
Oblivious Sketching for Logistic Regression

A. Preliminaries
Bernstein’s inequality will be used multiple times:

Proposition A.1. [Bernstein’s Inequality](Maurer, 2003)
Let {Xi} be independent random variables with E(X2

i ) <
∞ and Xi ≥ 0. Set X =

∑
iXi and λ > 0. Then,

Pr[X ≤ E(X)− λ] ≤ exp

(
−λ2

2
∑
i E(X2

i )

)
.

If Xi − E(Xi) ≤ ∆ for all i, then with σ2
i = E(X2

i ) −
E(Xi)

2 we have

Pr[X ≥ E(X) + λ] ≤ exp

(
−λ2

2
∑
i σ

2
i + λ∆

)
.

B. Omitted details from Section 3
For technical reasons we make the following assumptions
on the parameters:

Assumption B.1. We assume that the following inequalities
hold for N,m, b, δ:

mε2 ≥ max
{
−4 ln(δ), 3 ln

(
βm log2

(m
ε

))
,

2 ln
(

log2

( n

mε

)
+ 1
)
, 2d ln

(
1 +

n

mε

)
− ln(δ)

}
b ≥ max

{
m, δ−1

}
N = Ω(bm2d2ε−1δ−1)

B.1. Contraction bounds

We set Q1 = {q ∈ {1, . . . , qmax} | |W+
q | ≥ βm ∧

‖W+
q ‖1 ≥ ε

qmax
} and Q2 = {q ≤ log2(mε )} \ Q1. We

set Q∗ = Q1 ∪Q2 to be the set of important weight classes.
The following lemma shows that the weight of the remaining
weight classes is negligible:

Lemma B.1. It holds that
∑
q∈Q∗ ‖W+

q ‖1 ≥ (1 −
5ε′)G+(z).

Proof. The total weight W of those classes with q /∈ Q1 ∪
Q2 is at most

W ≤
∑

q≤qmax,q /∈Q∗
‖W+

q ‖1 +
∑

q>qmax

‖W+
q ‖1

≤ ε

m
βm

∞∑
q=0

2−q + 2−qmaxn

= 4ε+
ε

n
n = 5ε

as β ≤ 2. Recall that G+(z) ≥ 1
µ′ . Combining these two

facts gives us∑
q∈Q∗

‖W+
q ‖1 = G+(z)−

∑
q/∈Q∗

‖W+
q ‖1

≥ G+(z)− 5ε

≥ G+(z)− 5G+(z)µ′ε

= G+(z)− 5ε′G+(z).

In the following we show that the important weight classes
have at least the same contribution, up to a small error, after
sketching. First we consider the weight classes with q ∈ Q2,
where the individual entries have a notable contribution
themselves. Then we consider the weight classes with q ∈
Q1 which consist of a large number of entries. In both cases
we will show that for each important weight class W+

q there

exists a subset W ∗q ⊂W+
q with ‖W ∗q ‖1 ≥ (1− 7ε)

‖W+
q ‖1

bh(q)β

and where each entry zp ∈W+
q is much larger than the sum

of all other entries in its bucket.

Heavy-hitters. This section is dedicated to showing that the
large entries of z are well separated among the buckets and
that they contribute about the same value after sketching.
For A ∈ Rn×d, let u ∈ Rn denote the `1-leverage score
vector of A, i.e.,

ui = max
x∈Rd\{0}

|(Ax)i|
‖Ax‖1

.

We start by showing that the rows of A with the largest `1-
leverage scores are well separated and that only coordinates
zp with high `1-leverage can be large coordinates of z. To
this end we need two lemmas:

Lemma B.2. (Clarkson & Woodruff, 2015) For N1, N2

with N2 ≥ N1 and with N1N2 ≤ κN , for κ ∈ (0, 1/2),
let Y1 and Y2 denote the sets of indices of the N1 and N2

coordinates with the largest leverage scores, so that Y1 ⊂
Y2. Then with probability at least 1− 2κ each member of
Y1 is in a bucket containing no other member of Y2.

Lemma B.3. If up is the k-th largest coordinate of u, then
for z in the subspace spanned by the columns of A it holds
that |zp| ≤ d

kG(z).

Proof. By (Dasgupta et al., 2009) there exists a so-called
Auerbach basis Q of A with the following properties. It
holds that G(Qx) = ‖Qx‖1 ≥ ‖x‖∞ for all x ∈ Rd and∑
ij |Qij | ≤ d. Note that by a change of basis

ui = max
x∈Rd\{0}

|(Ax)i|
‖Ax‖1

= max
x∈Rd\{0}

|(Qx)i|
‖Qx‖1

.

Thus |zi| = |Qix| ≤ ‖Qi‖1‖x‖∞ ≤ ‖Qi‖1‖Qx‖1 and it
follows that

∑
i ui ≤

∑
i ‖Qi‖1 =

∑
ij |Qij | ≤ d. Con-

sequently the k-th largest coordinate of z can be at most
|zp| ≤ upG(Qx) ≤ d

kG(Qx) = d
kG(z).
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We apply Lemma B.2 and Lemma B.3 as follows: set N1 =
dβm
ε and N2 = dβm2, and let Y1 (resp. Y2) be the set of

coordinates with the N1 (resp. N2) largest leverage scores.
We denote by E1 the event that all coordinates in Y1 are in
a bucket with no other member of Y2. By Lemma B.2 and
Assumption B.1, E1 holds with probability at least 1 − δ.
Then by Lemma B.3, for any entry zp ≥ v1 := ε

βm we have
p ∈ Y1 and for any entry p ∈ Y2 we have zp < 1

βm2 = ε
βm ·

ε
mε2 = ε

mε2 v1. It remains to show that the remaining entries
in the buckets containing a heavy hitter only have a small
contribution. To show this we use Bernstein’s inequality.
For a coordinate p ∈ [n] we denote by Bp the bucket that
contains p.

Lemma B.4. Assume E1 holds. Then with failure probabil-
ity at most e−mε

2

for any p with zp ≥ v1 and zp ∈Wq for
some q ∈ Q2, we have ‖Bp \ {p}‖1 ≤ 3ε|zp|.

Proof. Let p with zp ≥ v1. Then by Lemma B.3 it holds
that p ∈ Y1. For each i ∈ [n] \ {p} we define a random
variable Xi by Xi = zi if i is put in bucket Bp and Xi = 0
otherwise. By our assumption, Xi = 0 if i ∈ Y2. Otherwise
we have P (Xi 6= 0) ≤ 1

βN since the probability that any
coordinate is put in any bucket is at most 1

βN . Further we
have E(‖Bp \ {p}‖1) ≤ 1

βN since G(z) = 1. For the
variance we have

σ2
i = (zi − E(Xi))

2P (Xi = zi) + E(Xi)
2P (Xi = 0)

≤ z2i
1

βN
+

z2i
(βN)2

<
2z2i
βN

Since zi ≤ ε
mε2 v1 for i /∈ Y2 this implies∑

i∈[n]

σ2
i =

∑
i/∈Y2

σ2
i <

∑
i/∈Y2

2z2i
βN

<
ε

mε2βN
v1
∑
i∈[n]

zi

=
ε

mε2βN
v1

≤ ε2

β2m3q2max

since N ≥ ε−1. Thus, applying Bernstein’s inequality with
λ = εv1 and ∆ = ε

mε2 v1 = λ
mε2 we get

Pr[X ≥ 1

βN
+ 2λ] ≤ exp

(
−4λ2

2
∑
i σ

2
i + λ∆

)
≤ exp

(
−4λ2

2λ2/(mε2) + λ2/(mε2)

)
≤ e−4mε

2/3.

Using that 1
βN + 2λ ≤ 3εzp and using the union bound

for at most βm log2

(
m
ε

)
coordinates zp with zp ∈ W+

q

for some q ∈ Q2 concludes the proof, as the total failure
probability P is bounded by

P = βm log2

(m
ε

)
exp(−4mε2/3)

= exp
(

ln
(
βm log2

(m
ε

))
− 4mε2/3

)
≤ exp(−mε2)

by Assumption B.1.

Other important weight classes. Let q ∈ Q1. Then we
have |W+

q | ≥ βm. We show that we can find a set of
representatives for Wq where each representative zp is in
a bucket with no other entry larger than |zp|εm . We set Yq =

{p ∈ [n] | hp = h(q) and |zp| ≥ 2q−1

mε }.
Lemma B.5. Let q ∈ Q1 and h = h(q). Then with failure
probability at most exp(−mε2) there exists a subset W ∗q ⊂

W+
q such that ‖W ∗q ‖1 ≥ (1 − 7ε)

‖W+
q ‖1
bhβ

and every zp ∈
W ∗q is in a bucket with no other element of Yq .

Proof. For zi ∈ Wq define Xi = 1 if hi = h and
Xi = 0 otherwise, and set X =

∑
Xi. The expected

number of entries from W+
q at level h is E(X) =

|W+
q |

βbh
∈

[m, bm) by definition of h = h(q). Using Bernstein’s
inequality we get that with failure probability at most
P1 = exp

(
−(2εE(X))2

2E(X)

)
≤ exp(−2ε2m), there are at least

|W+
q |

βbh
(1−2ε) entries ofW+

q at level h. We denote a uniform

random subset of size y =
|W+

q |
βbh

(1− 2ε) of such entries by
W ′q .

Since q ∈ Q1 we have |W+
q | ≥

ε/qmax

21−q and thus also

h = blogb(
|W+

q |
βm )c ≥ logb(

ε2q−1

βmqmax
) − 1. Since G(z) = 1

there are at most 2q−1mε entries larger or equal to 1
mε2q−1 .

The expected number of entries from Yq at level h is thus
bounded by E = 2q−1mε

βbh
≤ qmaxm

2b. To show that the
number is not much larger than that, we define independent
random variables Xi = 1 if hi = h and Xi = 0 otherwise,
for i ∈ Yq . The variance is bounded by∑

i∈Yq

σ2
i ≤

∑
i∈Yq

1

βbh
= E.

Thus using Bernstein’s inequality we get

P2 = P (|Yq| ≥ E + E) ≤ exp

(
−E2

2E + E

)
= exp

(
−E
3

)
≤ exp(−2mε2).
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Now for zi ∈ W ′q consider the random variable Xi = 1
if zi is put into a bucket with another entry of Yq, and
Xi = 0 otherwise. Set X =

∑
Xi. We have P (Xi =

1) < 2E
N and E(X) ≤ 2Ey

N . The variance is bounded by

σ2
i = 2E

N +
(
2E
N

)2 ≤ 4E
N . Thus up to failure probability

P3 = P (X ≥ 2Ey

N
+ εy) ≤ exp

(
− 2y2ε2

8Ey/N + yε

)
≤ exp(−m(1− 2ε)ε/2)

≤ exp(−2mε2)

we have that at most 2( 2Ey
N + εy) ≤ 4εy entries in W ′q are

in a bucket with another entry of Yq. (Here the factor of
2 comes from the possibility that zi is placed in a bucket
with another entry of W ′q which was put into the bucket
before zi.) We denote by W ∗q the subset of W ′q that is in
a bucket with no other entry of Yq, and set y′ = |W ∗q |.
Note that with with failure probability at most P3, we have

y′ ≥ |W
+
q |

βbh
(1− 6ε).

Now for zi ∈W ∗q consider the random variable Xi = zi if
zi ∈ W ∗q , and Xi = 0 otherwise. Again using Bernstein’s
inequality we get

P4 = P (‖W ∗q ‖1 ≤
y′

|W+
q |
‖W ∗q ‖1 − 2y′ε2−q)

≤ exp

(
−(2εy′2−q)2

2y′2−2q

)
= exp

(
−2y′ε2

)
≤ exp(−3mε2/2).

Since εy′2−q ≤ ε‖W
+
q ‖1
bhβ

this shows thatW ∗q has the desired
properties with failure probability at most P1 + P2 + P3 +
P4 ≤ 4 exp(−2mε2/2) ≤ exp(−mε2).

Lemma B.6. Let q ∈ Q1 and assume W ∗q from Lemma B.5
exists. Then with failure probability at most e−mε

2

, for any
zp ∈W ∗q we have ‖Bp \ {p}‖1 ≤ 3ε|zp|.

The proof of Lemma B.6 is similar to the proof of Lemma
B.4.

Contribution of important weight classes. By combining
Lemma B.1, Lemma B.6, and Lemma B.4, we can prove
Theorem 3:

Proof of Theorem 3. By assumption, E holds. Further, by a
union bound, with failure probability at most

P = qmax exp(−mε2) + (qmax + 1) exp(−mε2)

≤ exp(ln(2qmax + 1)−mε2)

≤ exp(−mε2/2)

for each important weight class there exists W ∗q as in
Lemma B.5, and the events of Lemmas B.4 and B.6 hold.

For q ≤ logb

(
ε

βmqmax

)
we set W ∗q = W+

q . We have

G+(Sz) ≥
∑

q∈Q∗,zp∈W∗q

(1− 3ε)zpb
hpβ

≥
∑
q∈Q∗

(1− 3ε)‖W ∗q ‖1bhpβ

≥
∑
q∈Q∗

(1− 3ε)(1− 7ε)
‖W+

q ‖1
bh(q)β

bh(q)β

≥ (1− 10ε)(1− 5ε′)G+(z)

≥ (1− 60ε′)G+(z).

The first inequality follows by Lemma B.6 and Lemma B.4.
The second follows by Lemma B.5 and the third one by
Lemma B.1.

B.2. Net argument

Next we show that for all z we have G+(Sz) ≥ (1 −
ε′)G+(z) with high probability. We need the following
lemma:

Lemma B.7. Let z, e ∈ Rn with G(e) ≤ ε
bhmax

G(z).
Then it holds that G+(z + e) = (1 ± ε′)G+(z) and
G+(S(z + e)) = (1 ± ε′)G+(Sz). Further, if G+(Sz) ≥
(1− ε′)G+(z), then G+(S(z + e)) ≥ (1− 4ε′)G+(z + e).

Proof. A simple case distinction shows that for all v, v′ ∈ R
it holds that |max{v′, 0} −max{v, 0}| ≤ |v′ − v|: If both
v and v′ have the same sign then either |max{v′, 0} −
max{v, 0}| = 0 or |max{v′, 0} −max{v, 0}| = |v′ − v|,
and if v and v′ have different signs then |v′ − v| = |v′| +
|v| ≥ |max{v′, 0} −max{v, 0}|. Thus we have

|G+(z + e)−G+(z)|

≤
∑
i∈[n]

|max{zi + ei, 0} −max{zi, 0}|

≤ G(e) ≤ εG(z)

≤ ε′

µ′
G(z) ≤ ε′G+(z).

It holds that G(Se) ≤ bhmaxG(e) since all entries in S
are bounded by bhmax and each entry of e is multiplied by
exactly one non-zero entry of S. Hence

|G+(S(z + e))−G+(Sz)| ≤ G(Se)

≤ bhmaxG(e)

≤ ε′

µ′
G(z) ≤ ε′G+(z).

Finally if G+(Sz) ≥ (1− ε′)G+(z) then by combining the
previous inequalities we get

G+(S(z + e))
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≥ G+(Sz)− ε′G+(z)

≥ (1− ε′)G+(z)− ε′G+(z)

≥ (1− ε′)(G+(z + e)− ε′G+(z))− ε′G+(z)

≥ (1− ε′)G+(z + e)− 2ε′G+(z)

≥ (1− ε′)G+(z + e)− 2ε′G+(z + e)/(1− ε′)
≥ (1− 4ε′)G+(z + e) .

Now we are ready to prove Theorem 4.

Proof of Theorem 4. With failure probability at most δ, we
can assume that E holds. Since G+(az) = a(G+(z))
for all z ∈ Rd and a ∈ R≥0, it suffices to show that
G+(Sz) ≥ (1 − ε′)G+(z) holds for all z ∈ Rd with
G(z) = 1. We set M = d b

hmax

ε e. Consider the set Nε =
{(n1, . . . , nd) 1

M | n1+· · ·+nd = M}. The setNε consists

of at most
((

1 + bhmax

ε

)d)
=
(
exp

(
d ln

(
1 + n

mε

)))
elements as hmax = lnb

(
n
m

)
. By Theorem 3 and a

union bound we have that G+(Sz) ≥ (1 − 60ε′)G+(z)
holds for all z ∈ Nε with failure probability at most
exp

(
d ln

(
1 + n

mε

))
exp(−mε2/2) < δ since d ln(1 +

n
mε ) − mε2/2 ≤ ln(δ) by Assumption B.1. For each z
with G(z) = 1 there exists z′ ∈ Nε such that G(z′ − z) ≤
ε

bhmax
. Thus we can apply Lemma B.7 and get G+(Sz) ≥

(1− 240ε′)G+(z). The total failure probability is at most
2δ using the union bound.

B.3. Dilation bounds

Our first dilation bound is very simple but yields only an
hmax = O(log n) approximation.
Lemma B.8. We have E(G+(Sz)) ≤ hmaxG

+(z).

Proof. The expected contribution of zi is less than 0 if zi <
0. If zi ≥ 0 then the expected contribution is upper bounded
by
∑hmax

h=0
1
bhβ

bhβzi =
∑hmax

h=0 zi = hmaxzi with equality
if and only if all zi are greater or equal to zero. Thus

E(G+(Sz)) ≤
∑
zi≥0

zihmax = hmaxG
+(z).

We can achieve a better constant dilation by considering
only the top buckets at each level. More precisely set K =
βm log(mε ) + βmb log2(bε−1) = O(mb log2(bε−1)). We
define

G+
c (Sz) :=

∑
h

βbh
∑
i∈[K]

G+(Lh,i)

where Lh,i denotes the level h bucket with the i-th largest
sum of entries among all level h buckets. It is important

here to take the buckets with the largest contributions to
preserve the convexity of the objective as pointed out in
(Clarkson & Woodruff, 2015), since the resulting function
is related to the Ky Fan norm and is thus convex. The
proof of the bounded contraction of G+

c (Sz), Theorem
5, only requires lower bounds on G+(Lh,i) for those at
most K buckets in level h containing some member of W ∗q :
there are at most bm

ε entries greater or equal to ε
bm . For

other important weight classes, the cardinality of W ∗q is
bounded by bm and the number of important weight classes
W+
q with h(q) = h is bounded by log2(bε−1), as it must

hold that |W+
q | ∈ [βmbh, βmbh+1], |W+

q |2−q ≤ ε
qmax

and
|W+

q |21−q ≥ ‖W+
q ‖1 ≥ ε

qmax
and thus

βmbh
qmax

ε
≤ 2q ≤ 2βmbh+1 qmax

ε
.

Thus if the estimator forG+(z) uses only the largest buckets
with the largest sums, the proven bounds on contraction con-
tinue to hold, and in particular G+

c (Sz) ≥ (1− ε′)G+(z).
To show that the dilation of G+

c (Sz) is constant we need
the following lemma, which shows that the probability that
an important entry of Wq gets placed at a much higher level
than h(q) is low. This way we can bound the contribution
that entries have at higher levels.

Lemma B.9. Let q′ = log2(nhmax). With failure prob-
ability at most δ the event E ′ holds that there is no entry
zp ∈Wq with q ≤ q′ and hp > hq := h(q) + logb

(
q′bm
δ

)
.

Proof. Let q ≤ q′. For any coordinate p and any level
h, the probability that hp > h can be bounded by∑hmax

h′=h+1
1

βbh′
≤ 1

bh
since b > 2. Thus the expected num-

ber of coordinates zp ∈Wq with hp > hq is bounded by

|Wq|
bhq

≤ bhq+1m

bhq
≤ δ

q′
.

This also gives us an upper bound for the probability that
there is no coordinate in Wq with hp > hq . Using the union
bound for all q ≤ q′ completes the proof.

Proof of Theorem 5. Assume that E ′ holds. Note that the
expected contribution of any entry zp is at most zphmax,
and thus the expected contribution of all entries less than
or equal to 1

hmaxn
is at most 1. It remains to show that for

each q ≤ q′ the expected contribution of W+
q is bounded by

C‖W+
q ‖1. We consider the expected contribution of W+

q

at level h and distinguish three cases:

Case 1: h = h(q)− k for k > logb(N
ln(hmaxN)

m ).
For zi ∈ Wq consider again the random variable Xi = 1
if hi = h, and Xi = 0 otherwise, and set X =

∑
Xi.

The expected number of entries from W+
q at level h is
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E(X) =
|W+

q |
βbh
≥ N ln(hmaxN). For the variance we have∑

σi ≤ E(X) as X is a sum of Bernoulli random variables.
Using Bernstein’s inequality we get that |G(Lh) ∩W+

q | ≤
2β−1b−h|W+

q | with failure probability at most

P1 = exp

(
−(E(X))2

2E(X) + E(X)

)
≤ exp(−N/3).

Hence we can assume that the number of entries in each
bucket at level h is at most

2|W+
q |

βbhN
≤ 2 b

km
N = ln(hmaxN).

Next for each bucket and each zi ∈ Wq we consider the
random variable Z =

∑
Zi where Zi = 1 if entry i is in

the corresponding bucket, and Zi = 0 otherwise. Then the
variance is bounded by 1

N · 1
2 + 1 · 1

N2 ≤ 2
N . Applying

Bernstein’s inequality gives us

P (Z ≥ 2
bkm

N
+ λ) ≤ exp

(
−λ2

2N · 2
N + 2λ/3

)
.

For λ = ln(hmaxN) this implies P (Z ≥ 2 b
km
N + λ) =

O((hmaxN)−1). Using the union bound, the probability
that there exists a bucket with at least b

km
N + λ coordinates

can be bounded by P2 = O((hmax)−1) Further we have

‖W+
q ‖1 ≥ |W+

q |2−q ≥ 2−qbh(q)βm.

The expected contribution of W+
q at level h can thus be

bounded by

Λ = P2 · 21−q3|W+
q |bhβ +K

(
3|W+

q |
βbhN

)
21−qbhβ

≤
(
O(h−1max) +

3K

N
2

)
‖W+

q ‖1 = O(h−1max)‖W+
q ‖1.

Summing over at most hmax levels we have that the contri-
bution in this case is bounded by O(1)‖W+

q ‖1.

Case 2: h = h(q) + k for k ≥ logb

(
q′bm
δ

)
.

By E ′ (see Lemma B.9), the set Lh ∩W+
q is empty, and

thus the expected contribution in this case is 0.

Case 3: h ≥ h(q) − logb(
N ln(hmaxN)

m ) and h < h(q) +

logb

(
q′bm
δ

)
.

Note that logb(
N ln(hmaxN)

m ) + logb

(
q′bm
δ

)
is constant

since b ≥ max
{
m, δ−1

}
by Assumption B.1, and thus

N = bO(1), and the expected contribution of each level is
at most constant. The total expected contribution is thus
O(1)‖W+

q ‖1.

Proof of Theorem 2. The result follows by combining The-
orem 4 and Theorem 5 and substituting 240ε′ by ε. The
poly(µd log n) bound on the sketch size follows from
r = Nhmax = Nhmax = O(N log n) and by using As-
sumption B.1 for bounding N .

C. Omitted details from Section 4
To show Theorem 6 we will first define the notions of sen-
sitivities, VC-dimension, and the range space induced by a
set of functions.
Definition C.1. (Langberg & Schulman, 2010) Consider a
family of functions F = {g1, . . . , gn} mapping from Rd to
[0,∞) and weighted by w ∈ Rn>0. The sensitivity of gi for
fw(x) =

∑n
i=1 wigi(x) is

ςi = sup
wigi(x)

fw(x)
(1)

where sup is over all x ∈ Rd with fw(x) > 0. If this set is
empty then ςi = 0. The total sensitivity is S =

∑n
i=1 ςi.

The sensitivity of a point bounds the maximal relative con-
tribution to the target function the point can have. Com-
puting the sensitivities is often intractable and necessitates
approximating the original optimization problem close to
optimality. However, this is the problem that we want to
solve, see (Braverman et al., 2016). Fortunately, for our
applications it suffices to obtain a reasonable upper bound
for the sensitivities.
Definition C.2. A range space is a pair R = (F , ranges)
where F is a set and ranges is a family of subsets of F .
The VC dimension ∆(R) of R is the size |G| of the largest
subset G ⊆ F such that G is shattered by ranges, i.e.,
|{G ∩R | R ∈ ranges}| = 2|G|.

Definition C.3. Let F be a finite set of functions map-
ping from Rd to R≥0. For every x ∈ Rd and r ∈
R≥0, let rangeF (x, r) = {f ∈ F | f(x) ≥ r}, and
ranges(F) = {rangeF (x, r) | x ∈ Rd, r ∈ R≥0}, and
RF = (F , ranges(F)) be the range space induced by F .

The VC-dimension can be thought of as something similar
to the dimension of our problem. For example the VC-
dimension of the set of hyperplane classifiers in Rd is d+ 1.
The sensitivity scores were combined with a theory on the
VC dimension of range spaces in (Braverman et al., 2016).
We employ a more recent version from (Feldman et al.,
2020).
Proposition C.4. (Feldman et al., 2020) Consider a family
of functions F = {f1, . . . , fn} mapping from Rd to [0,∞)
and a vector of weights w ∈ Rn>0. Let ε, δ ∈ (0, 1/2). Let
si ≥ ςi. Let S =

∑n
i=1 si ≥ S. Given si one can compute

in time O(|F|) a set R ⊂ F of

O

(
S

ε2

(
∆ lnS + ln

(
1

δ

)))
weighted functions such that with probability 1− δ, we have
for all x ∈ Rd simultaneously∣∣∣∣∣∣

∑
fi∈F

wifi(x)−
∑
fi∈R

uifi(x)

∣∣∣∣∣∣ ≤ ε
∑
fi∈F

wifi(x),
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where each element of R is sampled i.i.d. with probability
pj =

sj
S fromF , ui =

Swj

sj |R| denotes the weight of a function
fi ∈ R that corresponds to fj ∈ F , and where ∆ is an
upper bound on the VC dimension of the range space RF∗

induced by F∗ obtained by defining F∗ to be the set of
functions fj ∈ F , where each function is scaled by Swj

sj |R| .

Now we show how Proposition C.4 can be used to approxi-
mate our loss function on the negative domain. We define
gi(x) = min{g(aix), ln(2)}.
Lemma C.5. The range space induced by F = {gi | i ∈
[n]} satisfies ∆(RF ) ≤ d+ 1.

Proof. Note that g is invertible and monotone. Let G ⊆ F ,
x ∈ Rd and r ∈ R. For r > ln(2) we have rangeG(x, r) =
∅, otherwise (for r ≤ ln(2)) we have

rangeG(x, r) = {gi ∈ G | gi(x) ≥ r}
= {gi ∈ G | aix ≥ g−1(r)}.

Hence

|{rangeG(x, r) | x ∈ Rd, r ∈ R≥0}|
=
∣∣{{gi ∈ G | aix− g−1(r) ≥ 0} | x ∈ Rd, r ≤ ln(2)}
∪ {∅}|

≤
∣∣{{gi ∈ G | aix− τ ≥ 0} | x ∈ Rd, τ ∈ R}

∣∣ .
The last set is the set of points that is shattered by the
affine hyperplane classifier ai 7→ 1aix−τ≥0. Its VC di-
mension is thus d+ 1 (Kearns & Vazirani, 1994), implying
|{rangeG(x, r) | x ∈ Rd, r ∈ R≥0}| = 2|G| can only hold
if |G| ≤ d+ 1, and thus the VC dimension of F is at most
d+ 1.

We set fmin(x) = n
µ for all x ∈ Rd.

Corollary C.6. The range space induced by F = {gi | i ∈
[n]} ∪ {fmin} satisfies ∆(RF ) ≤ d+ 2.

Proof. Assume there exists G ⊂ F with |G| ≥ d + 3
and {G ∩ R | R ∈ ranges(F)} = 2G. Then we have
for G′ = G \ {fmin} |G′| ≥ d + 2 and {G′ ∩ R | R ∈
ranges(F)} = 2G

′
contradicting Lemma C.5.

Now we are ready to prove Theorem 6.

Proof of Theorem 6. We want to apply Proposition C.4 to
F = {gi | i ∈ [n]} ∪ {fmin}. By Corollary C.6 the VC-
dimension of F is at most d + 2. Note that the sensitivity
of any function, in particular of fmin, is at most 1 and for
the sensitivity of any function other than fmin we have

sup
x∈Rd\{0}

gi(x)

f((Ax)−) + fmin(x)
≤ sup

x

gi(x)

fmin(x)
≤ ln(2)µ

n

and the total sensitivity is thus bounded by ln(2)µ + 1.
Hence we can use Proposition C.4 and with failure prob-
ability at most δ1, we get a subset r of F = {gi | i ∈
[n]} ∪ {fmin} and a weight vector u such that∣∣∣∣∣∣

∑
fi∈F

fi(x)−
∑
fi∈R

uifi(x)

∣∣∣∣∣∣ ≤ ε
∑
fi∈F

fi(x).

As it holds that
∑
f∈F fi(x) = f((Ax)−) + n

µ , and since
the weight of fmin is 1, this implies for R′ = R \ {fmin}
that we have an error ∆ of at most

∆ =

∣∣∣∣∣∣
∑

fi∈F\{fmin}

fi(x)−
∑
fi∈R′

uifi(x)

∣∣∣∣∣∣
≤ ε

∑
fi∈F

fi(x)

≤ ε

 ∑
fi∈F\{fmin}

fi(x) +
n

µ


≤ 3εf(Ax).

The last inequality follows from Lemma 2.2, and using that
f(Ax) ≥

∑
fi∈F\{fmin} fi(x). This proves the first part of

the theorem.

Observe that the expected contribution of row ai is P (gi ∈
R)aiui = k

n
n
k g(aix) = g(aix). Thus the second statement

follows by linearity of expectation.

D. Omitted details from Section 5
Proof of Corollary 5.2. We need one streaming pass over
the data in O(nnz(A)) time to draw a uniform random
sample T from Theorem 6 and to compute A′ = SA. Now
compute the x∗ minimizing the convex objective function
f(Tx∗) +G+

c (A′x∗). This can be done using the ellipsoid
method on the following convex program: we have one
variable xi for i ∈ [d]. For each row ti of T , construct a
variable vi and a constraint vi ≥ tix. Similarly for each
row a′i of A′ construct a variable v′i ≥ 0 and a constraint
v′i ≥ a′ix. The objective is to minimize the convex function∑

g(vi) +
∑

v′i.

The convex program has poly(µd log n) many variables
and thus the running time is also poly(µd log n). Using
the same analysis as in the previous proof shows that the
solution x′ we get satisfies

f(Ax′) ≤ O(1) min
x∈Rd

f(Ax)

with constant probability.

E. Omitted details from Section 6
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Dataset n d Source
Covertype 581012 54 https://archive.ics.uci.edu/ml/datasets/Covertype
Webspam 350000 128 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html#webspam
Kddcup 494021 33 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Synthetic 100000 2 -

Table 1. Summary of the datasets: d is given without intercept. Datasets are downloaded resp. generated automatically by our open code.
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Figure 2. Comparison of the approximation ratios.
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Figure 3. Comparison of the approximation ratios with added noise.

https://archive.ics.uci.edu/ml/datasets/Covertype
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#webspam
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Figure 4. Comparison of sketching resp. sampling times vs. accuracy.
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Figure 5. Comparison of total running times including optimization vs. accuracy.
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