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A Notation and Symbols 

A∗ The union of player i’s action sets. 

h(I) An arbitrary history in information set I . 

vI The counterfactual value function at information set I . 

φ ∈ Φ· A transformation from fnite set X to itself. SW in the superscript of Φ· X X 
denotes the set of swap transformations, EX denotes the external transforma-
tions, and IN denotes the internal transformations. 

φ1 : a 7→ a The identity transformation. 

φ→a The external transformation to a. 

φa→a 00 
The internal transformation from a to a . 

ΦIN 
Ii 

The set of player i’s behavioral deviations. 

I ∈ Ii One of player i’s information sets. 

I(h) The information set containing history h. 

U The maximum magnitude of any payoff. 

p(I 0) The unique parent (immediate predecessor) of information set I 0 . 

P The player choice function. 

s ∈ S A pure strategy profle. 

Sc The set of a game’s random events or the set of pure strategies that could be 
assigned to chance. 

P The reach probability function. 

µ ∈ Δ|S| A distribution over strategy profles, often representing an empirical distribu-
tion of play and interpreted as a recommendation distribution. 

ρ Regret. 

ρCF Counterfactual regret. 

Δd The d-dimensional probability simplex. 
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π ∈ Π A behavioral/mixed strategy profle. 

w ∈ W (φ) A time selection function associated with transformation φ. 

W Φ(φI ) The set of time selection functions associated with action transformation φII 
corresponding to the deviation player memory probabilities generated by the 
set of behavioral deviations Φ in information set I . 

ui Bounded utility function for player i. 

a ∈ A(h) = A(I(h)) An action from the set of legal actions at history h in information set I(h). 
→I0 →I0 a or a The unique action that would need to be taken in history h or information set h I(h) 

I(h) to reach successor information set I 0 � I(h). 

d∗ The depth of player i’s deepest information set. 

dI The depth of information set I . 

g ∈ Gi A deviation player memory state string. 

h ∈ H An action history. 

M(φ) The size of the time selection function set associated with transformation φ. 

M∗ The size of the largest time selection function set. 

nA The maximum number of actions available at any history. 

z ∈ Z ⊆ H A terminal history. 

B Regret Matching for Time Selection 

In an online decision problem (also called a prediction with expert advice problem), regret match-
ing is a learning algorithm that accumulates a vector of regrets, ρ1:t−1—one for each deviation or 
“expert”, φ ∈ Φ ⊆ ΦSW—and chooses its mixed strategy, πt , on each round as the fxed point Si 

of a linear operator. We generalize this algorithm and three extensions—regret matching+, regret 
approximation, and predictions—to the time selection setting. 

B.1 Background 

Regret Matching 

|Φ|tThe regret matching operator is constructed from a vector of non-negative link outputs, y ∈ R ,+ 

R|Si| |Si| tgenerated by applying a link function, f : → R , to the cumulative regrets, i.e., y = + 

f(ρ1:t−1). The operator is defned as X 
tLt : πi 7→ 

1 
φ(πi)yφ, (1) 

zt 
φ∈Φ P 

t t twhere z = φ∈Φ y is the sum of the link outputs, and πt is chosen arbitrarily if z = 0.φ i 

Regret bounds are generally derived for regret matching algorithms by choosing f = αg for some 
α > 0, where g is part of a Gordon triple (Gordon 2005), (G, g, γ). A Gordon triple is a triple 
consisting of a potential function, G : Rn → R, a scaled link function g : Rn → Rn , and a size+ 
function, γ : Rn → R+, where they satisfy the generalized smoothness condition G(x + x0) ≤ 

0 0 ∈ RnG(x) + x · g(x) + γ(x0) for any x, x . By applying the potential function to the cumulative 
regret, we can unroll the recursive bound to get a simple bound on the cumulative regret itself. 

While its bounds are not quite optimal, Hart and Mas-Colell (2000)’s original regret matching al-
+gorithm, defned with the rectifed linear unit (ReLU) link function, · = max{·, 0}, is often ex-

ceptionally effective in practice (see, e.g., Waugh and Bagnell (2015); Burch (2017)). We focus our 
analysis on this link function, but our arguments readily apply to other link functions. Only the f-
nal regret bounds will change. We follow the typical convention for analyzing Hart and Mas-Colell 

1(2000)’s regret matching with γ(x) = kxk22, G(x) = γ(x+), and g = f .2 
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Regret Matching+ 

Instead of the cumulative regrets, regret matching+ updates a vector of pseudo regrets (sometimes 
1:t 1:t−1 ≥ ρ1:tcalled “q-regrets”), q = (q + ρt)+ (Tammelin 2014; Tammelin et al. 2015). If we 

assume a positive invariant potential function where G((x+x0)+) ≤ G(x+x0), then the same regret 
bounds follow from the same arguments used in the analysis of regret matching D’Orazio (2020). 

1Note that this condition is satisfed with equality for the quadratic potential G(x) = kx+k22.2 

Regret Approximation 

ρ1:t−1Approximate regret matching is regret matching with approximated cumulative regrets, ^ ≈ 

ρ1:t−1 q1:t−1 1:t−1(Waugh et al. 2015; D’Orazio et al. 2020) or q-regrets, ^ ≈ q (Morrill 2016; 
D’Orazio 2020). The regret of approximate regret matching depends on its approximation accu-
racy and motivates the use of function approximation when it is impractical to store and update the 
regret for each deviation individually. While it requires an extra assumption, we derive simpler ap-
proximate regret matching bounds than those derived by D’Orazio et al. (2020); D’Orazio (2020) 
through an analysis of regret matching with predictions. 

Optimism via Predictions 

Optimistic regret matching augments its link inputs by adding a prediction of the instantaneous regret 
on the next round, i.e., mt ∼ ρt . If the predictions are accurate then the algorithm’s cumulative regret 
will be very small. This is a direct application of optimistic Lagrangian Hedging (D’Orazio and 
Huang 2021) to Φ-regret. The general approach of adding predictions to improve the performance 
of regret minimizers originates with Rakhlin and Sridharan (2013); Syrgkanis et al. (2015). 

D’Orazio and Huang (2021)’s analysis requires that G and g satisfy G(x0) ≥ G(x)+hg(x), x0 − xi, 
which is achieved, for example, if G is convex and g is a subgradient of G. Note that this is achieved 
for Hart and Mas-Colell (2000)’s regret matching because Greenwald, Li, and Marks (2006) shows 

1 +k2that the ReLU function is the gradient of the convex quadratic potential G(x) = kx 2.2 

B.2 Time Selection 

To adapt regret matching to the time selection framework, we treat each deviation–time selection 
function pair as a separate expert and sum over the link outputs corresponding to a given deviation to 
construct the regret matching operator. Our goal is then to ensure that each element of the cumulative 
regret matrix, ρ1:T , grows sublinearly, where each index in the second dimension corresponds to a 
time selection function. Each deviation φ ∈ Φ is assigned a fnite set of time selection functions, 
w ∈ W (φ), so the regret matrix entries corresponding to (φ, w)-pairings where w ∈/ W (φ), are 
always zero. 

To facilitate a unifed analysis, we assume a general optimistic regret matching algorithm that, after P 
t t t t ρ1:t−1t − 1 rounds, uses link outputs y = t(x )+ , where either x = φ w∈W (φ) w φ,w + mφ,w 

t 1 tor x = q1:t−1 with x = 0, and m is a matrix of arbitrary predictions or approximation errors. 
tNotice that this means that x +mt can be generated from a function approximator instead of storingP 

t teither term in a table. Denoting the weighted sum of the link outputs as z = φ∈Φ yφ, the regret 
matching operator has the same form as initially defned, i.e., X1 tLt : πi 7→ φ(πi)yφ. (2) 

zt 
φ∈Φ 

With this, we can bound the regret of optimistic regret matching thusly: 

ΦSW Theorem 2. Establish deviation set Φ ⊆ and fnite time selection sets W (φ) = {w ∈Si 

[0, 1]T }M(φ) for each deviation φ ∈ Φ. On each round 1 ≤ t ≤ T , (Φ, ·+)-regret matching with re-j=1 

spect to matrix xt (equal to either ρ1:t−1 or q1:t−1) and predictions mt chooses its strategy, πt ∈ Πi,P i 
t t tto be the fxed point of Lt : πi 7→ 1/z φ(πi)y or an arbitrary strategy when z = 0, where φ∈Φ φP P 

t t t t tlink outputs are generated from y = t(x + m )+ and z = φ. Thisφ w∈W (φ) w φ,w φ,w φ∈Φ y 
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algorithm ensures that v u 
T �uX X �2u tρ1:T (φ, w) ≤ w̄tρ(φ0; πt) − mu φ0 ,w̄ t 

t=1 φ0∈Φ, 
w̄∈W (φ0) 

for every deviation φ and time selection function w. S 
Proof. Let us overload W = W (φ) and let a·,w = [aφ,w]φ∈Φ for any matrix a ∈ R|Φ|×|W |.φ∈Φ 

1 +k2Then, for any time selection function, w ∈ W , the quadratic potential function, G(x) = 2 kx 2 is 
convex, positive invariant (with equality), has the ReLU function as its gradient (Greenwald, Li, and 

1Marks 2006), and is smooth with respect to γ(x) = kxk22 . Altogether, these properties imply that 2�� � �� ��+ �+t t t ttρtG x + w = G x + m + w tρt − m (3)·,w ·,w ·,w ·,w� � 
t t t = G x + m + w tρt − m (4)·,w ·,w ·,w� � � �+ � � 
t t t t t t≤ G x + m + hw tρt − m , x + m i + γ w tρt − m ,·,w ·,w ·,w ·,w ·,w ·,w 

(5) 

where ρt = [ρ(φ; πt)]φ∈Φ is the vector of instantaneous regrets on round t. 

By convexity, G(a) − G(b) ≤ hrG(a), a − bi, for any vectors a and b, so we substitute a = 
t t t t t t t t tx +m and b = x to bound G(x +m )−hm , (x +m )+i ≤ G(x ). Therefore,·,w ·,w ·,w ·,w ·,w ·,w ·,w ·,w ·,w�� ��+ � �+ � � 

t t t t ttρtG x + w ≤ G(x ) + w thρt , x + m i + γ w tρt − m (6)·,w ·,w ·,w ·,w ·,w�� �+ 
� � �+ � � 

t t t t = G x + w thρt , x + m i + γ w tρt − m . (7)·,w ·,w ·,w ·,w 

Summing the potentials across time selection functions, X �� � X �� ��+ �+ � �+ � � 
t t t t ttρt thρt tρt − mG x + w ≤ G x + w , x + m i + γ w .·,w ·,w ·,w ·,w ·,w 

w∈W w∈W 

(8) 

With some algebra, we can rewrite the sum of inner products: X X X � �+t t t t w thρt , (x·,w + m·,w)
+i = w tρ(φ; πt) xφ,w + mφ,w (9) 

w∈W w∈W φ∈ΦX X � �+t t t = ρ(φ; πt) w xφ,w + mφ,w (10) 
φ∈Φ w∈W (φ)X 

t = ρ(φ; πt)y (11)φ 
φ∈Φ 

= hρt , y ti. (12) 

Since the strategy πt is the fxed point of Lt generated from link outputs yt, the Blackwell condition i 
hρt , yti ≤ 0 is satisfed with equality. For proof, see, for example, Greenwald, Li, and Marks (2006). 
The sum of potential functions after T rounds are then bounded as X �� �+ 

� X �� �+ 
� 

T T TT ρT T ρT − mG x + w ≤ G x + γ(w ). (13)·,w ·,w ·,w 
w∈W w∈W 

Expanding the defnition of γ, X �� 
T ρT 

�+ 
� X �� �+ 

� 1 X X� �2T T TG x + w ≤ G x + w T ρ(φ; πT ) − m (14)·,w ·,w φ,w2 
w∈W w∈W w∈W φ∈Φ X �� �+ 

� 1 X � �2T T = G x + w T ρ(φ; πT ) − m . (15)·,w φ,w2 
w∈W φ∈Φ, 

w∈W (φ) 
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Unrolling the recursion accross time, 
T 

= w 
X X �21 ttρ(φ; πt) − m (16).φ,w2 
t=1 φ∈Φ, 

w∈W (φ) 

We lower bound �� �+ 
�2�� �+ 

� 1 XXX 
T +1T +1 (17)G x = x·,w φ,w2 

w∈W w∈W φ∈Φ �� �+ 
�2 

T +1≥ 
1 
max xφ,w (18)

2 φ∈Φ, 
w∈W (φ) 

so that 
TX�� �+ 

�2 X �21 1T +1 ttρ(φ; πt) − m (19)≤max x w .φ,wφ,w2 2φ∈Φ, 
t=1 φ∈Φ, 

w∈W (φ) 
w∈W (φ) � �+ 

T +1Multiplying both sides by two, taking the square root, and applying ρ1:T (φ, w) ≤ , wexφ,w 

arrive at the fnal bound, 

ρ1:T (φ, w) ≤ 

vuuuut 

� �2XT 

t=1 φ0∈Φ, 

X 
tw̄tρ(φ0; πt) − m . (20)i φ0 ,w̄max 

φ∈Φ, 
w∈W (φ) 

w̄∈W (φ0 ) 

P 

Since the bound is true of the worst-case φ ∈ Φ and w ∈ W , it is true of each pair, thereby proving 
the claim. 

tIf all of the predictions m are zero, then we arrive at a simple bound for exact regret matching. We 
only prove the bound for ordinary regret matching for simplicity but the result and arguments are 
identical for exact regret matching+. 

ΦSW Corollary 1. Given deviation set Φ ⊆ and fnite time selection sets W (φ) = ∈Si 
{wj 

M(φ) +)-regret matching chooses a strategy on each round [0, 1]T } for each deviation φ ∈ Φ, (Φ, · j=1 

as the fxed point of Lt : πi 7→ Por an arbitrary strategy when 
t(ρ1:t−1(φ, w))+ 

1/z t φ(πi)y
t 

φ∈Φ1 ≤ t ≤ T φ 
t 

P 
P0, where link outputs are generated from exact regrets y 

t t= φ∈Φ yφ. This algorithm ensures that ρ1:T (φ, w) ≤ 2U 

tz = = w∈W (φ) wφ p
and z M∗ω(Φ)T for any deviation 

X 

φ and time selection function w, where ω(Φ) = maxa∈Si 1{φ(si) =6 si} is the maximalφ∈Φ 
activation of Φ (Greenwald, Li, and Marks 2006). 

tProof. Since m = 0 on every round t, we know from Theorem 2 that 

T 
vuuuut 

X 
2

ρ1:T (φ, w) ≤ (w̄tρ(φ0; πt 
i )) (21) 

X 

t=1 φ0∈Φ, 
w̄∈W (φ0 ) 

T 
vuut 

XX 
2 2

(ρ(φ0; πt)) (w̄t) . (22)i = 
t=1 φ0∈Φ w̄∈W (φ0) 

Since 0 ≤ w̄t ≤ 1, 

≤ 

vuut 
XXT 

2
M∗ (ρ(φ0; πt)) . (23)i 

t=1 φ0 ∈Φ 
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P 2Since (ρ(φ0; πt)) ≤ (2U)2ω(Φ) (see Greenwald, Li, and Marks (2006)),φ0∈Φ i p
≤ M∗(2U )2ω(Φ)T (24) p 
= 2U M∗ω(Φ)T . (25) 

(26) 
This completes the argument. 

tIf x + mt is generated from a function attempting to approximate xt + [wtρ(φ; πt)]φ∈Φ,w∈W , then 
we can rewrite Theorem 2 in terms of its approximation error. 

ΦSW Corollary 2. Establish deviation set Φ ⊆ and fnite time selection sets W (φ) = {w ∈Si 
M(φ)

[0, 1]T }j=1 for each deviation φ ∈ Φ. On each round 1 ≤ t ≤ T , approximate (Φ, ·+)-regret 
matching with respect to matrix xt (equal to either ρ1:t−1 or q1:t−1) chooses its strategy, πt ∈ Πi,P i 

t t tto be the fxed point of Lt : πi 7→ 1/z φ(πi)yφ or an arbitrary strategy when z = 0, where φ∈Φ P 
t ∈ R|Φ|×|W | t tlink outputs are generated from approximation matrix ye as y = t(ye )+ 

φ w∈W (φ) w φ,wP 
t tand z = φ∈Φ yφ. This algorithm ensures that v u 

T � u t t 
uX X �2 

ρ1:T (φ, w) ≤ u x + w̄tρ(φ0; πt) − yeφ0φ0 ,w̄ ,w̄ t 
t=1 φ0∈Φ, 

w̄∈W (φ0 ) 

for every deviation φ and time selection function w. 

t t t t tProof. Since the predictions m are arbitrary, we can set ye = x + m , which implies that m = 
tyet − x . Substituting this into the bound of Theorem 2, we arrive at the desired result. 

C EFR 

EFR’s regret decomposition is a straightforward generalization of CFR’s by Zinkevich et al. (2007) 
but it requires us to build up some mathematical machinery. 

C.1 Preliminaries 

The parent action function. The action taken to reach a given information set from its parent is 
returned by a : I 0 7→ a→I0 (“blackboard a”). p(I0) 

Terminal successor histories. Let the histories that terminate without further input from player i 
after taking action a in I be ( )

∃h ∈ I, z w ha, 
Zi(I, a) = z ∈ Z . (27)

@h0 ∈ Hi, ha v h0 @ z 

Child information sets. Let the child information sets of information set I after taking action a be( )
∀h0 ∈ I 0 , ∃h ∈ I, h0 w ha, 

Ii(I, a) = I 0 ∈ Ii . (28)
@h00 ∈ Hi, ha v h00 @ h0 

Deviation player observations. Let ( 
∗ if φ ∈ ΦEX 

o : A(I) 3 a; ΦSW 3 φ = A(I) 
A(I) a o.w. 

return the observation that the deviation player makes when they apply action transformation φ and 
action a is recommended. Now, we can characterize how memory probabilities evolve in general 
as the deviation player chooses actions. For any I 0 ∈ Ii(I, a0) child of I following action a0 and 
observation b ∈ {∗} ∪ A(I), the probability of memory gb under behavioral deviation φ is X 

wφ(I
0, gb) = wφ(I, g) 1{φI,g(a) = a 0 ∧ o(a; φI,g) = b}πi(a | I). (29) 

a∈A(I) 
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C.2 Counterfactual Value 

The counterfactual value of an action. The counterfactual value function is X 
vI : a; π 7→ P (h; π−i)P (ha, z; πi, π−i)ui(z). 

h∈I, 
z∈Z 

0We overload vI (πi 
0(I); π) = Ea0∼π0 (I)vI (a ; π). If the same strategy is used in I as well as the 

i 

following information sets, we overload vI (π) = vI (πi(I); π). By splitting up the histories that 
lead out of I into those that terminate without further input from i and those that lead to to child 
information sets, we can decompose counterfactual values recursively:X 

vI (a; π) = P (h; π−i)P (ha, z; π)ui(z) (30) 
h∈I, 
z∈ZX 

= P (ha, z; πi) P (z; π−i)ui(z) (31)| {z }
h∈I, Terminal counterfactual values. 
z∈ZX X 

= P (z; π−i)ui(z) + P (h0 , z; πi)P (z; π−i)ui(z). (32) 
z∈Zi(I,a) h0∈I0∈Ii(I,a)| {z } z∈Z 

Expected value from terminal histories. | {z }
Expected value from non-terminal histories. P 

If we defne r(I, a; π−i) = P (z; π−i)ui(z), then z∈Zi(I,a)X X X 
0 = r(I, a; π−i) + πi(a 0 | I 0) P (h0 a , z; πi)P (z; π−i)ui(z). (33) 

I0∈Ii(I,a) a0∈A(I0) h0∈I0 
z∈Z| {z } 

vI0 (π)X 
= r(I, a; π−i) + vI0 (π) . (34)| {z } 

I0∈Ii(I,a)Expected immediate value. | {z } 
Expected future value. 

The counterfactual value of a behavioral deviation. To account for the deviation player’s memory 
when evaluating behavioral deviations, we must defne a new variation of counterfactual value. 
Defnition 1. The counterfactual value of behavioral deviation φ ∈ ΦIN from information set I andIi 

memory state g ∈ Gi, given strategy profle π ∈ Π, is ⎛ ⎞ X X 
v̂I,g(φ; π) = πi(a | I)⎝r(I, φI,g(a); π−i) + v̂I0,go(a;φI,g )(φ; π)⎠. 

a∈A(I) I0 ∈Ii(I,φI,g (a)) 

At the start of the game, this counterfactual value matches the expected value of φ(πi), i.e., 
0 

0v̂I,g(φ; π) = Es ∼φ(πi)[ui(si, π−i)]. 
i 

If there are no non-identity internal transformations in φ, then v̂ reduces to the usual counterfactual 
value function under strategy profle (φ(πi), π−i). If all of the transformations following I are iden-
tity transformations, then the counterfactual value of φ is just the counterfactual value of applying 
the transformation at I and memory state g, i.e.,⎛ ⎞ X X 
v̂I,g(φ�I,vg ; π) = πi(a | I)⎝r(I, φI,g(a); π−i) + v̂I0,go(a;φI,g )(φ

1; π)⎠ 

a∈A(I) I0∈Ii(I,φI,g (a)) 

(35)⎛ ⎞ X X 
= πi(a | I)⎝r(I, φI,g(a); π−i) + vI0 (π)⎠ (36) 

a∈A(I) I0∈Ii(I,φI,g (a)) 

= vI (φI,g(πi(I)); π). (37) 
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C.3 Regret 

Next, we generalize the idea of immediate and full regret to behavioral deviations. 

Immediate regret. The immediate regret of behavioral deviation φ from information set I and 
memory state g is the immediate counterfactual regret weighted by the probability of g, i.e., 

ρI (φ�I,vg; π) = wφ(I, g; πi)(vI (φI,g(πi(I)); π) − vI (π)) (38) 

= wφ(I, g; πi)ρI 
CF(φI,g; π). (39) 

Full regret. The full regret of behavioral deviation φ at information set I and memory state g is 

ρI,g(φ; π) = wφ(I, g; πi)(v̂I,g (φ; π) − vI (π)). (40) 

Some intuition can be gained about generalized immediate and full regret by making a formal con-
nection between memory probabilities and reach probabilities. If zero non-identity internal transfor-
mations are used in behavioral deviation φ, then there is a unique memory state g that φ realizes 
in information set I and its probability coincides with the reach probability of the deviation strat-

!→aegy, φ(πi), i.e., wφ(I, g; πi) = P (h(I); φ(πi)). After internal transformation φa that outputs 
a =6 a! leading to a set of successors {I 0 � I}, there are two possible memory states, ga and 

!ga . The reach probability at any I 0 is then the sum of memory probabilities across these states, 
!i.e., P (h(I 0); φ(πi)) = wφ(I

0, ga ; πi) + wφ(I
0, ga ; πi). Thus, the full counterfactual regret at 

I 0 weighted by a memory probability is nearly the difference in expected payoff from I 0 between 
φ(πi) and πi assuming that both play to I 0 according to φ(πi). Minimizing regret with respect to 
each memory state is a stronger property than minimizing regret with respect to each deviation strat-
egy reach probability because memory states distinguish between the different ways an information 
set could be reached. 

At the start of the game, there is only one memory state, ∅, and wφ(I, ∅; πi) = 1, which means that 
ρI,g(φ; π) reduces to the difference in expected value achieved by φ(πi) and πi, i.e., 

0 
0ρI,g (φ; π) = Es ∼φ(πi)[ui(si, π−i)] − ui(π). 
i 

Thus, bounding full regret at the start of the game ensures hindsight rationality. We achieve this by 
showing a recursive decomposition between full and immediate regret so that an algorithm must 
only minimize immediate regret at each information set to be hindsight rational. Lemma 1 is the key 
observation required for this decomposition. 
Lemma 1. Given strategy profle π and behavioral deviation φ, consider φI,g(πi), the strategy for 
player i that applies φ at information set I assuming memory state g and thereafter follows πi. The 
regret for re-correlating after I and g—that is, the difference between the counterfactual value of 
φ(πi) and φI,g (πi) from I and g, weighted by the probability of g—is equal to the sum of full regrets 
at I’s and g’s children, i.e., X 

v̂I,g(φ; π) − v̂I,g(φ�I,vg; π) = ρI0,gb(φ; π). 
a 0∈A(I), 

I0∈Ii(I,a0), 
b∈{∗}∪A(I) 

Proof. 

v̂I,g(φ; π) − v̂I,g(φ�I,vg; π) (41)⎛ ⎞ X X 
= wφ(I, g; πi) πi(a | I)⎝r(I, φI,g(a); π−i) + v̂I0 ,go(a;φI,g )(φ; π)⎠ (42) 

a∈A(I) I0∈Ii(I,φI,g (a))⎛ ⎞ X 
− πi(a | I)⎝r(I, φI,g(a); π−i) + vI0 (π)⎠ 

I0 ∈Ii(I,φI,g (a))X X 
= wφ(I, g; πi) πi(a | I) v̂I0,go(a;φI,g )(φ; π) − vI0 (π). (43) 

a∈A(I) I0∈Ii(I,φI,g (a)) 
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Let Δv̂I0,gb = v̂I0,gb(φ; π) − vI0 (π), then,X X 
= wφ(I, g; πi) πi(a | I) Δv̂I0,go(a;φI,g ) (44) 

a∈A(I) I0∈Ii(I,φI,g (a))X X X 
= wφ(I, g; πi) πi(a | I) 1{φI,g(a) = a 0 ∧ o(a; φI,g) = b}Δv̂I0,gb 

a 0 ∈A(I), a∈A(I) I0∈Ii(I,a0) 
b∈{∗}∪A(I) 

(45)X X 
= Δv̂I0,gb wφ(I, g; πi) πi(a | I)1{φI,g (a) = a 0 ∧ o(a; φI,g) = b} (46) 

0 a ∈A(I), a∈A(I) 
I0∈Ii(I,a0), | {z } 
b∈{∗}∪A(I) wφ(I0,gb;πi)X 

= ρI0,gb(φ; π), (47) 
a 0 ∈A(I), 

I0∈Ii(I,a0), 
b∈{∗}∪A(I) 

as required. 

The following two corollaries will help us to present a simple regret bound for EFR. 

Corollary 3. Lemma 1 has three cases: 

v̂I,g(φ; π) − v̂I,g(φ�I,vg; π)⎧P 
I0∈ 

S ρI0,ga(φ; π) if φI,g = φ1 
Ii (I,a)a∈A(I)⎪P⎨ ρI0 if ∃a ∈ A(I), φI,g = φ→a 

I0∈Ii(I,a ) ,g∗(φ; π) 
= P 

I0∈Ii(I,a ) ρI0,ga! (φ; π)⎪ P !→a⎩ S !+ ρI0 (φ; π) if ∃a 6= a ∈ A(I), φI,g = φa .I0 ∈ ! Ii(I,a) ,ga 
a6=a 

Proof. Case 1: assume that φI,g = φ1 (the identity transformation), then φI,g(a) = a and 
o(a; φI,g) = a for all a ∈ A(I). Thus, X 

v̂I,g(φ; π) − v̂I,g(φ�I,vg; π) = ρI0,ga(φ; π), (48)S 
I0∈ Ii(I,a)a∈A(I) 

as required. 

Case 2: assume that φI,g = φ→a (an external transformation), then φI,g (a) = a and o(a; φI,g) = 
∗ for all a ∈ A(I). Thus, X 

v̂I,g(φ; π) − v̂I,g(φ�I,vg; π) = ρI0,g∗(φ; π), (49) 
I0 ∈Ii(I,a ) 

as required. 
!→a !Case 3: assume that φI,g = φa , a 6= a (a non-identity internal transformation), then X X 

v̂I,g(φ; π) − v̂I,g(φ�I,vg; π) = ρI,ga! (φ; π) + ρI,ga(φ; π), (50)S 
I0∈Ii(I,a ) I0∈ ! Ii(I,a)a6=a 

as required. 

Corollary 4. If the full regret following information set I and memory state g is always bounded by 
C ≥ 0, then the regret for re-correlating after I and g is bounded as 

� n o� [ 
v̂I,g(φ; π) − v̂I,g(φ�I,vg; π) ≤ 1 + 1 A(I) \ {φ1} Ii(I, a) CφI,g ∈ ΦIN 

a∈A(I) 
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Proof. Case 1: assume that φI,g = φ1 (the identity transformation), then X 
v̂I,g (φ; π) − v̂I,g(φ�I,vg ; π) = ρI0,ga(φ; π) (51)S 

I0∈ Ii (I,a)a∈A(I) [
≤ Ii(I, a) C, (52) 

a∈A(I) 

as required. 

Case 2: assume that φI,g = φ→a (an external transformation), then X 
v̂I,g(φ; π) − v̂I,g (φ�I,vg; π) = ρI0 ,g∗(φ; π) (53) 

I0∈Ii(I,a ) [
≤ Ii(I, a) C, (54) 

a∈A(I) 

as required. 
!→a !Case 3: assume that φI,g = φa , a 6= a (an internal transformation), then X X 

v̂I,g(φ; π) − v̂I,g (φ�I,vg; π) = ρI,ga! (φ; π) + ρI,ga(φ; π) (55)S 
I0∈Ii(I,a ) I0∈ ! Ii(I,a)a6=a [

≤ Ii(I, a ) C + Ii(I, a) C (56) 
!a6=a[

≤ 2 Ii(I, a) C. (57) 
a∈A(I) 

as required. 

We can now state our decomposition result: 
Lemma 2. The full regret of behavioral deviation φ from information set I and memory state g is 
bounded by the immediate regret at I plus the full regret at each of I’s and g’s children. 

Proof. 

ρI,g(φ; π) =vI,g (φ; π) − vI (π). (58) 
Adding and subtracting vI,g (φ�I,vg; π), 

= vI,g (φ�I,vg; π) − vI (π)+ vI,g(φ; π) − vI,g (φ�I,vg; π) (59)| {z } | {z } 
Immediate regret. Regret for re-correlating after I and g. 

Applying Lemma 1, X 
=ρI,g(φ�I,vg; π) + ρI0,gb(φ; π), (60) 

a 0 ∈A(I), 
I0∈Ii(I,a0), 
b∈{∗}∪A(I) 

as required. 

Corollary 5. If the full regret of each child of information set I is bounded by C ≥ 0, then � n o� [ 
ρI,g (φ; π) ≤ ρI (φ�I,vg) + 1 + 1 φI,g ∈ ΦIN \ {φ1} Ii(I, a) C. A(I) 

a∈A(I) 

Proof. Lemma 1 and Corollary 4. 
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Using Corollary 5 and instantiating EFR with exact regret matching, we can derive a simple regret 
bound that depends on the number of immediate regrets associated with a given subset of behavioral 
deviations. 

Theorem 1. Instantiate EFR for player i with exact regret matching and a set of behavioral devi-
ations Φ ⊆ ΦI 

IN 
i 
. Let the maximum number of information sets along the same line of play where 

non-identity internal transformations are allowed before a non-identity transformation within any 
single deviation be nIN. Let D = maxI∈Ii,φI ∈ΦI |W Φ(φI )|ω(ΦI√). Then, EFR’s cumulative regret I 

after T rounds with respect to Φ is upper bounded by 2nIN +1U |Ii| DT . 

Proof. EFR keeps track of each immediate regret for each transformation associated with each re-
alizable memory state g in each information set I . EFR’s immediate strategies at each I on each 
round are chosen according to time selection regret matching on the cumulative immediate regrets 
and memory state probabilities there. Therefore, the cumulative immediate regret at each infor-PT √ 
mation set and memory state is bounded as ρI (φ�I,vg) ≤ 2U DT according to Corol-t=1 
lary 1. Working from the leaves of the information set tree to the roots, we recursively bound the 
full regret according to Corollary 5. The full regret at each information set is then bounded asPT √ 

DT . EFR’s cumulative regret with respect to Φ is equal to itsρI,g(φ; πt) ≤ 2nIN +1U |Ii| √ 
cumulative full regret at the start of the game, so the former is bounded by 2nIN +1U |Ii| DT as 
well, which concludes the argument. 

t=1 

See Table C.2 for EFR parameters each deviation type. 

The variable D in the EFR regret bound that depends on the particular behavioral deviation subset 
with which it is instantiated is often the number of immediate regrets generated by that subset divided 
by the number of information sets. D is slightly larger for CSPS because it uses the union of internal 
and external transformations for its action transformation set, ΦI , at all information sets except those 
at the beginning of the game. Since our bound depends on the maximum number of memory states 
associated with any φ ∈ ΦI and ω(ΦI ) counts the maximum number of non-trivial ways an action 
can be transformed according to the transformations in ΦI , their product ends up being larger for 
CSPS than the number of valid combinations between memory states and action transformations. 
See Table C.2 for D values corresponding to each partial sequence deviation type. 

D Regret Matching++ 

Kash, Sullins, and Hofmann (2020) presents the regret matching++ algorithm and claims that it is 
no-external-regret. This algorithm’s proposed regret bound implies a sublinear bound on cumulative 
positive regret, which would further imply that it has the same bound with respect to all possible 
time selection functions. The surprising aspect of this result is that the algorithm does not require any 
information about any of the possible time selection functions and requires no more computation or 
storage than basic regret matching. The following result, Theorem 3, shows that there is actually no 
algorithm that can achieve a sublinear bound on cumulative positive regret. This result proves that 
regret matching++ cannot be no-external-regret as claimed. Appendix D.2 identifes the mistake in 
the regret matching++ bound proof. 

D.1 Linear Lower Bound on the Sum of Positive Regrets 

Theorem 3. The worst-case maximum cumulative positive regret, QT = PT + 
maxa∈A (rt(a) − hπt , rti) , under a sequence of reward functions chosen from thet=1 

t ∈ {r : r ∈ R|A|class of bounded reward functions, (r , krk∞ ≤ 1})tT 
=1, of any algorithm that 

∈ Δ|A|chooses policies πt over a fnite set of actions, A, in an online fashion over T rounds, is at 
least T/4. 

Proof. Without loss of generality, consider a two action environment, A = (a, a0), and any learning 
algorithm that deterministically chooses a distribution, πt ∈ Δ2, over them on each round t. The en-
vironment gets to see the learner’s policy before presenting a reward function. If the learner weights 
one action more than the other, the environment gives a reward of zero for the action with the larger 
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Table C.1: Formal defnition of the strategy generated by a deviation of each type given pure strategy 
si ∈ Si at each information set I ∈ Ii. 

∀I 0 ! 0 ! 0 , ∃aI0 , aI0 , ∃I !, a , s ,� � 0 ! !behavioral a if ∀Ī  � I, si(Ī) = a in. causal s0(I) if I�I ! ,si(I
!)=aI Ī  

si(I) o.w. si(I) o.w. 

⎧ 
!∃I !, a!, I , a , a , 

! !a if I = I ,si(I ) = a , ∃I !, a , a ,⎪ �⎨TIPS si(I
!) = a! in. action a if I=I ! ,si(I

!)=a ! 

→I ! ⎪aI if I � I !, si(I
!) = a si(I) o.w. ⎩ si(I) o.w. 

∃I ! ! , a!, I , a , ∃I , a , a ,⎧ ⎧ 
! !⎪a if I = I ,si(I

!) = a ⎪a if I=I ,si(I )=a⎨ ⎨CSPS in. CF→I ! →I ⎪aI if I � I !, si(I
!) = a ⎪aI if I�I ⎩ ⎩ si(I) o.w. si(I) o.w. 

⎧ 
! 

0 ∃I !, I , a , a , 
∃I ! ⎪a if I = I ,si(I ) = a � , s ,⎨ ! 

CFPS →I blind causal s0(I) if I�I ! 

a if I � I ! ⎪ si(I) o.w.⎩ 
I 

si(I) o.w. 

∃I !, I , a ,⎧ ∃I !, a ,⎪⎨a if I = I � 
BPS →I blind action a if I=I ! 

a if I � I ! ⎪ si(I) o.w.⎩ 
I 

si(I) o.w. 

∃I , a ,⎧ ⎪a if I=I⎨
blind CF →Ia if I�I⎪ I⎩ si(I) o.w. 

weight and one to the action with the smaller weight. Formally, if πt(a) ≥ 0.5, then rt(a) = 0, 
rt(a0) = 1, and vice-versa otherwise. 

0Let alow = a if πt(a) ≥ 0.5 and alow = a otherwise. The positive regrets on any round t are 
+

(1 − πt(alow))
+ ≥ 0.5 and (0 − (1 − πt(alow))) = 0. So the learner is forced to suffer at least 

0.5 positive regret on each round for one of the actions. Since there are only two actions, then over 
T rounds one of the actions must have accumulated a regret of 0.5 on at least T/2 rounds. The 
cumulative positive regret for this action must then be T/4. Therefore, the maximum cumulative 
positive regret of any deterministic algorithm in this environment must be at least T/4. 

To extend this result to include algorithms that stochastically choose πt , we simply need to con-
sider the expected cumulative positive regret and notice that the rectifed linear unit function 
(·+) is convex. By Jensen’s inequality and the fact that the max of an expectation is no larger 
than the expectation of the max, the expected cumulative positive regret is lower bounded by 
the cumulative positive regret under the learner’s expected distributions, E[πt], i.e., E[QT ] ≥PT + 
maxa∈A (rt(a) − hE[πt], rti) ≥ T/4. Since E[πt] is a single distribution, we have re-t=1 
duced the stochastic case to the deterministic case, thereby showing they have the same regret lower 
bound. 
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Table C.2: EFR parameters and regret bound constants for different deviation types. 

W Φ max W Φ(φI )type ΦI for all I∈Ii as function of φI for all I∈Ii I D nINI I∈Ii,φI ∈ΦI 

behavioral 

TIPS 

CSPS / 
in. causal 

CFPS 

BPS / 
blind causal 

in. action 

in. CF 

blind action 

blind CF / 
external 

ΦIN \ {φ1}A(I) 

ΦIN \ {φ1}A(I) 

ΦEX ∪ ΦIN \ {φ1}A(I) A(I) 

ΦIN \ {φ1}A(I) 

ΦEX 
A(I) 

ΦIN \ {φ1}A(I) 

ΦIN \ {φ1}A(I) 

ΦEX 
A(I) 

ΦEX 
A(I) 

n Q o 
{t 7→ 1} ∪ t 7→ ¯ I0 πi

t(aĪ  | Ī)I� ̄  

Ī0�I, ∀Ī�Ī0 ,a ̄ ∈A(Ī)I � 
{t 7→ 1} ∪ t 7→ P (h(I !); πi

t)πi
t(a ! | I !) 

I!�I,a!∈A(I!)⎧ {t 7→ 1}∪⎪n o⎨ ! ! ! ∈ ΦEXt 7→ P (h(I ); πi
t)πi

t(a | I ) if φI A(I) 

I!�I,a!∈A(I!)⎪�⎩ 
t 7→ P (h(I); πi

t) o.w. 

� 
{t 7→ 1} ∪ t 7→ P (h(I !); πi

t) 
I!�I � 

{t 7→ 1} ∪ t 7→ P (h(I !); πi
t) 

I!�I � 
t 7→ P (h(I); πi

t) 

{t 7→ 1} 

� 
t 7→ P (h(I); πi

t) 

{t 7→ 1} 

d∗ nA 

d∗nA + 1 

d∗nA 

d∗ + 1 

d∗ + 1 

1 

1 

1 

1 

n d∗ (nA 
2 − nA) d∗A 

(d∗nA + 1)(n 2 1A − nA) 

d∗nA(nA 
2 − 2) 1 

(d∗ + 1)(nA 
2 − nA) 0 

(d∗ + 1)(nA − 1) 0 

nA 
2 − nA 0 

nA 
2 − nA 0 

nA − 1 0 

nA − 1 0 

D.2 Regret Matching++ Regret Bound Bug PT PT tDefne the cumulative positive regret of action a ∈ A as QT = (ρt )+ = (r −a t=1 a t=1 a 
hπt , rti)+ , where rt is the reward function on round t. Kash, Sullins, and Hofmann (2020) boundsP P � �2 � �2 
(maxa Q

T )2 ≤ (QT )2 = QT −1 + (ρT )+ . They then state that QT −1 + (ρT )+ ≤a a a a a a a a� �2 
QT −1 + ρT +Δ2, where Δ is the diameter of the reward range. This is false in general:a a 

� �2 � �2 � �2 
QT −1 )+ QT −1 ρT (ρT )++ (ρT = + + 2QT −1 (61)a a a a a a � �2 � �2 

QT −1≤ + ρT + 2QT −1ρT + 2QT −1Δ (62)a a a a a � �2 
QT −1 + ρT = + 2QT −1Δ, (63)a a a 

where 2QT −1Δ > Δ2 if QT −1 > Δ/2. There are scenarios where Equation (63) is tight so it isa a 
unclear how this bound could be improved. Attempting the rest of the proof, we get X� �2 X� �2 X 

QT −1 QT −1 QT −1+ (ρT )+ ≤ |A|Δ2 + + 2Δ .a a a a 
a a a P 

QT −1Unrolling the recursion exactly is messy, but the extra 2Δ term ensures that the bound a aP T T −1 
2will be no smaller than QT −1 + (ρT )+ ≤ 2 2 |A| ΔT . a a a 
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E Experiments 

E.1 Games 

Leduc Hold’em Poker 

Leduc hold’em poker (Southey et al. 2005) is a two-player poker game with a deck of six cards (two 
suits and three ranks). At the start of the game, both players ante one chip and receive one private 
card. There are two betting rounds and there is a maximum of two raises on each round. Bet sizes 
are limited to two chips in the frst round and four in the second. If one player folds, the other wins. 
At the start of the second round, a public card is revealed. A showdown occurs at the end of the 
second round if no player folds. The strongest hand in a showdown is a pair (using the public card), 
and if no player pairs, players compare the ranks of their private cards. The player with the stronger 
hand takes all chips in the pot or players split the pot if their hands have the same strength. Payoffs 
are reported in milli-big blinds (mbb) (where the ante is considered a big blind) for consistency with 
the way performance is reported in other poker games. 

Imperfect Information Goofspiel 

Imperfect information goofspiel (Ross 1971; Lanctot 2013) is a bidding game for N players. Each 
player is given a hand of n ranks that they play to bid on n point cards. On each round, one point 
card is revealed and each player simultaneously bids on the point card. The point cards might be 
sorted in ascending order (↑), descending order (↓), or they might be shuffed (R). If there is one 
bid that is greater than all the others, the player who made that bid wins the point card. If there is a 
draw, the bid card is instead discarded. The player with the most points wins so payoffs are reported 
in win percentage. We use fve goofspiel variants: 

• two-player, 5-ranks, ascending (goofspiel(5, ↑, N = 2), denoted as g2, 5, ↑ in the main pa-
per), 

• two-player, 5-ranks, descending (goofspiel(5, ↓, N = 2)), 
• two-player, 4-ranks, random (goofspiel(4, R, N = 2)), 
• three-player, 4-ranks, ascending (goofspiel(4, ↑, N = 3), denoted as g3, 4, ↑ in the main 

paper), and 
• three-player, 4-ranks, descending (goofspiel(4, ↓, N = 3)). 

Sheriff 

Sheriff is a two-player, non-zero-sum negotiation game resembling the Sheriff of Nottingham board 
game and it was introduced by Farina et al. (2019). At the beginning of the game, the “smuggler” 
player chooses zero or more illegal items (maximum of three) to add to their cargo. The rest of the 
game proceeds over four rounds. 

At the beginning of each round, the smuggler signals how much they would be willing to pay the 
“sheriff” player to bribe them into not inspecting the smuggler’s cargo, between zero and three. The 
sheriff responds by signalling whether or not they would inspect the cargo. On the last round, the 
bribe amount chosen by the smuggler and the sheriff’s decision about whether or not to inspect the 
cargo are binding. 

If the cargo is not inspected, then the smuggler receives a payoff equal to the number of illegal items 
included within, minus their bribe amount, and the sheriff receives the bribe amount. Otherwise, the 
sheriff inspects the cargo. If the sheriff fnds an illegal item, then the sheriff forces the smuggler to 
pay them two times the number of illegal items. Otherwise, the sheriff compensates the smuggler by 
paying them three. 

Tiny Bridge 

A miniature version of bridge created by Edward Lockhart, inspired by a research project at Uni-
versity of Alberta by Michael Bowling, Kate Davison, and Nathan Sturtevant. We use the smaller 
two-player rather than the full four-player version. See the implementation from Lanctot et al. (2019) 
for more details. 
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Tinay Hanabi 

A miniature two-player version of Hanabi described by Foerster et al. (2019). The game is fully 
cooperative and the optimal score is ten. Both players take only one action so all EFR instances 
collapse except when they differ in their choice of ΦI . 

E.2 Alternative ΦI Choices 

When implementing EFR for deviations that set the action transformations at each information set to 
the internal transformations, we have the option of implementing these variants by using the union 
of the internal and external transformations without substantially changing the variant’s theoreti-
cal properties. We test how this impacts practical performance within EFR variants for informed 
counterfactual deviations, CFPS deviations, and TIPS deviations. These variants have an “EX+ IN” 
subscript. 

E.3 Results 

We present four sets of fgures to summarize the performance of each EFR variant in the fxed and 
simultaneous regimes described in Section 7. 

The frst three sets of fgures illustrate how each variant performs on average in each round individ-
ually. Figures E.1 and E.3 show the running average expected payoff of each variant over rounds, 
averaged over play with all EFR variants (including itself). These fgures summarize the progress 
that each variant makes over rounds to adapt to and correlate with its companion variant, on average. 
Figures E.2 and E.4 show the instantaneous expected payoff of each variant over rounds, averaged 
over play with all EFR variants. Figures E.5 and E.6 show the same data as in Figures E.1 and E.3 
except according to runtime rather than rounds. Tiny Hanabi is omitted because it is too small to 
make meaningful runtime comparisons between EFR variants. 

Figure E.8 show the average expected payoff of each variant paired with each other variant (includ-
ing itself) after 1000 rounds. These fgures summarize how well each variant works with each other 
variant. 
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Figure E.1: The expected payoff accumulated by each EFR variant over rounds averaged over play 
with all EFR variants in each game in the fxed regime. 
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Figure E.2: The instantaneous payoff achieved by each EFR variant on each round averaged over 
play with all EFR variants in each game in the fxed regime. 
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Figure E.3: The expected payoff accumulated by each EFR variant over rounds averaged over play 
with all EFR variants in each game in the simultaneous regime. 
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Figure E.4: The instantaneous payoff achieved by each EFR variant on each round averaged over 
play with all EFR variants in each game in the simultaneous regime. 
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Figure E.5: The expected payoff accumulated by each EFR variant over runtime averaged over play 
with all EFR variants in each game in the fxed regime. 
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Figure E.6: The expected payoff accumulated by each EFR variant over runtime averaged over play 
with all EFR variants in each game in the simultaneous regime. 
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Figure E.7: (1 / 2) The average expected payoff accumulated by each EFR variant (listed by row) 
from playing with each other EFR variant (listed by column) in each game after 1000 rounds where 
a → ACTIN, b → CF, c → CFIN, d → CFEX+IN, e → BPS, f → CFPS, g → CFPSEX+IN, h → CSPS, i → 
TIPS, j → TIPSEX+IN, k → BHV. The bottom rows and farthest right columns represent the column 
and row averages, respectively. 
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Figure E.8: (2 / 2) The average expected payoff accumulated by each EFR variant (listed by row) 
from playing with each other EFR variant (listed by column) in each game after 1000 rounds where 
a → ACTIN, b → CF, c → CFIN, d → CFEX+IN, e → BPS, f → CFPS, g → CFPSEX+IN, h → CSPS, i → 
TIPS, j → TIPSEX+IN, k → BHV. The bottom rows and farthest right columns represent the column 
and row averages, respectively. 
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