
Sig-DFP for MFG with Common Noise

A. Preliminaries on Rough Path Theory and Signatures
In this appendix, we shall follow Lyons & Qian (2002); Lyons et al. (2007); Friz & Victoir (2010) and briefly introduce
rough path theory and signatures. We will also give the proof of Lemma 4.1 using the factorial decay property of signatures.
Denote by ∆T the simplex {(s, t) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T}, and by Tn(Rd) =

⊕n
k=0(Rd)

⊗
k the truncated tensor

algebra.

Definition A.1 (Multiplicative Functional). LetX : ∆T → Tn(Rd), with n ≥ 1 as an integer. For each (s, t) ∈ ∆T ,Xs,t

denotes the image of (s, t) under the mappingX, and we write

Xs,t = (X0
s,t,X

1
s,t, . . . ,X

n
s,t) ∈ Tn(Rd).

The functionX is called a multiplicative functional of degree n in Rd ifX0
s,t = 1 for all (s, t) ∈ ∆T and

Xs,u ⊗Xu,t = Xs,t, ∀s, u, t ∈ [0, T ], s ≤ u ≤ t, (A.1)

which is called Chen’s identity.

Rough paths will be defined as a multiplicative functional with extra regularization conditions.

Definition A.2 (Control). A control function on [0, T ] is a continuous non-negative function ω on the simplex ∆T which is
supper-additive in the sense that

ω(s, u) + ω(u, t) ≤ ω(s, t) ∀s ≤ u ≤ t ∈ [0, T ].

It is easy to see that ω(t, t) = 0 for any control ω. In the following, we use the notation x! = Γ(x+ 1), where Γ(·) is the
Gamma function and x is a positive real number.

Definition A.3. Let p ≥ 1 be a real number and n ≥ 1 be an integer. Denote ω : ∆T → [0,+∞) as a control and
X : ∆T → Tn(Rd) as a multiplicative functional. Then we say thatX has finite p-variation on ∆T controlled by ω if

‖Xi
s,t‖ ≤

ω(s, t)
i
p

β( ip )!
∀i = 1, . . . , n, ∀(s, t) ∈ ∆T , (A.2)

where ‖ · ‖ is the tensor norm induced by the norm on Rd. We will call thatX has finite p-variation in short if there exists a
control ω such that (A.2) is satisfied.

Note that in (A.2), β is a constant depending only on p. We are now ready to define the rough paths.

Definition A.4 (Rough Path). Let p ≥ 1 be a real number. A p-rough path in Rd is a multiplicative functional of degree bpc
with finite p-variation. The space of p-rough paths is denoted by Ωp(Rd).

Given a continuous path X : [0, T ] → Rd with bounded p-variation, one can construct a bpc-rough path X with X1
s,t =

Xt−Xs for any s ≤ t. In particular, truncated siganture Sbpc(X) ∈ T bpc(Rd) is a p-rough path. The following fundamental
theorem of rough paths allows us to make extension of a p-rough path,

Theorem A.1 (Extension Theorem, Lyons & Qian (2002)). Let p ≥ 1 be a real number and n ≥ 1 an integer. Denote
X : ∆T → Tn(Rd) as a multiplicative functional with finite p-variation controlled be a control ω. Assume that n ≥ bpc,
then there exists a unique extension ofX to a multiplicative functional ∆T → T ((Rd)) which possesses finite p-variation.

More precisely, for every m ≥ bpc+ 1, there exists a unique continuous functionXm : ∆T → (Rd)
⊗
m such that

(s, t)→ Xs,t =
(

1,X1
s,t, . . . ,X

bpc
s,t , . . . ,X

m
s,t, . . .

)
∈ T ((Rd))

is a multiplicative functional with finite p-variation controlled by ω. By this we mean that

‖Xi
s,t‖ ≤

ω(s, t)
i
p

β( ip )!
∀i ≥ 1, ∀(s, t) ∈ ∆T . (A.3)
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Signature can be seen as an extension of rough path, and its factorial decay property follows by (A.3). The control function
is related to p-variation of path. Given that x ∈ Vp([0, T ],Rd), Sbpc(x) is a p-rough path and one candidate for its control
function is

ω(s, t) =

bpc∑
i=1

sup
D⊂[s,t]

∑
k

‖xitk+1
− xitk‖

p/i, (A.4)

where the norm is the tensor norm induced by Euclidean norm in Rd.

Let Sbpc(Ω1) = {Sbpc(x) : x ∈ Ω1(Rd)}, and Y be a p-rough path. We call Y a p-geometric rough path if Y is in the
closure of Sbpc(Ω1) under p-variation metric, where p-variation metric is given by

dp-var(X,Y) :=

(
sup
D

∑
ti∈D
‖Xti,ti+1

−Yti,ti+1
‖p
)1/p

, X,Y ∈ Ωp(Rd). (A.5)

Proof of Lemma 4.1. By constructing the iterated integral in Stratonovich sense, S(B̂0:T ) is the signature of a p-geometric
rough path ∀p ∈ (2, 3) (Friz & Victoir, 2010), and thus it characterizes B0:T uniquely. Therefore, conditional distribution
µt = E[ι(Xt)|FBt ] can be written as µt := µ(t, B0,t) = µ(B̂0,t).

By Theorem 3.1, for any ε > 0 there exits l such that

sup
B̂∈K

|µ(B̂0:T )− 〈l, S(B̂0:T )〉| < ε

2
. (A.6)

Since |〈l, S(B̂0:T )−SM (B̂0:T )〉| ≤ ‖l‖·‖S(B̂0:T )−SM (B̂0:T )‖where the first norm is functional norm and second is tensor
norm and ‖S(B̂0:T ) − SM (B̂0:T )‖ =

∑
i≥M+1 ‖B̂i0:T ‖. By the compactness of K, and (A.3), (A.4),

∑
i≥M+1 ‖B̂i0:T ‖

admits a convergent uniform norm over B̂ ∈ K and goes to 0 as M →∞. Then for M large enough,

sup
B̂∈K

|µ(B̂0:T )− 〈l, SM (B̂0:T )〉| < ε

2
+ sup
B̂∈K

|〈l, S(B̂0:T )− SM (B̂0:T )〉| < ε

2
+
ε

2
= ε. (A.7)

For t < T , we extend path B̂0:t to space Vp([0, T ],Rd) by defining

B̃ts :=

{
B̂s, 0 ≤ s ≤ t
B̂t, t < s ≤ T.

Then B̃t0:T ∈ Vp([0, T ],Rd), S(B̃t0:T ) = S(B̂0:t) by Chen’s identity (A.1), and µ(B̂0:t) = µ(B̃t0,T ). Denote K̃ =

{B̃t0:T ,∀t ∈ [0, T ] : B̃t0:T is constructed by B̂0:t and B̂ ∈ K}. Thus K̃ is also compact.

sup
t∈[0,T ]

sup
B̂∈K

|µ(B̂0:t)− 〈l, SM (B̂0:t)〉| = sup
t∈[0,T ]

sup
B̂∈K

|µ(B̃t0:T )− 〈l, SM (B̃t0:T )〉|

= sup
B̃∈K̃

|µ(B̃0:T )− 〈l, SM (B̃0:T )〉| < ε, (A.8)

where the second equality is due to the construction of B̃t0:T and the last inequality is by (A.7).

B. Details of Implementing the Sig-DFP Algorithm
The simulation of Xi,(n) and JB(ϕ, µ̂(n−1)) follows

JB(ϕ, µ̂(n−1)) =
1

B

B∑
i=1

(
L−1∑
k=0

f(tk, X
i,(n)
k , µ̂

(n−1)
k (ωi), αϕ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆k + g(XL, µ̂

(n−1)
L (ωi))

)
, (B.1)

X
i,(n)
k+1 = X

i,(n)
k + b(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi), αϕ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆k

+ σ(tk, X
i,(n)
k , µ̂

(n−1)
k (ωi), αϕ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆W i

k

+ σ0(tk, X
i,(n)
k , µ̂

(n−1)
k (ωi), αϕ(tk, X

i,(n)
k , µ̂

(n−1)
k (ωi))∆Bik, X

i,(n)
0 = Xi

0 ∼ µ0, (B.2)
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where µ̂
(n−1)
k (ωi) is computed by µ̂

(n−1)
k (ωi) = 〈l̄(n−1), SM (B̂i0:tk)〉 with l̄(n−1) obtained from the pre-

vious round of fictitious play. Then l(n) is calculated by regressing {ι(Xi,(n)
0 ), ι(X

i,(n)
L/2 ), ι(X

i,(n)
L )}Ni=1 on

{SM (B̂0,0), SM (B̂0,tL/2), SM (B̂0,tL)}Ni=1, and we update l̄(n) = n−1
n l̄(n−1) + 1

n l
(n) for n ≥ 1. The algorithm starts with

a random initialization l̄(0) to produce µ̂(0).

Linear-Quadratic MFGs. We set αϕ to be a feed-forward NN with two hidden layers of width 64. The signature depth is
chosen at M = 2. This model is trained for Nround = 500 iterations of fictitious play. Note that fictitious play has a slow
convergence speed since our initial guess m(0) is far from the truth. Therefore, we only apply averaging over distributions
(or linear functions) during the second half iteration. We set the learning rate as 0.1 for the first half iterations and 0.01 for
the second half. The minibatch size is B = 210, and hence Nbatch = 25.

Mean-field Portfolio Game. We consider signature depth M = 2 and use a fully connected neural network πϕ with four
hidden layers to estimate πt. Since different players are characterized by their type vectors ζ, πϕ takes (ζ, t,Xt,mt) as
inputs. Hidden neurons in each layer are (64, 32, 32, 16). We train our model with Nround = 500 rounds fictitious play.
The learning rate starts at 0.1 and is reduced by a factor of 5 after every 200 rounds. The minibatch size is B = 210, and
hence Nbatch = 25.

Mean-field Game of Optimal Consumption and Investment. In this example, signature depth is M = 4. The optimal
controls (πt, ct)0≤t≤1 are estimated by two neural networks πϕ and cϕ, each with three hidden layers. Due the nature of
heterogeneous extended MFG, both αϕ and cϕ take (ζt, t,Xt,mt,Γt) as the inputs. Hidden layers in each network have
width (64, 64, 64). We will propagate two conditional distribution flows, i.e., two linear functionals l̄(n), l̄(n)c during each
round fictitious play. Instead of estimating mt,Γt directly, we estimate E[logX∗t |FBt ],E[log c∗t |FBt ] by 〈l̄(n), S4(B̂0:t)〉,
〈l̄(n)c , S4(B̂0:t)〉, and then take the exponential to get mt,Γt. To ensure the non-negativity condition, we evolve logXt

according to (D.4), use cϕ to predicted log ct, and then take exponential to get ct, Xt. We use Nround = 600 rounds
fictitious play training, learning rate 0.1 decaying by a factor of 5 for every 200 rounds, the minibatch size B = 211, and
hence Nbatch = 24.

The training time for all three experiments with sample size N = 213, 214, 215 is given in Table 7.

Table 7. Training time in minutes. Here LQ-MFG = Linear-Quadratic mean-field games, MF Portfolio = Mean-field Portfolio Game, and
MFG with Consump. = Mean-field Game of Optimal Consumption and Investment.

N = 213 N = 214 N = 215

LQ-MFG 12.4 23.7 46.7
MF PORTFOLIO 12.3 23.3 45.5
MFG WITH CONSUMP. 23.4 40.9 80.1

C. Proof of Theorems 4.1 and 4.2
We first list all main assumptions on (b, σ, σ0, f, g) that will be used to prove Theorem 4.1. Let ‖ · ‖ be the Euclidean norm
and K be the same constant for all assumptions below.
Assumption C.1. We make assumptions A1-A3 and B1-B3 as follows.
A1. (Lipschitz) ∂xf, ∂αf, ∂xg exist and are K-Lipschitz continuous in (x, α) uniformly in (t, µ), i.e., for any t ∈ [0, T ],

x, x′ ∈ Rd, α, α′ ∈ Rm, µ ∈ P2(Rd),

‖∂xg(x, µ)− ∂xg(x′, µ)‖ ≤ K‖x− x′‖,
‖∂xf(t, x, µ, α)− ∂xf(t, x′, µ, α′)‖ ≤ K(‖x− x′‖+ ‖α− α′‖),
‖∂αf(t, x, µ, α)− ∂αf(t, x′, µ, α′)‖ ≤ K(‖x− x′‖+ ‖α− α′‖).

The drift coefficient b(t, x, µ, α) in (2.3) takes the form

b(t, x, µ, α) = b0(t, µ) + b1(t)x+ b2(t)α,

where b0 ∈ Rd, b1 ∈ Rd×d and b2 ∈ Rd×m are measurable functions and bounded by K. The diffusion coefficients
σ(t, x, µ) and σ0(t, x, µ) are uncontrolled and K-Lipschitz in x uniformly in (t, µ):

‖σ(t, x, µ)‖ ≤ K‖x− x′‖, ‖σ0(t, x, µ)‖ ≤ K‖x− x′‖.
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A2. (Growth) ∂xf, ∂αf, ∂xg satisfy a linear growth condition, i.e., for any t ∈ [0, T ], x ∈ Rd, α ∈ Rm, µ ∈ P2(Rd),

‖∂xg(x, µ)‖ ≤ K
(

1 + ‖x‖+

(∫
Rd
‖y‖2 dµ(y)

) 1
2
)
,

‖∂xf(t, x, µ, α)‖ ≤ K
(

1 + ‖x‖+ ‖α‖+

(∫
Rd
‖y‖2 dµ(y)

) 1
2
)
,

‖∂αf(t, x, µ, α)‖ ≤ K
(

1 + ‖x‖+ ‖α‖+

(∫
Rd
‖y‖2 dµ(y)

) 1
2
)
.

In addition f, g satisfy a quadratic growth condition in µ:

|g(0, µ)| ≤ K
(

1 +

∫
Rd
‖y‖2 dµ(y)

)
,

|f(t, 0, µ, 0)| ≤ K
(

1 +

∫
Rd
‖y‖2 dµ(y)

)
.

A3. (Convexity) g is convex in x and f is convex jointly in (x, α) with strict convexity in α, i.e., for any x, x′ ∈ Rd, µ ∈
P2(Rd),

(∂xg(x, µ)− ∂xg(x′, µ))T (x− x′) ≥ 0,

and there exist a constant cf > 0 such that for any t ∈ [0, T ], x, x′ ∈ Rd, α, α′ ∈ Rm, µ ∈ P2(Rd),

f(t, x′, α′, µ) ≥ f(t, x, α, µ) + ∂xf(t, x, α, µ)T (x′ − x) + ∂αf(t, x, α, µ)T (α′ − α) + cf‖α′ − α‖2.

B1. (Lipschitz in µ) ∂xg, ∂xf, ∂αf, b0, σ, σ0 are Lipschitz continuous in µ uniformly in (t, x), i.e., there exists a constant
K such that

‖∂xg(x, µ)− ∂xg(x, µ′)‖ ≤ KW2(µ, µ′),

‖∂xf(t, x, µ, α)− ∂xf(t, x, µ′, α)‖ ≤ KW2(µ, µ′)

‖∂αf(t, x, µ, α)− ∂αf(t, x, µ′, α)‖ ≤ KW2(µ, µ′)

‖b0(t, µ)− b0(t, µ′)‖ ≤ KW2(µ, µ′),

‖σ(t, x, µ)− σ(t, x, µ′)‖ ≤ KW2(µ, µ′),

‖σ0(t, x, µ)− σ0(t, x, µ′)‖ ≤ KW2(µ, µ′),

for all t ∈ [0, T ], x ∈ Rd, α ∈ Rm, µ, µ′ ∈ P2(Rd), whereW2 is the 2-Wasserstein distance.

B2. (Separable in α, µ) f is of the form

f(t, x, µ, α) = f0(t, x, α) + f1(t, x, µ),

where f0 is assumed to be convex in (x, α) and strictly convex in α, and f1 is assumed to be convex in x.

B3. (Weak monotonicity) For all t ∈ [0, T ], µ, µ′ ∈ P2(Rd) and γ ∈ P2(Rd × Rd) with marginals µ, µ′ respectively,∫
Rd×Rd

[
(∂xg(x, µ)− ∂xg(y, µ′))T (x− y)

]
γ( dx, dy) ≥ 0,∫

Rd×Rd

[
(∂xf(t, x, µ, α)− ∂xg(t, y, µ′, α))T (x− y)

]
γ( dx, dy) ≥ 0.

Note that Assumption C.1 extends conditions A and B in Ahuja (2015) by considering general drift coefficient b(t, x, µ, α)
and non-constant diffusion coefficients σ(t, x, µ) and σ0(t, x, µ).

Our proof of Theorem 4.1 uses the probabilistic approach. To this end, we define the Hamiltonian by

H(t, x, y, µ, α) = b(t, x, µ, α) · y + f(t, x, µ, α).
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Denote by α̂ the minimizer of the Hamiltonian which is unique due to Assumptions A1 and A3:

α̂(t, x, y, µ) = arg min
α∈Rm

H(t, x, y, µ, α). (C.1)

By the Lipschitz property of ∂αf in (t, µ, α) and the boundedness of b2(t), α̂ is Lipschitz in (x, y, µ). Let Ĥ be the
Hamiltonian, with α̂ obtained in (C.1),

Ĥ(t, x, y, µ) = H(t, x, y, µ, α̂(t, x, y, µ)). (C.2)

Under Assumptions A1-A3, with the stochastic maximum principle, the problem (2.2)-(2.3) is equivalent to solve the
following FBSDE, given µ ∈M([0, T ];P2(Rd)),

dXt = b(t,Xt, µt, α̂(t,Xt, Yt, µt)) dt+ σ(t,Xt, µt) dWt + σ0(t,Xt, µt) dBt, X0 = x0 ∼ µ0,

dYt = −∂xĤ(t,Xt, Yt, µt) dt+ Zt dWt + Z0
t dBt, YT = ∂xg(XT , µT ).

(C.3)

Moreover, the optimal control is given by
α̂t = α̂(t,Xt, Yt, µt), (C.4)

for any solution (Xt, Yt, Zt, Z
0
t ) to FBSDE (C.3).

The next theorem describes the McKean-Vlasov FBSDE for finding the mean-field equilibrium (cf. Definition 2.1).

Theorem C.1 (Theorem 2.2.8, Ahuja (2015)). Under Assumptions A1-A3, the mean-field equilibrium of (2.2)-(2.3) exists
if and only if the following McKean-Vlasov FBSDE is solvable:

dXt = b(t,Xt,L(Xt|FBt ), α̂(t,Xt, Yt, µt)) dt+ σ(t,Xt,L(Xt|FBt )) dWt + σ0(t,Xt,L(Xt|FBt )) dBt,

dYt = −∂xĤ(t,Xt, Yt,L(Xt|FBt )) dt+ Zt dWt + Z0
t dBt.

(C.5)

Moreover, the mean-field control-distribution flow pair is given by

α∗t = α̂(t,Xt, Yt,L(Xt|FBt )), µ∗t = L(Xt|FBt ), ∀t ∈ [0, T ]. (C.6)

Theorem C.2. Under Assumption C.1, the FBSDE systems (C.3) and (C.5) have unique solutions. Moreover, let µ1
t , µ

2
t ∈

M([0, T ];P2(Rd)) be different given flow of measures, and denote by (Xi
t , Y

i
t , Z

i
t , Z

0,i
t ) the unique solution to FBSDE

(C.3) given µit, then

E

[
sup
t∈[0,T ]

‖∆Xt‖2 + sup
t∈[0,T ]

‖∆Yt‖2 +

∫ T

0

‖∆Zt‖2 + ‖∆Z0
t ‖2 dt

]
≤ CK,TE

[∫ T

0

(∆µt)
2 dt

]
, (C.7)

where ∆Xt = X1
t −X2

t , ∆Yt,∆Zt,∆Z
0
t are defined similarly, and ∆µt =W2(µ1

t , µ
2
t ).

Proof. The results generalize Theorem 3.1.3, Proposition 3.1.4 and Theorem 3.1.6 in Ahuja (2015) to the multi-dimensional
case and with Lipschitz SDE coefficients b, σ, σ0. The original proofs rely on Theorem 3.1.1 and Theorem 3.1.2 under
Assumption H in Ahuja (2015). With the additional conditions on (b, σ, σ0) in our setting, Assumption H of Ahuja (2015)
still holds. We omit the details because they essentially parallel the corresponding derivations in Ahuja (2015).

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. The proof uses the estimate (C.7) repeatedly. We first observe that, for µt = L(Xt|FBt ) and
µ′t = L(X ′t|FBt ), one has

E[W2
2 (µt, µ

′
t)] ≤ E[‖Xt −X ′t‖2], ∀t ∈ [0, T ]. (C.8)

Then we define a map Φ by
µ = {µt}0≤t≤T → Φ(µ) := {L(Xµ

t |FBt )}0≤t≤T , (C.9)
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where Xµ
t is the optimal controlled process in FBSDE (C.3) given µ ∈ M([0, T ];P2(Rd)). Combining (C.8) and (C.7)

gives

sup
t∈[0,T ]

E[W2
2 (Φ(µt),Φ(µ′t))] ≤ sup

t∈[0,T ]

E[‖Xµ
t −X

µ′

t ‖2]

≤ CK,TE

[∫ T

0

W2
2 (µt, µ

′
t) dt

]
≤ CK,TT sup

t∈[0,T ]

E[W2
2 (µt, µ

′
t)]. (C.10)

Thus, for sufficiently small T , Φ is a contraction map. By definition, µ∗t defined in (C.6) is a fixed point of Φ: Φ(µ∗) = µ∗.
Let µ(0) be the initial guess of µ∗, and µ(n) be the resulted flow of measures of Xt given µ̃(n−1) which is the approximation
of µ(n−1) by truncated signatures. So the measure flows are generated by

µ(0) → µ(1)  µ̃(1) → µ(2)  µ̃(2) · · · → µ(n−1)  µ̃(n−1) → µ(n)  µ̃(n) (C.11)

where→ corresponds to the map Φ, and corresponds to the truncated signature approximation. Therefore, with (C.10)
and the assumption supt∈[0,T ] E[W2

2 (µ̃
(n)
t , µ

(n)
t )] ≤ ε in Theorem 4.1, and denoting by 2CK,TT = q, we deduce that

sup
t∈[0,T ]

E[W2
2 (µ̃

(n)
t , µ∗t )] ≤ 2 sup

t∈[0,T ]

E[W2
2 (µ̃

(n)
t , µ

(n)
t )] + 2 sup

t∈[0,T ]

E[W2
2 (µ

(n)
t , µ∗t )]

≤ 2ε+ 2CK,TT sup
t∈[0,T ]

E[W2
2 (µ̃

(n−1)
t , µ∗t )] = 2ε+ q sup

t∈[0,T ]

E[W2
2 (µ̃

(n−1)
t , µ∗t )]

≤ 2ε+ q(2ε+ q sup
t∈[0,T ]

E[W2
2 (µ̃

(n−2)
t , µ∗t )])

≤ · · ·

≤ 2ε(1 + q + q2 + . . . qn−1) + qn sup
t∈[0,T ]

E[W2
2 (µ

(0)
t , µ∗t )]

=
2− 2qn

1− q
ε+ qn sup

t∈[0,T ]

E[W2
2 (µ

(0)
t , µ∗t )].

With sufficiently small T , one has 0 < q < 1. To estimate
∫ T
0
E|α(n)

t − α∗t |2 dt, we observe that

α
(n)
t − α∗t = α̂(t,X µ̃(n−1)

t , Y µ̃
(n−1)

t , µ̃
(n−1)
t )− α̂(t,X∗t , Y

∗
t , µ

∗
t ), (C.12)

where (X µ̃(n−1)

t , Y µ̃
(n−1)

t ) is the solution to FBSDE (C.3) given µ̃(n−1), and (X∗t , Y
∗
t ) can be viewed as the solution to

FBSDE (C.3) given µ∗. Then using the Lipschitz property of α̂ in (t, x, µ) and (C.7) again produces∫ T

0

E|α(n)
t − α∗t |2 dt ≤ CK,TE

[∫ T

0

‖X µ̃(n−1)

t −X∗t ‖2 + ‖Y µ̃
(n−1)

t − Y ∗t ‖2 +W2
2 (µ̃

(n−1)
t , µ∗t ) dt

]
≤ CK,TT sup

t∈[0,T ]

E[W2
2 (µ̃

(n−1)
t , µ∗t )].

Therefore, we obtain the desired result.

Next we give the proof to Theorem 4.2.

Proof of Theorem 4.2. Consider a partition of [0, T ] : 0 = t0 < · · · < tL = T , and define π(t) = tk for t ∈ [tk, tk+1) with
‖π‖ = max1≤k<L |tk− tk−1|, then by following the line of the proof to Theorem 4.1, one only needs an additional estimate
on E|Xµ

t −X
(n)
tk
|2 to complete the proof. Noticing that Xt solves (2.3) with µ∗ and X(n)

tk
satisfies (4.5) with µ̃(n−1), one

can obtain the estimate by following Lemma 14 in Carmona & Laurière (2019) with N = 1.

D. Benchmark Solutions
This appendix summarizes the analytical solutions to the three examples in Section 5, which are used to benchmark our
algorithm’s performance.
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Linear-Quadratic MFGs. The analytical solution is provided in Carmona et al. (2015):

mt := E[Xt|FBt ] = E[X0] + ρσBt, t ∈ [0, T ], (D.1)
αt = (q + ηt)(mt −Xt), t ∈ [0, T ], (D.2)

where ηt is a deterministic function solving the Riccati equation:

η̇t = 2(a+ q)ηt + η2t − (ε− q2), ηT = c,

with the solution given by

ηt =
−(ε− q2)(e(δ

+−δ−)(T−t) − 1)− c(δ+e(δ+−δ−)(T−t) − δ−)

(δ−e(δ+−δ−)(T−t) − δ+)− c(e(δ+−δ−)(T−t) − 1)
.

Here δ± = −(a+ q)±
√
R, R = (a+ q)2 + (ε− q2) > 0, and the minimized expected cost is V (0, x0 − E[x0]) with

V (t, x) =
ηt
2
x2 + µt, µt =

1

2
σ2(1− ρ2)

∫ T

t

ηs ds.

The benchmark trajectories in Figure 2 are simulated according to (5.3) with mt and αt in (D.1) and (D.2).

Mean-field Portfolio Game Given the type vector ζ = (ξ, δ, θ, µ, ν, σ), the analytical solution provided in Lacker &
Zariphopoulou (2019) is summarized below

π∗t = δ
µ

σ2 + ν2
+ θ

σ

σ2 + ν2
φ

1− ψ
,

mt = E[ξ] + E[µπ∗]t+ E[σπ∗]Bt,

where φ = E[δ µσ
σ2+ν2 ] and ψ = E[θ σ2

σ2+ν2 ]. Note that, since the type vector ζ is random representing the heterogenuity
of agents in this mean-field game, π∗ is a random strategy. The maximized expected utility of this game is given by
E[v(0, ξ − θE[ξ])], with

v(t, x) = −e−x/δe−ρ(T−t), ρ =
1

2(σ2 + ν2)

(
µ+

θ

δ

φ

1− ψ
σ

)2

− θ

δ

(
ψ̃ +

φ̃φ

1− ψ

)
− 1

2

(
θ

δ

φ

1− ψ

)2

,

ψ̃ = E
[
δ

µ2

σ2 + ν2

]
, φ̃ = E

[
θ

µσ

σ2 + ν2

]
.

Note that Figure 3(c) plots the absolute value of E[v(0, ξ − θE[ξ])].

Mean-field Game of Optimal Consumption and Investment Following Lacker & Soret (2020), the analytical solution
is given by

π∗t ≡ π∗ =
δµ

σ2 + ν2
− θ(δ − 1)σ

σ2 + ν2
φ

1 + ψ
, c∗t =

(
1

β
+ (

1

λ
− 1

β
)e−β(T−t)

)−1
, (D.3)

where

φ = E
[

δµσ

σ2 + ν2

]
, ψ = E

[
θ(δ − 1)σ2

σ2 + ν2

]
, λ = ε−δ

(
eE[log(ε−δ)]

)− θ(δ−1)
1+E[θ(δ−1)]

,

β = θ(δ − 1)
E [δρ]

1 + E [θ(δ − 1)]
− δρ,

and

ρ =

(
1− 1

δ

) {
δ

2(σ2 + ν2)

(
µ− σ φ

1 + ψ
θ(1− 1

δ
)

)2

+
1

2

(
φ

1 + ψ

)2

θ2
(

1− 1

δ

)

− θE

[
δµ2 − θ(δ − 1)σµ φ

1+ψ

σ2 + ν2

]
+
θ

2
E

[
(δµ− θ(δ − 1)σ φ

1+ψ )2

σ2 + ν2

]}
.
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Note that the expression of mt, Γt and the maximized expected utility are not given in Lacker & Soret (2020). For complete-
ness, we give their derivations below. Since c∗t in (D.3) doesn’t depend on the common noise B, Γt := expE[log c∗t |FBt ]
admits a unique formula for all agents

Γt = expE[log c∗t ].

To obtain the formula for mt := expE[logX∗t |FBt ], we first deduce by Itô’s formula that

d logX∗t = π∗t (µdt+ ν dWt + σ dBt)−
1

2
(2c∗t + (π∗t )2σ2 + (π∗t )2ν2) dt, (D.4)

from which we easily get

E[logX∗t |FBt ] = E[log ξ] + E[π∗µ− 1

2
(π∗)2(σ2 + ν2)]t−

∫ t

0

E[c∗s] dt+ π∗σBt,

and mt = expE[logX∗t |FBt ]. The maximized expected utility of this game is given by E[v(0, ξ,E[ξ])], with

v(t, x, y) = ε

(
1− 1

δ

)−1
x1−

1
δ y−θ(1−

1
δ )f(t),

and f(t) is defined by

f(t) = exp

{∫ T

t

(
ρ+

1

δ
c∗s + E[c∗s]

(
1− 1

δ

)
θ

)
ds

}
.

Note that, to ensure the positiveness of Xt required by using the power utility, the trajectories of Xt are obtained by
simulating logXt via (D.4) then taking the exponential.

E. Plots of πt, ct, Γt = expE(log ct|FB
t ) for Mean-Field Game of Optimal Consumption and

Investment
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Figure 5. Plots on test data for three different (Xi
0,W

i, Bi, ζi). Solid line is the benchmark solution and dashed line is the numerical
approximation using the Sig-DFP algorithm. Each panel presents three trajectories of πt, ct, and Γt = expE(log ct|FB

t ) and their
approximations. Parameter choices are: δ ∼ U(2, 2.5), µ ∼ U(0.25, 0.35), ν ∼ U(0.2, 0.4), θ, ξ ∼ U(0, 1), σ ∼ U(0.2, 0.4),
ε ∼ U(0.5, 1).

F. Experiment setup for the high-dimensional case n0 = 5

To test the performance of Sig-DFP in high dimensions, we implement a toy experiment on the mean-field game of optimal
consumption and investment with the common noise of dimension n0 = 5. Specifically, we modify the σ dBt term in (5.7)
to be in high dimensions, i.e., Xt now follows

dXt = πtXt(µdt+ ν dWt + σT dBt)− ctXt dt,

where σ := (σ1, . . . , σ5)T, Bt is a 5-dimensional Brownian motion, and X0 = ξ. We use the same hyperparameters for
training and provide the running time in Table 6.


