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Figure 23. Models trained on either CIFAR-10 (left) or ImageNet (right) and evaluated under distribution shift due to image corruptions.
This figure continues for the next few pages.
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Figure 24. Continuation of the corruption plots.
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Figure 25. Continuation of the corruption plots.
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Figure 26. Continuation of the corruption plots.
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Figure 27. Continuation of the corruption plots.

C.3. CIFAR10-C Gaussian covariance

In this section, we investigate the relationship betweeen the in-distribution and out-of-distribution data covariances, in line
with our theoretical model from Section 6. The theoretical model predicts that linear fits occur if the data covariances
between ID and OOD are the same up to a constant scaling factor. Thus, in Figure 28, we compare adding isotropic Gaussian
noise to the CIFAR-10 test set versus adding Gaussian noise with the same covariance as data examples from CIFAR-10. We
find that when the out-of-distribution covariance matches the in-distribution covariance, the linear fit is substantially better
(R2 “ 0.93 vs. R2 “ 0.44). This finding is consistent with the theoretical model we propose and discuss in Section 6.

C.4. iWildCam-WILDS-v1.0

We now study version 1.0 of iWildCam-WILDS (from WILDS version 1.0), which has a different split between training and
ID test sets, compared to the version of iWildCam-WILDS we have studied thus far (iWildCam-WILDS version 2.0 from
WILDS version 1.1). In version 1.0, images from training cameras are assigned uniformly at random between the train
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Figure 28. When the out-of-distribution data covariance matches the in-distribution data covariance, the linear fit is significantly better.
Left: A collection of models trained on CIFAR-10 and evaluated in-distribution on CIFAR-10 and out-of-distribution on CIFAR-10
images corrupted with isotropic Gaussian noise from CIFAR-10-C. Right: The same collection of models evaluated out-of-distribution on
CIFAR-10 images corrupted with Gaussian noise with the same covariance as CIFAR-10.

and ID test sets, whereas images are randomly partitioned by date between train and ID test splits in version 2.0. Since the
images tend to be taken in bursts, the earlier version of the dataset contains some training and ID test examples that are taken
within the same image sequence, and these images tend to be similar because they often capture the same animal at the same
location. In other words, we are changing how we measure in-distribution performance, and in this way, our investigation on
ID/OOD correlations study different distribution shifts between the two versions. Nevertheless, both versions of the dataset
measure out-of-distribution performance in the same way, with train and OOD test splits containing images from disjoint
cameras.

While we use version 2.0 in all other sections, it is still interesting to understand how a different in-distribution train-test
split affects the ID/OOD correlation. In Figure 29, we repeat the experiment reported in Figure 10 on the v1.0 split.2 As the
figure shows, the ID/OOD correlation is far less pronounced when using the v1.0 split. Moreover, the fine-tuned models
show a near-vertical line, with models concentrated around high ID accuracy values but spread across many OOD values,
and this could potentially be explained by the high image similarity between train and ID test sets.

Finally, we remark that while the v2.0 split eliminates overlap in image sequence between train and ID test sets, some
near-duplicates inevitably persist in that version as well, particularly for empty frames taken during similar times in the day
by the same camera. Investigating the effect of this on the linear trend on iWildCam-WILDS v2.0, in which we observe
higher variation in performance than in other datasets, is interesting future work.

D. The effect of pretrained models
D.1. Detailed findings for CIFAR-10

In Figure 30 (left) we reproduce the results shown in Figure 4 and add to it a number of additional models; Figure 30 (right)
graphs the performance of the same model when measuring their OOD performance on CIFAR-10.1 instead of CIFAR-10.2.
Let us describe the additional models and their relationship to the linear trend.

First, as a middle ground between zero-shot use of ImageNet models (which is above the line) and fine-tuning (which is on
the line), we consider neural network models trained only on the subset of CINIC-10 that originates from ImageNet (as
opposed to CIFAR-10). It is worth noting that in this case, the CINIC-10 subset includes images from ImageNet-21k, which
is a superset of the more common ImageNet-1k dataset containing approximately 21,000 classes. Similar to the zero-shot
case, these models use only ImageNet data and so we expect their accuracy to not obey the same CIFAR-10/CIFAR-10.2
relationship of models trained on CIFAR-10 data (in fact, for these models both CIFAR-10 and CIFAR-10.2 are OOD).
Similar to fine-tuned models, these models are specialized to the task of classifying only the 10 CIFAR-10 classes (as

2There are some differences in training hyper-parameters: Our v1.0 experiments used images with resolution 224x224, slightly different
learning rates and number of epochs, and no label noise reduction via MegaDetector-based filtering as described in Appendix A.1.4.
Nevertheless, we are confident that the primary cause for the difference between Figures 29 and 10 is the change in test/train split.
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Figure 29. OOD vs. ID macro F1 scores for iWildCam-WILDS-v1.0 models trained from scratch (left) or fine-tuned from pretrained
ImageNet models (right), with varying model architecture and learning rate, but weight decay fixed to zero. Contrast with Figure 10 for
results on the v2.0 ID test/train split.

opposed to the 1000 ImageNet classes), and so we expect them to have better accuracy. Figure 30 lists these models as
“Training on ImageNet data,” and confirms our expectations: these models are above the linear fit and have better accuracy
than the ImageNet zero-shot models. However, in comparison to the zero-shot models, they appear to lie closer to the linear
fit for CIFAR-10-trained models.

Second, we consider two publicly released CLIP models (Radford et al., 2021), based on ResNet 50 and Vision Transformer,
respectively. Both zero-shot application of CLIP and the training of only its final layer (denoted “linear probe”) produce
performance that is above the line, particularly for the higher-performing Vision Transformer. See below for additional
details on the use of CLIP in our experiments.

Finally, we consider models trained on auxiliary unlabeled data originating from the 80 Million Tiny Images (Torralba
et al., 2008), abbreviated 80MTI below, which is a superset of both CIFAR-10 and its reproductions CIFAR-10.1 and
CIFAR-10.2. In particular, we consider a model trained via self-training using a subset of TinyImages (Carmon et al., 2019),
listed as 80MTI ST in Figure 30), and two models trained via out-distribution aware self-training (Augustin & Hein, 2020),
listed as 80MTI ODST. As the figure shows, despite using auxiliary data, the “80MTI ST” performance is precisely on the
CIFAR-10-only linear trend. This might be due to the fact that Carmon et al. (2019) filter 80MTI, using a model supervised
with the CIFAR-10 training set, thereby possibly losing the additional diversity of TinyImages.3 The performance of the
ODST models appear to deviate from the linear trend. However, the direction of the deviation is inconsistent, being below
the line on CIFAR-10.2 and above the line on CIFAR-10.1. Since these are the highest-accuracy models in our testbed it is
not completely clear whether these deviations are due to use of extra data or a deviation of the overall ID-OOD trend from a
perfect probit linear fit at high accuracies.

Experiment details. Below we provide some additional details on out CIFAR-10 auxilliary data experiments.

• Zero-shot classification with ImageNet models. To investigate models that are minimally affected by the CIFAR-10
training set, we utilized pre-trained ImageNet models directly for the CIFAR-10 classification task without any
fine-tuning (“zero-shot”). A complication here is that the CIFAR-10 classes do not match the ImageNet classes. For
instance, ImageNet contains more than 100 different dog classes corresponding to different breeds while CIFAR-10
contains only one dog class. To address this point, we manually constructed a mapping from CIFAR-10 classes
to ImageNet classes. Our mapping roughly followed the WordNet hierarchy with some refinements from the class

3We also note that the additional unlabeled data used to train this model potentially contains images from CIFAR-10.1 and CIFAR-10.2;
if it does, they seem to do little to help its performance on that dataset.
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Figure 30. The effect of additional training data on OOD accuracy on CIFAR-10.2 (left) and CIFAR-10.1 (right).

structure used in the human annotation experiments conducted by (Shankar et al., 2020). We then evaluated the
ImageNet models using only the logits for classes appearing in this mapping and picked the CIFAR-10 class as
prediction that corresponded to the ImageNet class with the largest logit.

• Zero-shot classification with CLIP models. For the models described as “CLIP zero-shot”, we use the publicly
released CLIP package, which includes the ResNet and VisionTransformer models as well as the text tokenizer and
encoder used to encode the zero-shot text prompts. We obtained the CIFAR-10 prompts through private correspondence
with the OpenAI team. For each CIFAR-10 class, we ensembled the prompts by averaging the embeddings of the
prompts together before using it for final classification.

• Linear probes. In the models described above as “linear probes” we train only the last layer of a pre-trained neural
network by performing (exact) least-squares linear regression of 1-hot class representation using the activations of the
network’s penultimate layer.

D.2. Detailed findings for FMoW-WILDS

Figure 31 shows a reproductions of Figure 4 (middle) when using different combination of worst-region and average-region
accuracy metric for the ID and OOD data (recall that the ID/OOD split is based on time). As the figure shows, the effect
of fine-tuning pre-trained models is consistent across the four combinations: fine-tuning improves performance without
deviating from the line. We also consider a linear probe of CLIP (see description in the previous subsection). Unlike the
result on CIFAR-10, here the CLIP models do not significantly deviate from the linear trend. A possible explanation for this
difference is that the web images on which CLIP was trend contain far more images of objects relevant for the CIFAR-10
classification task than they do for the FMoW-WILDS satellite image classification task.

D.3. Detailed findings for iWildCam-WILDS

Figure 32 shows the same models plotted in the iWildCam-WILDS panel of Figure 1, but separating the models trained from
scratched and the fine-tuned models, and coloring points by the weight decay parameters. (For each weight decay we vary
model architecture and learning rate). For fine-tuned models, there is a clear difference in the ID/OOD linear between model
using weight decay 0 and models using nonzero weight decay. In particular, points with nonzero weight decay seem to lie
above the zero weight decay linear trend. For models trained from scratch the macro F1 measurement error does not allow
us to conclude with confidence whether weight decay affects the linear trend. Finally, it is worth noting that—even though
increasing weight decay appears to move models above the zero weight decay line—the models with the best performance,
both ID and OOD, do not use weight decay.
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Figure 31. The effect of additional training and different accuracy metrics on FMoW-WILDS ID/OOD performance.
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linear trend than models trained from scratch, and moreover that the weight decay parameters affects the ID/OOD correlation, at least for
fine-tuned models.



Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

E. Theoretical models for linear fits
E.1. Proof of Theorem 1

Theorem 1. In the setting described above where ∆ is independent of θ, let δ P p0, 1q. With probability at least 1´ δ, we
have ∣∣∣∣Φ´1paccD1pθqq ´

α

γ
Φ´1paccDpθqq

∣∣∣∣ ď β

γσ

c

2 log 2{δ

d
.

Proof. We begin by deriving expression for the accuracy of linear classifiers in our Gaussian distributional model. Under
distribution D, the accuracy of linear classifier θ is

accDpθq “ Pr
´

signpθJxq “ y
¯

“ Pr
´

y ¨ θJx ě 0
¯

“ Pr
´

N pθJµ; }θ}2σ2q ě 0
¯

“ Pr
´

}θ}σ ¨N p0; 1q ě ´θJµ
¯

“ Φ

˜

θJµ

}θ}σ

¸

,

where we recall that Φptq “
ş8

´t
1?
2π
e´s

2
{2ds “

şt

´8
1?
2π
e´s

2
{2ds is the standard Normal cdf. Similarly, for the shifted

distribution D1 we have

accD1pθq “ Φ

˜

θJµ1

}θ}σ1

¸

“ Φ

˜

α

γ
¨
θJµ

}θ}σ
`

β

γσ
¨
θJ∆

}θ}
.

¸

Therefore, ∣∣∣∣Φ´1paccD1pθqq ´
α

γ
Φ´1paccDpθqq

∣∣∣∣ “ β

γσ

∣∣pθ{}θ}qJ∆∣∣. (2)

Since θ is independent of ∆ and θ{}θ} is a unit vector, the inner product pθ{}θ}qJ∆ is distributed identically to the first
coordinate of ∆. A standard concentration bound on the sphere (see, e.g., Ball, 1997, Lemma 2.2) states that

Prp|∆1| ą zq ď 2e´dz
2
{2

for all z ě 0. Substituting z “
b

2d´1 log 2
δ completes the proof.

Remarks. We conclude this subsection with two additional remarks on the application of Theorem 1.

• Classifiers trained on samples from D. We note that any mapping of samples from D to a linear classifier results by
definition in a classifier independent on ∆, and consequently Theorem 1 applies to it. In particular, it applies to the
linear classifier we train in the simulation described in Figure 5.

• A guarantee for multiple models. Given N linear classifiers θ1, . . . ,θK such that each one is independent of ∆,
we may apply Theorem 1 with probability parameter δ{N in conjunction with a union bound to conclude that, with

probability at least 1´ δ we have
∣∣∣Φ´1paccD1pθiqq ´

α
γΦ´1paccDpθiqq

∣∣∣ ď β
γσ

b

2 log 2N{δ

d for all i “ 1, . . . , N . This
precisely implies a linear trend in scatter plots such as Figure 5.

E.2. Departures from the linear trend

We now detail a number of modifications to our distribution model which break the linear trend predicted by Theorem 1 and
shown in Figure 5. In each case, we mathematically define the modified model, provide intuition for why the linear trend
no longer holds, and demonstrate the departure from the linear trend via simulation where train prediction models using
samples from D and evaluate them on D1. We defer the full simulation details to the next subsection. The modifications we
describe are not the only possible way to depart from the linear fit, but we focus on them because we believe they potentially
represent departures from the trend seen in practice,
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Figure 33. Modifications to our theoretical model showcasing departures from the linear trend. Left: training on auxiliary data related to
D1 (this plot only shows logistic regression models). Middle: choosing the parameter ∆ adversarially to reduce the OOD performance of
a particular targeted model. Right: changing the noise covariance to be non-isotropic.

More data. Section 5, as well as prior work, show that using additional training data from a broader distribution
can cause departure form the linear trend. To simulate such a scenario, we consider a third distribution D2 defined by
x|y „ N pµ2 ¨ y; pσ2q2Iq, with µ2 “ µ1 ` β∆̃ and ∆̃ uniformly distributed on the unit sphere and independent of ∆.
(Recall that µ1 “ αµ ` β∆). Since D2 is more similar to D1, we expect that including D2 samples in the training will
result in better OOD performance. However, this inclusion could harm ID performance.

We demonstrate these effects in Figure 33 (left), where we train logistic regression models using samples from D and 0,
50 or 100 samples from D1, with σ2 “

?
2σ and all other parameters identical to the experiment shown in Figure 5. As

expected, the extra data results in better OOD performance but worse ID performance. Moreover, the models trained on
each amount of external training data appear to roughly follow linear trends (the plot shows empirical probit linear fits).
However, we note that our theoretical analysis does not guarantee such linear fit, because the training data used to compute
the classifier depends on ∆ through the samples from D2.

Adversarial distribution shift. As previously mentioned, the randomization of the distribution shift was crucial for our
assumption, because if we allow ∆ to be a fix deterministic vector we cannot rule out that it depends adversarially on
the trained classifier. Let us now spell out the implications of this possibility, by allowing ∆ to be any arbitrary vector
of norm at most 1. Given some target classifier given a target classifier θ, suppose pick ∆ “ c ¨ θ{}θ} “ c ¨ θ{}θ} for

some c P r´1, 1s. This makes the inner product θ̂
J
∆ “ c. Recalling Eq. (2), this clearly implies a large departure from the

linear trend when |c| is close to 1. In particular, by picking negative c we may substantially reduce the performance of the
model on D1. We note that this form of distribution shift is precisely the Gaussian model of adversarial examples proposed
by Schmidt et al. (2018).

In Figure 33 (middle), we demonstrate this technique by selecting one of the linear classifiers shown in Figure 5, call it
θ‹, and letting ∆ “ ´0.03θ‹{}θ‹}. As the figure shows, the linear trend breaks substantially, particularly for the targeted
classifier.

Non-isotropic covariance shifts. Finally, we consider the case where the noise covariance under D is not isotropic. That
is, we let x|y „ N pµ ¨ y; Σq for some Σ that is not a multiple of the identity. Instead of considering shifts to the mean µ,
we consider random covariance shifts of the form

Σ1 “ Σ` pσ1q2Idˆd,
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i.e., simple additive white Gaussian noise with variance σ1. Under this distribution shift model, the probit accuracies are

Φ´1paccDpθqq “
θJµ

a

θJΣθ
and Φ´1paccD1pθqq “

θJµ
a

θJΣ1θ

For a the linear ID-OOD probit accuracy relationship to hold for all θ, we must have that Φ´1paccDpθqq{Φ
´1paccD1pθqq is

a constant independent of θ, which happens if and only if

θJΣ1θ

θJΣθ
“ 1`

σ12}θ}2

θJΣθ

is a constant independent of θ. However, this only holds when Σ is a multiple of the identity, contradictory to our assumptions.
Indeed, whenever Σ is not a multiple of the identity, there could be a tradeoff between ID and OOD performance: the former
favors θ with small Σ-weighted norms, while the latter also depends on the standard Euclidean norm }θ}2. Consequently,
we expect regularization that limits }θ}2 to provide better OOD performance.

Figure 33 (right) demonstrates this phenomenon via simulation. In the figure, we set Σ to be diagonal with a portion of the
entries close to zero so that giving the corresponding coordinates of θ larger weight results in better ID accuracy. For the
distribution shift we let pσ1q2 “ trpΣq{d. As the figure shows, the linear trend no longer holds, despite the fact that the
distribution shift is “only” adding isotropic Gaussian noise to the covariates. Moreover, as the above discussion predicts, the
logistic and ridge regression models that attain strong OOD performance are those with stronger `2 regularization. We also
show logistic regression trained classifiers with `1 regularization—these classifiers do not achieve good OOD performance.

E.3. Simulation details

Below, we provide additional details about the simulations described in Figures 5 and 33.

Training parameters. We fit logistic regression, ridge regression, nearest neighbors and random forest models using their
scikit-learn implementations (Pedregosa et al., 2011). For logistic regression we use values of the inverse-regularization
parameter C ranging from 10´6 to 1; we use `2 penalty throughout except the covariance shift experiment where we also
consider `1 penalty. For ridge regression we use values of the regularization parameter α ranging from 10´3 to 10. For both
types of linear models we do not fit an intercept. For nearest neighbors we use 1 or 3 nearest neighbors, and for random
forests we use 3, 30 or 100 estimators. The remaining parameters are set to their scikit-learn defaults.

In addition to varying the learning hyperparameters described above, to produce models with varying accuracy we also
modulate the training set size and dimensionality reduction. To reduce the training set size to size nsub, we pick the first
nsub entries from a fixed training set generated once. To reduce dimensionality down to dproj, we simply pick the first dproj
coordinates of x. For the all simulations except covariance shift, we let nsub range between 30 and 100, and use dproj in the
range 50 to 3000. In the covariance shift simulation we use nsub P r100, 2000s and fix dproj “ d “ 500.

Accuracy measurement. For linear models we compute the accuracy exactly (see Subsection E.1 for closed-form
expressions). Consequently, we do not show error bars for these models. For the remaining models we estimate the
accuracy on samples from the appropriate distributions and use error bars to show 95% Clopper-Pearson confidence intervals,
consistently with the rest of the paper.

Distribution model parameter setting. Throughout, we pick µ to be random unit vector (i.e., with the same distribution
as ∆). For all simulations except covariance shift, we let d “ 105, σ “ 10´1.5, α “ 0.7, β “ 0.5 and γ “ 1. For the
covariance shift simulation, we found that using a smaller dimension and more training points lead to more noticeable
effects. Therefore, for this simulation we let d “ 500 (recall that α, β and γ do not exist in the covariance shift model). We
let the covariance matrix Σ be diagonal, with 490 diagonal entries of size 1{2 and the remainder of size 1{200; the locations
of the small entries were chosen at random. The shifted covariance is Σ1 “ Σ` 1

8Idˆd.

F. Additional related work
We now summarize some of the additional work related to the phenomena we study in our paper. Our focus here is mostly
on recent work. For early work on distribution shift, we refer the reader to (Quionero-Candela et al., 2009; Torralba et al.,
2011).
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PAC-Bayesian analysis of distribution shift. Performance under distribution shift has also been characterized under
the PAC-Bayesian setting where the learning algorithm outputs a posterior distribution over the h hypothesis class (Li &
Bilmes, 2007; Germain et al., 2013; 2016). Li & Bilmes (2007) directly bound the error on the target distribution (OOD) in
terms of the empirical error on a small number of labeled samples from the target and a “divergence prior” which measures
some divergence between the source and target domains. Germain et al. (2013) relate the OOD performance to the ID
performance via a disagreement measure induced by the hypothesis class. These bounds do not explain the linear trends
we find in this paper—Li & Bilmes (2007) do not relate the source and target error directly, and the bounds in Germain
et al. (2013) are functionally similar to those of Ben-David et al. (2006) where the ID performance is highly predictive
of the OOD performance only if they are equal (Figure 1). Germain et al. (2016) present a different analysis where the
domain divergence appears as a multiplicative term rather than an additive one like in previous bounds. However, this bound
expresses a linear relation between the OOD performance and some exponent of the “expected joint error” on the source
domain which is different from the ID performance. Furthermore, the bound is an inequality which only provides an upper
bound on the OOD performance, while our empirical results require a bound in the other direction as well.

Theoretical models for linear trends in earlier work on dataset reproduction. Both Recht et al. (2018) and Recht et al.
(2019) contain simple models for the linear fits observed in their reproductions of CIFAR-10 and ImageNet. Recht et al.
(2018) propose a mixture model with an “easy” and “hard” component and model the distribution shift as a change in the
weigts of these two components. Their model does indeed give a linear fit, but only with linear axis scaling. As we have
seen several times throughout this paper, the scatter plots show cleaner linear trends with logit or probit scaling on the axes.
It is also not clear what the “easy” and “hard” components correspond to in distribution shifts such as CIFAR-10.1.

Recht et al. (2019) developed their model further. Instead of discrete mixture components, each distribution is now
parametrized by a Gaussian distribution over the “hardness” of each image. In addition, every model has a scalar “skill”
parameter that determines the probability of a model classifying an image with a given hardness correctly. This model
now produces linear fits in the probit domain, which yields a closer fit to empirical results. While a continuous hardness
parametrization also is more plausible, it is again unclear what this hardness corresponds to.

Neither the models of Recht et al. (2018; 2019) nor our model of Section 6 allow us to predict where linear trends occur in
actual data; such predictive power is important because—as we demonstrate—some distributions do not yield linear trends.
However, our theoretical analysis is based on a concrete generative is based on a concrete generative, rather than postulated
abstract properties of data and classifiers. One advantage of this fact is that it allows us to consider modifications of our
generative models which show departures from the linear trend, as we do in Appendix E.2.

Linear trends in image classification with natural language supervision. Among other results, Radford et al. (2021)
show two important phenomena that are closely related to this paper. First, their training approach (contrastive language
image pre-training, “CLIP”), which combines a large training set and natural language supervision, produces image
classifiers substantially above the linear trend given by a wide range of ImageNet model in the distribution shift testbed
of Taori et al. (2020). This result provides further evidence for the hypothesis that training data plays an important role in
the linear trends we describe in this paper. Second, Radford et al. (2021) find that once their training set is fixed and they
vary model architecture (ResNet variants and Vision Transformers (Dosovitskiy et al., 2021)) and compute available for
training, the resulting models again follow a clear linear trend. This demonstrates that linear trends between in-distribution
and out-of-distribution accuracy occur in a diverse range of settings.

Linear trends under sub-population shift. One specific type of distribution shift is sub-population shift. In sub-
population shift, each class is composed of a set of sub-populations, e.g., the “dog” class in an image classification task may
be composed of images from a specific set of dog breeds. A natural goal then is that a trained classifier should generalize to
previously unseen dog breeds and still correctly labels them as “dog”. Hendrycks & Dietterich (2018) found that a set of
eight convolutional neural networks follow a linear trend on a sub-population shift derived from ImageNet-22K. Santurkar
et al. (2021) construct a range of sub-population shifts from ImageNet and find approximately linear trends for several of the
shifts they consider. Their testbed contained 13 convolutional neural networks, some of them with interventions such as
adversarial training (Madry et al., 2018). Some of the plots in (Santurkar et al., 2021) are not directly comparable to ours
since they display a relative accuracy measure on the y-axes, not the absolute accuracy (i.e., average 0-1 loss).

Underspecification as defined in D’Amour et al. (2020). D’Amour et al. (2020) conduct a broad empirical study and
show that out-of-distribution performance can vary widely even for models with the same in-distribution performance. Since
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this result may at first glance disagree with our results here, we now discuss their empirical results most relevant to our
paper in detail. In particular, we focus on their results in computer vision domains.

• D’Amour et al. (2020) point out ImageNet-C as an example of underspecification in image classification. Similar to
(Taori et al., 2020), we also find in Figure 23 that some of the perturbations in ImageNet-C show substantial variation
as a function of ImageNet accuracy. In addition, we find that this variation occurs in CIFAR-10-C. As mentioned
before, not all shifts in ImageNet-C and CIFAR-10-C are affected by underspecification, with some shifts exhibiting
comparatively clean linear trends.

• The second example for underspecification in image classification is ObjectNet (Barbu et al., 2019). While it is indeed
true that the accuracy variation on ObjectNet may increase compared to ImageNet, overall ObjectNet still shows
predictable behavior as a function of ImageNet accuracy. See Figure 2 in (Taori et al., 2020).

• In addition to standard computer vision benchmarks, D’Amour et al. (2020) also investigate two medical imaging
datasets, which give an important complementary perspective. In the first dataset (ophthalmological imaging), they
find evidence of underspecification. In the second dataset (dermatological imaging), the evidence is less clear since
the tests for statistically significant variation in the four domains give p-values of 0.54, 0.42, 0.29, and 0.03. While
the fourth p-value is below 0.05, the authors did not correct for multiple hypothesis testing and remark that this is an
exploratory data analysis.

Overall, we find that the empirical evidence for underspecification in computer vision tasks is nuanced. As in our work,
some distribution shifts studied by D’Amour et al. (2020) exhibit stronger correlation between in-distribution and out-of-
distribution than others. Hence there is no clear contradiction between our results and those of D’Amour et al. (2020).
Understanding when precise linear trends occur and when underspecification is dominant is an important direction for future
work.

Further distribution shifts without universal linear trends. While we have seen several distribution shifts with
clean linear trends between in-distribution and out-of-distribution generalization in this paper, there are also obvious
counterexamples. One prominent counterexample are adversarial distribution shifts, e.g., `p adversarial examples (Biggio
et al., 2013; Szegedy et al., 2014; Biggio & Roli, 2018). For models trained without a robustness intervention, it is usually
easy to construct adversarial examples that cause the model to misclassify most inputs despite high accuracy on unperturbed
examples. While adversarial robustness is far from solved, it is now possible to train CIFAR-10 networks with about 65%
accuracy against the common `8 adversary with ε “ 8{255 and standard (unperturbed) accuracy of 91% (Gowal et al., 2020).
Since CIFAR-10 classifiers without a robustness intervention have only 0–10% robust accuracy in this setting, it is clear that
there cannot be a precise linear trend between in-distribution and out-of-distribution accuracy. Adversarial distribution shifts
can bring about departures from the linear trend in our theoretical setup as well, as we discuss in Appendix E.2. We refer the
reader to Taori et al. (2020) and Hendrycks et al. (2020) for additional examples of models not following a linear trend in
ImageNet variants, e.g., on some of the ImageNet-C corruptions and ImageNet-R.

Benchmarks for distribution shift. Recently several groups conducted broad empirical surveys of distribution shift,
comparing a wide range of available methods. Most closely related to our paper is Taori et al. (2020), where the authors
also find clean linear trends on multiple distribution shifts related to ImageNet. Djolonga et al. (2021) also observed high
correlations on the same distribution shifts for a smaller number of models. Both experiments were limited to ImageNet as
in-distribution test set and convolutional neural networks. Here we study multiple different in-distribution datasets for image
classification, an additional task (pose estimation), and several models beyond convolutional neural networks.

Gulrajani & Lopez-Paz (2021) conduct a broad survey of algorithms for the closely related problem of domain generalization.
In domain generalization, the training set is drawn from multiple distinct domains, and the learning algorithm has access to
the domain labels. At test time, the trained models is evaluated on samples from a new domain. Gulrajani & Lopez-Paz
(2021) found that on a range of datasets, current domain generalization algorithms perform only as well or worse as
an empirical risk minimization baseline that ignores the domain structure. At a high level, this result is similar to the
aforementioned distribution shift benchmarks that also found small or no gains from current robustness interventions on
most distribution shifts.

Our results raise similar questions as these benchmarks for distribution shift and domain generalization: when and how is it
possible to improve over empirical risk minimization as a baseline for robustness to distribution shift, i.e., to “go above the
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line” in our scatter plots?

Training methods to improve robustness. Researchers have proposed a large number of robustness interventions over the
past few years. Due to the volume of papers, we only refer to recent surveys here. Methods for improving robustness divide
into two categories: those which use samples from the target distribution (which we refer to as the OOD data), and those that
do not. The former methods are usually called transfer learning and domain adaptation methods (Pan & Yang, 2010; Wang
& Deng, 2018). These methods typically assume that the target distribution data is more constrained than the in-distribution
data, either lacking labels or having smaller quantity, and algorithms focus on mitigating these issues. The linear trends
observed by Kornblith et al. (2019) in the context of transfer learning suggest that there may be important similarities.

While domain adaptation and transfer learning techniques are helpful in many settings, they are not always applicable. For
instance, when we want an autonomous vehicle to drive safely in a new town it has not visited before, we have no additional
training data available to adapt the car’s perception system. Such scenarios motivate our study of the correlation between
in-distribution and out-of-distribution generalization in this paper. The second category of training methods—sometimes
referred to as domain robustness or domain generalization—attempt to learn models that are reliable in the presence of
distribution shifts for which there is no direct training data. Instead, these methods often leverage data from multiple other,
related domains. Gulrajani & Lopez-Paz (2021) provide an overview of current methods for domain generalization.


