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Abstract
Recently, local SGD has got much attention and
been extensively studied in the distributed learn-
ing community to overcome the communication
bottleneck problem. However, the superiority
of local SGD to minibatch SGD only holds in
quite limited situations. In this paper, we study
a new local algorithm called Bias-Variance Re-
duced Local SGD (BVR-L-SGD) for nonconvex
distributed optimization. Algorithmically, our pro-
posed bias and variance reduced local gradient
estimator fully utilizes small second-order hetero-
geneity of local objectives and suggests randomly
picking up one of the local models instead of
taking the average of them when workers are syn-
chronized. Theoretically, under small heterogene-
ity of local objectives, we show that BVR-L-SGD
achieves better communication complexity than
both the previous non-local and local methods
under mild conditions, and particularly BVR-L-
SGD is the first method that breaks the barrier of
communication complexity Θ(1/ε) for general
nonconvex smooth objectives when the hetero-
geneity is small and the local computation budget
is large. Numerical results are given to verify the
theoretical findings and give empirical evidence
of the superiority of our method.

1. Introduction
Nowadays, optimization problems arising in machine learn-
ing are often large and require huge computational time.
Distributed learning is one of the attractive approaches to
reduce the computational time by utilizing parallel com-
puting. In classical distributed learning, each worker has
the whole dataset used in optimization or a random sub-
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set of the whole dataset which is not explicitly exchanged.
In recent federated learning, introduced by Konečnỳ et al.
(2015); Shokri & Shmatikov (2015); McMahan et al. (2017),
we build a global model across multiple devices or servers
without explicitly exchanging their own local datasets, and
local datasets can be heterogeneous, i.e., each local dataset
may be generated from a different distribution. There are
various federated learning scenarios (e.g., personalization,
preservation of the privacy of local information, robustness
to attacks and failures, guarantees of fairness) and refer to
the extensive survey (Kairouz et al., 2019) for these topics.

One of the most naive and widely used approaches to dis-
tributed learning is minibatch Stochastic Gradient Descent
(SGD) (Dekel et al., 2012), which is also called as Feder-
ated Averaging (FedAvg) (McMahan et al., 2017). Each
worker computes minibatch stochastic gradient of the own
local objective and then their average is used to update
the global model. Also, more computationally efficient
methods including minibatch Stochastic Variance Reduced
Gradient (SVRG) (Johnson & Zhang, 2013; Allen-Zhu &
Hazan, 2016; Reddi et al., 2016a) and its variant (Lei et al.,
2017), minibatch StochAstic Recursive grAdient algoritHm
(SARAH) (Nguyen et al., 2017; 2019) and its variants (Fang
et al., 2018; Zhou et al., 2018) are applicable to the problem.
Particularly, SARAH achieves the optimal total computa-
tional complexity in nonconvex optimization.

Unfortunately, minibatch methods suffer from their com-
munication cost because of the necessity to communicate
local gradients for every single global update. One of the
possible solutions is using a large batch to compute local
gradients (Goyal et al., 2017), but the communication com-
plexity, that is the necessary number of communication
rounds to optimize, is theoretically never smaller than the
one of deterministic GD and thus communication cost is
still problematic.

To overcome the communication bottleneck problem, lo-
cal methods have got much attention due to its empirical
effectiveness (Konečnỳ et al., 2015; Lin et al., 2018). In
local SGD (also called Parallel Restart SGD), each worker
independently updates the local model based on his own
local dataset, and periodically communicates and averages
the local models. Many papers (Stich, 2018; Yu et al., 2019;
Haddadpour & Mahdavi, 2019; Haddadpour et al., 2019;
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Koloskova et al., 2020; Khaled et al., 2020) have stated the
superiority of local SGD to minibatch SGD, but these results
are based on unfair comparisons and hence not satisfactory.
Concretely, they have compared the two algorithms with the
same local minibatch size b, which means that local SGD
with K local updates requires K times larger number of lo-
cal computations per communication round than minibatch
SGD.1 If we fix the number of single stochastic gradient
computations per communication round to B := Kb for
each worker, their results indicates that the communication
complexity of local SGD with K local updates and b local
minibatch size are never better than the one of minibatch
SGD with B local minibatch size for any B. This point is
quite important, but many papers have overlooked it.

Recently, Woodworth et al. (2020b;a) have shown that, for
the first time, theoretical superiority of local SGD to mini-
batch SGD under fair comparison for convex optimization
when the heterogeneity of local objectives is small. On the
other hand, their derived lower bound of local SGD also
suggests the limitation of local SGD. Specifically, they have
shown that if the first-order heterogeneity of local objec-
tives2 is greater than

√
ε, where ε is the desired optimization

accuracy, the communication complexity of local SGD is
even worse than the one of minibatch SGD. In other words,
the quite small heterogeneity of local objectives is essential
for the superiority of local SGD to minibatch SGD, which is
a clear limitation of local SGD. SCAFFOLD (Karimireddy
et al., 2020b) is a new local algorithm based on the idea
of reducing their called client-drift, which uses a similar
formulation to the variance reduction technique. However,
the communication complexity is the same as minibatch
SGD for general nonconvex objectives and it requires small
heterogeneity and quadraticity of local objectives to surpass
minibatch SGD, which is also quite limited. Inexact DANE
(Reddi et al., 2016b) is another variant of local methods that
uses a general local subsolver that returns an approximate
minimizer of the regularized local objective. Again, the
superiority to non-local methods has been only shown for
quadratic convex objectives.

In summary, both in classical distributed learning and recent
federated learning, naive minibatch (i.e., non-local) meth-
ods often suffer from their communication cost. Several
local methods surpass non-local ones in terms of communi-
cation complexity. However, the necessary conditions for
the superiority of the previous local algorithms to non-local
ones are quite limited (i.e., extremely small heterogeneity

1Practically, it is said that a larger minibatch size sometimes
causes bad generalization ability in deep learning and thus compar-
ing minibatch SGD and local SGD with a common local minibatch
size is meaningful in some sense. But at least from a theoretical
point of view, this comparison is questionable.

2First-order heterogeneity ζ1 is defined as follows: ‖∇fp(x)−
∇fp′(x)‖ ≤ ζ1, ∀x ∈ Rd,∀p, p′ ∈ [P ].

or quadraticity of local objectives). A natural question is
that: is there a local algorithm which surpasses non-local
(and existing local) ones in terms of communication com-
plexity with a fixed local computation budget under more
relaxed conditions?

Main Contributions

We propose a new local algorithm called Bias-Variance Re-
duced Local SGD (BVR-L-SGD) for nonconvex distributed
learning. The main features of our method are as below.

Algorithmic Features. The algorithm is based on our bias
and variance reduced gradient estimator that simultane-
ously reduces the bias caused by local updates and the vari-
ance caused by stochastization based on the idea of SARAH
like variance reduction technique. Importantly, to fully uti-
lize the second-order heterogeneity of local objectives, a
randomly picked local model is used as a synchronized
global model instead of taking the average of them, which
is typical in the previous local methods.

Theoretical Features. We analyse BVR-L-SGD for gen-
eral nonconvex smooth objectives under second-order het-
erogeneity assumption, which interpolates the heterogene-
ity of local objectives between the identical case and the
extremely non-IID case, and plays a critical role in our
nonconvex analysis. The comparison of the communica-
tion complexities of our method with the most relevant
existing results is given in Table 1. The communication
complexity of BVR-L-SGD has a better dependence on ε
than minibatch SGD, local SGD and SCAFFOLD. When
BP �

√
n ∧ 1/ε and the second-order heterogeneity ζ of

local objectives is small relative to the smoothness L, BVR-
L-SGD strictly surpasses minibatch SARAH. Furthermore,
BVR-L-SGD is the first method that breaks the barrier of
communication complexity 1/ε when local computation
budget B → ∞, for general smooth nonconvex objectives
with small heterogeneity ζ. Importantly, even when the
heterogeneity is high, the communication complexity of
our method is never worse than the ones of the existing
methods since the second-order heterogeneity ζ is bounded
by two times the smoothness L of local objectives4.

As a result, BVR-L-SGD is a novel and promising commu-
nication efficient method for nonconvex optimization both
in classical distributed learning (i.e., local data distributions
are nearly identical) and recent federated learning (i.e., local
data distributions can be highly heterogeneous).

3Note that from the extra assumption, the communication
complexity is always lower bounded by 1

ε
+ 1
BPε2

for any B even
if σdiff = 0 (i.e., we are in overparamterized regimes). Thus,
the communication complexity is never better than the one of
minibatch SGD.

4For the details, see Assumption 1 in Section 2



Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning

Algorithm Communication Complexity Extra Assumptions
Minibatch SGD 1

ε + 1
BPε2 None

Minibatch SARAH (Nguyen et al., 2019) 1
ε +

√
n∧ 1

ε

BPε None
Local SGD (Yu et al., 2019) 1

Bε + 1
BPε2 + 1

ε
3
2

G gradient boundedness

Local SGD (Khaled et al., 2020)3 1+σ4
dif

BPε2 +
σ2
difBP
ε

convexity
B ≤ 1+σ2

dif

Pε or σ2
dif ≥ ε

Local SGD (Woodworth et al., 2020a) 1
Bε + 1

BPε2 + 1√
Bε

3
2

+ ζ1

ε
3
2

convexity,
1st-order ζ1 heterogeneity

Local SGD (Woodworth et al., 2020a)
(Lower bound)

1

Bε
3
2

+ 1
BPε2 +

(
1
ε ∧

ζ1

ε
3
2

) convexity,
1st-order ζ1 heterogeneity

SCAFFOLD (Karimireddy et al., 2020b) 1
ε + 1

BPε2 None

SCAFFOLD (Karimireddy et al., 2020b) 1
Bε + 1

BPε2 + ζ
ε

quadraticity,
2nd-order ζ heterogeneity

BVR-L-SGD (this paper) 1√
Bε +

√
n∧ 1

ε

BPε + ζ
ε

2nd-order ζ heterogeneity

Table 1. Comparison of the order of the necessary number of communication rounds to satisfy E‖f(xout)‖2 ≤ ε (or f(xout)−f(x∗) ≤ ε
for convex f ). "Extra Assumptions” indicates the necessary assumptions to derive the results other than Assumptions 2, 3 and 4 in Section
2. ε is the desired optimization accuracy. B is the local computation budget that is the allowed number of single stochastic gradient
computations per communication round for each worker. P is the number of workers. n is the total number of samples and is possibly∞
in online (i.e., expected risk minimization) settings. The smoothness of local objectives L, the variance of a single stochastic gradient σ2

and gradient boundedness G are regarded as Θ(1) for ease of presentation. Note that in this notation, second-order heterogeneity ζ always
satisfies ζ ≤ Θ(L) = Θ(1). σ2

dif is the squared local gradient norm at an optimum (for the precise definition, see (Khaled et al., 2020)).

Other Related Work. Several recent papers have also stud-
ied local algorithms combined with variance reduction tech-
nique (Sharma et al., 2019; Das et al., 2020; Karimireddy
et al., 2020a). Sharma et al. (2019) have considered Parallel
Restart SPIDER (PR-SPIDER), that is a local variant of
SPIDER (Fang et al., 2018) and shown that the proposed
algorithm achieves the optimal total computational com-
plexity and the communication complexity of 1/ε for non-
covnex smooth objectives. However, these rates essentially
match the ones of non-local SARAH and no advantage
of localization has been shown. Also, Das et al. (2020)
have considered a SPIDER like local algorithm called Fed-
GLOMO but the derived communication complexity is only
1/ε3/2 in general and the rate is even worse than mini-
batch SARAH. Karimireddy et al. (2020a) have proposed
MIME, which is essentially a combination of local SGD
and SVRG-like variance reduction technique. They have
shown that MIME achieves the communication complexity
of 1/(Bε) + 1/(P 3/4ε3/2) + ζ/ε for ζ second-order het-
erogeneous nonconvex smooth objectives. Importantly, the
second term of the rate of BVR-L-SGD has better depen-
dencies on P and B than the one of MIME. Particularly,
BVR-L-SGD achieves ζ/ε when B → ∞ but MIME does
not possess this property.

2. Problem Definition and Assumptions
In this section, we first introduce the notations used in this
paper. Then, the problem setting considered in this paper is

illustrated and theoretical assumptions are given.

Notation. ‖·‖ denotes the Euclidean L2 norm ‖·‖2: ‖x‖ =√∑
i x

2
i for vector x. For a matrix X , ‖X‖ denotes the

induced norm by the Euclidean L2 norm. For a natural
number m, [m] denotes the set {1, 2, . . . ,m}. For a set A,
#A means the number of elements, which is possibly∞.
For any number a, b, a ∨ b and a ∧ b denote max{a, b} and
min{a, b} respectively. We denote the uniform distribution
over A by Unif(A).

2.1. Problem Setting

We want to minimize nonconvex smooth objective

f(x) :=
1

P

P∑
p=1

fp(x), where fp(x) := Ez∼Dp
[`(x, z)]

for x ∈ Rd, where Dp is the data distribution associated
with worker p. Although we consider both offline (i.e.,
#supp(Dp) < ∞ for every p ∈ [P ]) and online (i.e.,
#supp(Dp) = ∞ for some p ∈ [P ]) settings, it is as-
sumed for offline settings that each local dataset has an
equal number of samples, i.e., #supp(Dp) = #supp(Dp′)
for every p, p′ ∈ [P ] just for simplicity. We assume that
each worker p can only access the own data distribution Dp

without communication. Aggregation (e.g., summation) of
all the worker’s d-dimensional parameters or broadcast of
a d-dimensional parameter from one worker to the other
workers can be realized by single communication. In typical
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situations, single communication is more time-consuming
than single stochastic gradient computation. Let C denotes
the single communication cost and G does the single stochas-
tic gradient computation. Using these notations, we assume
C ≥ G. Since we expect that a larger number of available
stochastic gradients in a communication round leads to faster
optimization, we can increase the number of stochastic gra-
dient computations unless the total gradient computational
time exceeds C. This motivates the concept of local com-
putation budget B (≤ C/G): given a communication and
computational environment, it is assumed that each worker
can only compute at most B single stochastic gradients per
communication round on average. Then, we compare the
communication complexity, that is the total number of com-
munication rounds of a distributed optimization algorithm
to achieve the desired optimization accuracy. From the
definition, given a communication and computational envi-
ronment, the communication complexity with a fixed local
computation budget B := C/G captures the best achievable
total execution time of an algorithm. Generally, for a larger
budget, we expect smaller communication complexity.

2.2. Theoretical Assumptions

In this paper, we always assume the following four assump-
tions. Assumptions 2, 3 and 4 are fairly standard in first-
order nonconvex optimization.
Assumption 1 (Heterogeneity). {fp}Pp=1 is second-order
ζ-heterogeneous, i.e., for any p, p′ ∈ [P ],∥∥∇2fp(x)−∇2fp′(x)

∥∥ ≤ ζ,∀x ∈ Rd.

Assumption 1 characterizes the heterogeneity of local ob-
jectives {fp}Pp=1 and has a critical role in our analysis. We
expect that relatively small heterogeneity to the smoothness
reduces the necessary number of communication to optimize
global objective f = (1/P )

∑P
p=1 fp. If the local objec-

tives are identical, i.e., Dp = Dp′ for every p, p′ ∈ [P ],
ζ becomes zero. When each Dp is the empirical distribu-
tion of n/P IID samples from common data distribution
D, we have ‖∇2fp(x) − ∇2fp′(x)‖ ≤ Θ̃(

√
P/nL) with

high probability by matrix Hoeffding’s inequality under As-
sumption 2 for fixed x 5. Hence, in classical distributed
learning regimes, Assumption 1 naturally holds. An impor-
tant remark is that Assumption 2 implies ζ ≤ 2L, i.e., the
heterogeneity is bounded by the smoothness. This means
that Assumption 1 gives an interpolation between the iden-
tical data setting ζ = 0 and the extremely non-IID setting
ζ = 2L. Even in federated learning regimes ζ �

√
P/nL,

we can expect ζ � 2L for some problems.

5Although to show the high probability bound for every x ∈
Rd is generally difficult, we can use the high probability bounds on
the discrete optimization path rather than the entire space Rd and
then the same bound still holds. For only simplicity, we assume
the heterogeneity condition on entire space Rd in this paper.

Algorithm 1 Local GD(x̃0, η, B, b, K, T )
1: for t = 1 to T do
2: for p = 1 to P in parallel do
3: Set x(p)0 = x̃t−1.
4: for k = 1 to K do
5: Update x(p)k = x

(p)
k−1 − η∇fp(x

(p)
k−1)

6: end for
7: end for
8: Communicate {x(p)t }Pp=1.

9: x̃t = 1
P

∑P
p=1 x

(p)

k̂
(k̂ ∼ Unif[K]).

10: end for
11: Return: x̃t̂ (t̂ ∼ Unif[T ]).

Assumption 2 (Smoothness). For any p ∈ [P ] and z ∈
supp(Dp), `(·, z) is L-smooth, i.e.,

‖∇`(x, z)−∇`(y, z)‖ ≤ L‖x− y‖,∀x, y ∈ Rd.

We assume L-smoothness of loss ` rather than risk f . This
assumption is a bit strong, but is typically necessary in the
analysis of variance reduced gradient estimators.

Assumption 3 (Existence of global optimum). f has a
global minimizer x∗ ∈ Rd.

Assumption 4 (Bounded gradient variance). For every p ∈
[P ],

Ez∼Dp
‖∇`(x, z)−∇fp(x)‖2 ≤ σ2.

Assumption 4 says that the variance of stochastic gradient
is bounded for every local objective.

3. Approach and Proposed Algorithms
In this section, we introduce our approach and provide de-
tails of the proposed algorithms.

3.1. Core Concepts and Approach

Here, we describe four main building blocks of our algo-
rithm, that are localization, bias reduction, stochastization
and variance reduction. Although our algorithm relies on
SARAH like variance reduction technique, in this subsec-
tion we will describe our approach using SVRG like vari-
ance reduction rather than SARAH like one to simply con-
vey the core ideas.

Localization. One of the promising methods for reducing
communication cost is local methods. In local methods,
each worker independently optimizes the local objective
and periodically communicate the current solution. For ex-
ample, the algorithm of local GD, which is a deterministic
variant of local SGD, is given in Algorithm 1. In some
sense, the local gradient ∇fp(x) can be regard as a biased
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estimator of the global gradient∇f(x). One of the limita-
tions of local GD is the existence of the potential bias of
the local gradient ∇fp(x) to approximate the global one
∇f(x) for heterogeneous local objectives {fp}Pp=1. The
bias ‖∇fp(x) − ∇f(x)‖ critically affect the convergence
speed and can be bounded as ‖∇fp(x)−∇f(x)‖ ≤ ζ1 un-
der the first order ζ1-heterogeneity condition. This implies
that the bias heavily depends on the heterogeneity parameter
ζ1 and does not converge to zero as x → x∗. Hence, the
existing analysis of local methods requires extremely small
ζ1 that typically depends on the optimization accuracy ε
to surpass non-local methods including GD and minibatch
SGD in terms of communication complexity, which is quite
limited in many situations.

Bias Reduction. To reduce the bias of local gradient, we
introduce bias reduction technique. Concretely, we con-
struct the local estimator ∇fp(x) − ∇fp(x0) + ∇f(x0)
to approximate ∇f(x). Here, x0 is the previously com-
municated solution. This construction evokes the famous
variance reduction technique. Analogically to the anal-
ysis of variance reduced gradient estimators, under the
second order ζ-heterogeneity, the bias can be bounded as
‖∇fp(x) − ∇fp(x0) +∇f(x0) − ∇f(x)‖ ≤ ζ‖x − x0‖.
This means that the bias converges to zero as x and x0 → x∗.
Hence, the bias of the introduced estimator is reduced by
utilizing the periodically computed global gradient∇f(x).
This enables us to show faster convergence than vanilla
non-local and local GD even for not too small ζ.

Stochastization. Generally, deterministic methods require
huge computational cost for single update in large scale
optimization. The classical idea to handle this problem is
stochastization. For example, non-distributed SGD naively
uses ∇`(x, z) with single sample z ∼ Dp to approximate
∇f(x) = Ez∼D[∇`(x, z)]. Although stochastization re-
duces the computational cost per update, the variance due
to it generally slows down the convergence speed. Similar to
standard SGD, we can naively stochastize our bias reduced
estimator as `(x, z) − `(x0, z) + (1/P )

∑P
p′=1 `(x0, zp′),

where z ∼ Dp and zp′ ∼ Dp′ for p′ ∼ [P ]. Here, {zp′}Pp′=1

is sampled only at communication time. As pointed
out before, the variance Ez,z′∼Dp

‖`(x, z) − `(x0, z) +

(1/P )
∑P
p′=1 `(x0, zp′)−(∇fp(x)−∇fp(x0)+∇f(x0))‖2

caused by stochastization may leads to slow convergence.

Variance Reduction. To reduce the variance of the gradi-
ent estimator due to stochastization, we introduce variance
reduction technique. Variance reduction is also classical
technique and has been extensively analysed both in con-
vex and nonconvex optimization. The essence of variance
reduction is the utilization of periodically computed full gra-
dient ∇f(x). In non-distributed cases, a variance reduced
estimator is defined as ∇`(x, z) − ∇`(x0, z) + ∇f(x0)
with z ∼ D. This estimator is unbiased and the vari-

Algorithm 2 BVR-L-SGD(x̃0, η, b, b̃, K, T , S)
1: for s = 1 to S do
2: for p = 1 to P in parallel do
3: if b̃ ≥ 1

P

∑P
p=1 #supp(Dp) then

4: ∇̃(p) = ∇fp(x̃s−1).
5: else
6: ∇̃(p) = 1

b̃

∑b̃
l=1∇`(x̃s−1, zl) (zl

i.i.d.∼ Dp).
7: end if
8: end for
9: Communicate {∇̃(p)}Pp=1, set ṽ0 = 1

P

∑P
p=1 ∇̃(p).

10: Set x0 = x−1 = x̃s−1.
11: for t = 1 to T do
12: for p = 1 to P in parallel do
13: g

(p)
t (xt−1) = 1

Kb

∑Kb
l=1∇`(xt−1, zl),

14: g
(p)
t (xt−2) = 1

Kb

∑Kb
l=1∇`(xt−2, zl)

15: for zl
i.i.d.∼ Dp.

16: ṽ
(p)
t = g

(p)
t (xt−1)− g(p)t (xt−2) + ṽ

(p)
t−1.

17: end for
18: Communicate {ṽ(p)t }Pp=1, set ṽt = 1

P

∑P
p=1 ṽ

(p)
t .

19: for p = 1 to P in parallel do
20: x

(p)
t , x(p),outt =

21: Local-Routine(p, xt−1, η, ṽt, b,K).
22: end for
23: Communicate {x(p)t }Pp=1 and {x(p),outt }Pp=1.

24: Set xt = x
(p̂)
t and xoutt = x

(p̂),out
t (p̂ ∼ Unif[P ]).

25: end for
26: Set x̃s = xT and x̃outs = xout

t̂
(t̂ ∼ Unif[T ]).

27: end for
28: Return: x̃out = x̃outŝ (ŝ ∼ Unif[S]).

ance Ez∼D‖∇`(x, z) − ∇`(x0, z) + ∇f(x0) − ∇f(x)‖2
can be bounded by L2‖x − x0‖2, where L is the smooth-
ness parameter of `. If x and x0 → x∗, the variance con-
verges to zero. In this mean, the estimator reduces the
variance caused by stochastization and also maintains com-
putational efficiency by using periodically computed global
full gradients. Analogous to this formulation, each worker
p computes a variance reduced local gradient estimator
∇`(x, z)−∇`(x0, z) +∇f(x0) with z ∼ Dp.

Concrete Algorithm

In this paragraph, we illustrate the concrete procedure of
our proposed algorithm based on the concepts described in
the previous paragraph.

The proposed algorithm for nonconvex objectives is pro-
vided in Algorithm 2. In line 2-9, worker p computes the
full gradient of local objective fp (or a large batch stochas-
tic gradient of fp if the learning problem is on-line, which
means that #supp(Dp) = ∞ for some p). Then, each
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Algorithm 3 Local-Routine(p, x0, η, v0, b, K)

1: Set x(p)0 = x
(p)
−1 = x0.

2: for k = 1 to K do
3: g

(p)
k (x

(p)
k−1) = 1

b

∑b
l=1 `(x

(p)
k−1, zl), g(p)k (x

(p)
k−2) =

1
b

∑b
l=1 `(x

(p)
k−2, zl) (zl

i.i.d.∼ Dp).

4: v
(p)
k = g

(p)
k (x

(p)
k−1)− g(p)k (x

(p)
k−2) + v

(p)
k−1.

5: Update x(p)k = x
(p)
k−1 − ηv

(p)
k

6: end for
7: Return: x(p)K , x(p)

k̂
(k̂ ∼ Unif[K]).

worker broadcasts it and the gradient of global objective f
is executed by averaging the communicated local gradients
(line 9). Then, for each iteration t, each worker computes
variance reduced local gradient ṽ(p)t that approximates the
full local gradient using Kb IID samples (line 13-16), that
is an important process for computational efficiency. Then,
{ṽ(p)t }Pp=1 is communicated and ṽt is obtained by averaging
them. Using previous solution xt−1 and ṽt as inputs, each
worker runs Local-Routine (Algorithm 3) (line 21). The
next solution xt at iteration t is set to the randomly cho-
sen solutions from Local-Routine’s outputs {xt}Pp=1 rather
than averaging them. When we terminate the for loop from
line 11 to 22, the next solution at stage s is set to the ran-
domly chosen solutions from {xt}P,Tp=1,t=1 (line 24) rather
than averaging them again. Although the model averaging
process has a critical role in all the previous local algorithms,
the random picking process is essential in our analysis to
fully utilize the second-order heterogeneity and is one of the
algorithmic novelties of our method.

The local computation algorithm Local-Routine is illus-
trated in Algorithm 3. In lines 3-5, we again use variance
reduction with v0 as a snapshot gradient. Here, we adopt the
SARAH like variance reduction rather than the SVRG like
one because SARAH achieves the optimal computational
complexity for non-distributed nonconvex optimization.

Remark (Communication and computational complexity).
The communication complexity is Θ(ST ) and the averaged
number of single gradient computations per communication
round for each worker is Θ((Kb+ b̃/T )).

Remark (Generalization of SARAH). When K = 1, BVR-
L-SGD exactly matches to minibatch SARAH. In this sense,
BVR-L-SGD is a generalization of minibatch SARAH.

Remark (Practical Implementation). Practically, in line 19-
24 of Algorithm 2, we randomly choose worker p̂ at first
and execute Local-Routine only for worker p̂. Note that
this procedure gives an equivalent algorithm to the original
one but reduces the computational and communication cost.
More specific procedures of the practical implementation
are found in the supplementary material (Section C).

4. Convergence Analysis
In this section, we provide theoretical convergence analysis
of our proposed algorithm. For the proofs, see the supple-
mentary material (Section A and B).

4.1. Analysis of Local-Routine

Here, we analyse Local-Routine (Algorithm 3).

Lemma 4.1 (Descent Lemma). Suppose that Assumption 2
holds. There exists η1 = Θ(1/L) such that for any η ≤ η1,
Local-Routine(p, x0, η, v0, b, K) satisfies for k ∈ [K],

E‖∇f(x
(p)
k−1)‖2 ≤ Θ

(
1

η

)
(Ef(x

(p)
k−1)− Ef(x

(p)
k ))

+
5

2
E‖v(p)k −∇f(x

(p)
k−1)‖2.

The deviation of v(p)k from ∇f(x
(p)
k−1) can be bounded by

the following lemma.

Lemma 4.2. Suppose that Assumptions 1 and 2 hold. Then,
there exists η2 = Θ(1/(Kζ) ∧

√
b/(
√
KL)) such that for

η ≤ η2, Local-Routine(p, x0, η, v0, b, K) satisfies

1

K

K∑
k=1

E‖v(p)k −∇f(x
(p)
k−1)‖2

≤ Θ (Cη)

K∑
k=1

E
∥∥∥∇f(x

(p)
k−1)

∥∥∥2 + Θ(1)‖v0 −∇f(x0)‖2,

where Cη := η2L2/b+ η2ζ2K.

Combining Lemma 4.1 and 4.2 results in the following
proposition.

Proposition 4.3. Suppose that Assumptions 1 and 2 hold.
There exists η3 = Θ(1/L ∧ 1/(Kζ) ∧

√
b/(
√
KL)) such

that for η ≤ η3, Local-Routine(p, x0, η, v0, b, K) satisfies

E‖∇f(x
(p)

k̂
)‖2 ≤ Θ

(
1

ηK

)
(Ef(x0)− Ef(x

(p)
K ))

+ Θ(1)‖v0 −∇f(x0)‖2.

4.2. Analysis of BVR-L-SGD

Here, we analyse BVR-L-SGD (Algorithm 2). The fol-
lowing lemma bounds the variance of ṽt, which arises in
Proposition 4.3.

Lemma 4.4. Suppose that Assumptions 1, 2 and 4 hold.
Then, there exists η4 = Θ(1/(Kζ) ∧

√
b/(
√
KL) ∧√

Pb/(
√
KTL)) such that for η ≤ η4, BVR-L-SGD(x̃0,
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η, b, b̃, K, T , S) satisfies

1

T

T∑
t=1

E‖ṽt −∇f(xt−1)‖2

≤ Θ
(
C ′η
) 1

T

T∑
t′=1

1

P

P∑
p=1

E[G
(p)
t′ ] + 1b̃< n

P

σ2

P b̃
.

where C ′η := η2L2KT/(Pb) + η2L2K/b+ η2ζ2K2, n :=∑P
p=1 #supp(Dp) and G(p)

t′ := ‖∇f(x
(p),out
t′−1 )‖2.

Using the result of Local-Routine (Proposition 4.3) and
Lemma 4.4, we obtain the following theorem.
Theorem 4.5. Suppose that Assumptions 1, 2, 3 and 4 hold.
Then, there exists η = Θ(1/L ∧ 1/(Kζ) ∧

√
b/(
√
KL) ∧√

Pb/(
√
KTL)) such that BVR-L-SGD(x̃0, η, b, b̃, K, T ,

S) satisfies

E‖∇f(x̃out)‖2 ≤ Θ

(
1

ηKTS

)
(Ef(x̃0)− f(x∗))

+ Θ(1)1b̃< n
P

σ2

P b̃
,

where n :=
∑P
p=1 #supp(Dp).

Theorem 4.5 immediately implies the following corollary
which characterises the communication complexity of BVR-
L-SGD.
Corollary 4.6. Suppose that Assumptions 1, 2, 3 and 4 hold.
We denote n =

∑P
p=1 #supp(Dp). Let b̃ = Θ((n/P ) ∧

(σ2/(Pε))). Then, there exists η = Θ(1/L ∧ 1/(Kζ) ∧√
b/(
√
KL)∧

√
Pb/(

√
KTL))) such that BVR-L-SGD(x̃0,

η, b, b̃, K, T , S) with S = Θ(1 + 1/(ηKTε)) satisfies
E‖∇f(x̃out)‖2 ≤ Θ(ε) with communication complexity

ST = Θ

(
L

Kε
+
ζ

ε
+

L√
Kbε

+

√
T

KbP

L

ε
+ T

)
.

Remark (Communication efficiency). Given local computa-
tion budgetB, we set T = Θ(1+b̃/B) andKb = Θ(B) with
b ≤ Θ(

√
B), where b̃ was defined in Corollary B.1. Then,

we have the averaged number of local computations per com-
munication round Kb+ b̃/T = Θ(B) and the total commu-
nication complexity with budget B becomes Θ((L/(

√
Bε)+√

n ∧ (σ2/ε)L/(BPε) + (n ∧ (σ2/ε))/(BP ) + ζ/ε).

5. Numerical Resutls
In this section, we provide several experimental results to
verify our theoretical findings.

We conducted a ten-class classification on CIFAR106

dataset. Several heterogeneity patterns of local datasets

6https://www.cs.toronto.edu/~kriz/cifar.
html.

Figure 1. An illustraion of our local datasets generation process.

were artificially created. For each heterogeneity, we com-
pared the empirical performances of our method and several
existing methods.

Data Preparation. We first equalized the number of data
per class by randomly removing the excess data for both
the train and test datasets for only simplicity. Then, for
fixed q ∈ {0.1, 0.35, 0.6, 0.85}, q × 100 % of the data
of class p was assigned to worker p for p ∈ [P ]. Here,
we set the number of workers to the number of classes.
Then, for each class p, we equally divided the remained
(1−q)×100 % data of class p into P−1 sets and distributed
them to correspondence worker p′ 6= p. As a result, we
obtained several patterns of class imbalanced local datasets
with various heterogeneity (we expect smaller heterogeneity
for smaller q and particularly ζ ≈ 0 when q = 0.1 since
P = 10). An illustration of this process for P = 3 is given
in Figure 1. From this process, we fixed the number of
workers P to ten. Finally, we normalized each channel of
the data to be mean and standard deviation 0.5.

Models. We conducted our experiments using an one-
hidden layer fully connected neural network with 100
hidden units and softplus activation. For loss function,
we used the standard cross-entropy loss. We initialized
parameters by uniformly sampling the parameters from
[−
√

6/(nin + nout),
√

6/(nin + nout)] (Glorot & Bengio,
2010), where nin and nout are the number of units in the
input and output layers respectively. Furthermore, we add
L2-regularizer to the empirical risk with fixed regularization
parameter 5× 10−3.

Implemented Algorithms. We implemented mini-
batch SGD, Local SGD, SARAH, SCAFFOLD and our
BVR-L-SGD. For each local computation budget B ∈
{256, 512, 1024}, we set K = B/16 and b = 16 for lo-
cal methods (Local SGD, SCAFFOLD and BVR-L-SGD),
and b = B for non-local ones (minibatch SGD and
SARAH). Note that each algorithm requires the same or-
der of stochastic gradient computations per communica-
tion. For each algorithm, we tuned learning rate η from
{0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. The details of the tuning
procedure are found in the supplementary material (Section
D).

Evaluation. We compared the implemented algorithms us-
ing four criteria of train loss; train accuracy; test loss and test

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 2. Comparison of the best train loss and test accuracy
against heterogeneity parameter q.

accuracy against (i) heterogeneity q; (ii) local computation
budgets B and (iii) the number of communication rounds.
The total number of communication rounds was fixed to
3, 000 for each algorithm. We independently repeated the
experiments 5 times and report the mean and standard devi-
ation of the above criteria. Due to the space limitation, we
will only report train loss and test accuracy in the main pa-
per. The full results are found in the supplementary material
(Section D).

Results 1: Effect of the heterogeneity. Here, we inves-
tigate the effect of the heterogeneity on the convergence
speed of the algorithms. To clarify the pure effect of the
heterogeneity, we fixed the local computation budget B to
1, 024, which was the largest one in our experiments. Fig-
ure 2 shows the comparison of the best-achieved train loss
and test accuracy in 3, 000 communication rounds against
heterogeneity parameter q. From this, we can see that the
convergence speed of the local methods deteriorated as het-
erogeneity parameter q increased. Particularly, the degree
of the performance degradation of L-SGD and SCAFFOLD
was serious. In contrast, this phenomenon was not observed
for non-local methods, because the convergence rates of
non-local methods do not depend on heterogeneity ζ as in
Table 1. Importantly, even for the largest q, BVR-L-SGD
significantly outperformed the other methods.

Results 2: Effect of the local computation budget size.
Now, we examine the effect of the size of the local computa-
tion budgetB to the convergence speed. For this purpose, we
fixed heterogeneity parameter q to the smallest one. Figure
3 shows the comparison of the best-achieved train loss and
test accuracy against local computation budget B. We can
see that the local methods improved their performances as
local computation budget B increased, but non-local meth-
ods did not. This is because local methods can potentially
achieve a smaller communication complexity than 1/ε by
increasing B for small ζ, but non-local methods can not
break the barrier of 1/ε for any B as in Table 1.

Results 3: Effect of the number of communication
rounds. Finally, to see the trends of train loss and test
accuracy during optimization, we give the comparison of
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Figure 3. Comparison of the best train loss and test accuracy
against local computation budget B.

the train loss and test accuracy against the number of com-
munication rounds (Figure 4). For the space limitation, we
only report the case B = 1, 024. From these results, it
can be seen that our proposed BVR-L-SGD consistently
outperformed the other methods from beginning to end.

In summary, for small heterogeneity, local methods signif-
icantly surpassed non-local methods. For relatively large
heterogeneity, the performances of the existing local meth-
ods were seriously degraded. In contrast, the degree of
deterioration of BVR-L-SGD was small and BVR-L-SGD
consistently out-performed both the existing non-local and
local methods. These observations strongly verify the theo-
retical findings and showed the empirical superiority of our
method.

6. Conclusion and Future Work
In this paper, we studied our proposed BVR-L-SGD for
nonconvex distributed learning, which is based on the bias-
variance reduced gradient estimator to fully utilize the small
second-order heterogeneity of local objectives and suggests
randomly picking up one of the local models instead of
taking the average of them when workers are synchronized.
Our theory implies the superiority of BVR-L-SGD to previ-
ous non-local and local methods in terms of communication
complexity. The numerical results strongly encouraged our
theoretical results and suggested the empirical superiority
of the proposed method.

One promising and challenging future work is to extend our
algorithm and theory to the problem of finding second-order
stationary points. Although there are many papers for find-
ing second-order stationary points for general nonconvex
problems (Ge et al., 2015; Allen-Zhu, 2017; Jin et al., 2017;
Li, 2019), it might be inherently difficult for local algorithms
to efficiently find a local minima due to the nature of local
updates. An open question is that: can we construct a local
algorithm that guarantees to find second-order stationary
points and is more communication efficient than non-local
methods for local objectives with small heterogeneity?
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Figure 4. Comparison of the train loss and test accuracy against
the number of communication rounds.
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A novel method for machine learning problems using
stochastic recursive gradient. In International Conference
on Machine Learning, pp. 2613–2621. PMLR, 2017.

Nguyen, L. M., van Dijk, M., Phan, D. T., Nguyen,
P. H., Weng, T.-W., and Kalagnanam, J. R. Finite-
sum smooth optimization with sarah. arXiv preprint
arXiv:1901.07648, 2019.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A.
Stochastic variance reduction for nonconvex optimization.
In International conference on machine learning, pp. 314–
323. PMLR, 2016a.
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A. Analysis of Local-Routine (Algorithm 3)
In this section, we give the analysis of Local-Routine.

Proof of Lemma 4.1

Let η1 = 1/(4L). From L-smoothness of f , we have

f(x
(p)
k ) ≤ f(x

(p)
k−1) + 〈∇f(x

(p)
k−1), x

(p)
k − x

(p)
k−1〉+

L

2
‖x(p)k − x

(p)
k−1‖

2

= f(x
(p)
k−1)− η〈∇f(x

(p)
k−1), v

(p)
k 〉+

η2L

2
‖v(p)k ‖

2

≤ f(x
(p)
k−1)− η‖∇f(x

(p)
k−1)‖2 − η〈∇f(x

(p)
k−1), v

(p)
k −∇f(x

(p)
k−1)〉+ η2L‖v(p)k −∇f(x

(p)
k−1)‖2

+ η2L‖∇f(x
(p)
k−1)‖2

≤ f(x
(p)
k−1)− η

(
3

4
− η

L

)
‖∇f(x

(p)
k−1)‖2 + η (1 + ηL) ‖v(p)k −∇f(x

(p)
k−1)‖2

≤ f(x
(p)
k−1)− η

2
‖∇f(x

(p)
k−1)‖2 + η (1 + ηL) ‖v(p)k −∇f(x

(p)
k−1)‖2.

Here, in the second and third inequalities we used Cauchy Schwarz inequality and Arithmetic Mean-Geometric Mean
inequality. The last inequality holds because η ≤ 1/(4L). Hence, we get

‖∇f(x
(p)
k−1)‖2 ≤ 2

η
(f(x

(p)
k−1)− f(x

(p)
k )) + 2(1 + ηL)‖v(p)k −∇f(x

(p)
k−1)‖2

≤ 2

η
(f(x

(p)
k−1)− f(x

(p)
k )) +

5

2
‖v(p)k −∇f(x

(p)
k−1)‖2.

Finally, taking expectation on both sides yields the desired result.
Lemma A.1. Local-Routine(p, x0, η, v0, b, K) satisfies for k ∈ [K],

E‖x(p)k − x0‖
2 ≤ Θ(η2K2)

1

K

K∑
k′=1

E‖v(p)k′ −∇f(x
(p)
k′−1)‖2 + Θ(η2K2)

1

K

K∑
k′=1

E‖∇f(x
(p)
k′−1)‖2.

for p ∈ [P ] and k ∈ [K].

Proof.

‖x(p)k − x0‖
2

= ‖x(p)k−1 − x0 + ηv
(p)
k ‖

2

≤
(

1 +
1

K

)
‖x(p)k−1 − x0‖

2 + η2(1 +K)‖v(p)k ‖
2

≤
(

1 +
1

K

)
‖x(p)k−1 − x0‖

2 + 2η2(1 +K)‖v(p)k −∇f(x
(p)
k−1)‖2 + 2η2K‖∇f(x

(p)
k−1)‖2.

Here, the inequality follows from Cauchy Schwarz inequality and Arithmetic Mean-Geometric Mean inequality. Recursively
using this inequality, we obtain

‖x(p)k − x0‖
2

≤ 2η2(1 +K)

k∑
k′=1

(
1 +

1

K

)k−k′
‖v(p)k′ −∇f(x

(p)
k′−1)‖2 + 2η2(1 +K)

k∑
k′=1

(
1 +

1

K

)k−k′
‖∇f(x

(p)
k′−1)‖2

≤ 2eη2(1 +K)

K∑
k′=1

‖v(p)k′ −∇f(x
(p)
k′−1)‖2 + 2eη2(1 +K)

K∑
k′=1

‖∇f(x
(p)
k′−1)‖2.

Here, we used the fact that (1 + 1/K)k−k
′ ≤ (1 + 1/K)K ≤ e and the definition x(p)0 = x0.
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Lemma A.2. Suppose that Assumptions and 1 hold. Then, for any x, y ∈ Rd,

‖∇fp(x)−∇fp(y) +∇f(y)−∇f(x)‖2 ≤ ζ2‖x− y‖2

for p ∈ [P ].

Proof. From the convexity of ‖ · ‖2, we have

‖∇fp(x)−∇fp(y) +∇f(y)−∇f(x)‖2

≤ 1

P

∑
p′ 6=p

‖∇fp(x)−∇fp(y) +∇fp′(y)−∇fp′(x)‖2.

Since fp − fp′ is C2- function, ∇fp(x) − ∇fp′(x) − ∇fp(y) + ∇fp′(y) = ∇(fp − fp′)(x) − ∇(fp − fp′)(y) =
(∇2(fp − fp′)(ξ))(x− y) for some ξ ∈ Rd by Mean value theorem. Hence, we have

‖∇fp(x)−∇fp(y) +∇fp′(y)−∇fp′(x)‖2

≤ 1

P

∑
p′ 6=p

‖∇2fp(ξ)−∇2fp′(ξ)‖22‖x− y‖2

≤ ζ2‖x− y‖2.

Here the last inequality holds thanks to Assumption 1.

Proof of Lemma 4.2

Observe that

E‖v(p)k −∇f(x
(p)
k−1)‖2

= E‖g(p)k (x
(p)
k−1)− g(p)k (x

(p)
k−2) + v

(p)
k−1 −∇f(x

(p)
k−1)‖2

= E‖g(p)k (x
(p)
k−1)− g(p)k (x

(p)
k−2)−∇fp(x(p)k−1) +∇fp(x(p)k−2)‖2

+ E‖∇fp(x(p)k−1)−∇fp(x(p)k−1) + v
(p)
k−1 −∇f(x

(p)
k−1)‖2

≤ E‖g(p)k (x
(p)
k−1)− g(p)k (x

(p)
k−2)−∇fp(xk−1) +∇fp(x(p)k−2)‖2

+ (1 +K)E‖∇fp(xk−1)−∇fp(x(p)k−2) +∇f(x
(p)
k−2)−∇f(x

(p)
k−1)‖2

+

(
1 +

1

K

)
E‖v(p)k−1 −∇f(x

(p)
k−2)‖2

≤ 1

b
E
[
Ez∼Dp

‖∇`(x(p)k−1, z)−∇`(x
(p)
k−2, z)‖

2
]

+ (1 +K)E‖∇fp(x(p)k−1)−∇fp(x(p)k−2) +∇f(x
(p)
k−2)−∇f(x

(p)
k−1)‖2

+

(
1 +

1

K

)
E‖v(p)k−1 −∇f(x

(p)
k−2)‖2.

Here, the second equality holds because E[g
(p)
k (x

(p)
k−1)] = ∇fp(x(p)k−1) and E[g

(p)
k (x

(p)
k−2)] = ∇fp(x(p)k−2). The fist inequality

is from Cauchy-Schwarz inequlality and Arithmetic Mean-Geometric Mean inequality. The last inequality follows from the
fact that g(p)k constituted by b IID stochastic gradients. Recursively using this inequality, we have

E‖v(p)k −∇f(x
(p)
k−1)‖2

≤ eK

b

1

K

K∑
k′=1

E
[
Ez∼Dp

‖∇`(x(p)k′−1, z)−∇`(x
(p)
k′−2, z)‖

2
]

+ e(1 +K)K
1

K

K∑
k′=1

E‖∇fp(x(p)k′−1)−∇fp(x(p)k′−2) +∇f(x
(p)
k′−2)−∇f(x

(p)
k′−1)‖2

+ e‖v0 −∇f(x0)‖2.
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Note that x(p)0 = x0 and v(p)0 = v0. Then applying Lemma A.2, we get

E‖v(p)k −∇f(x
(p)
k−1)‖2 ≤ Θ

(
K

b

)
1

K

K∑
k′=1

E[Ez∼Dp‖∇`(x
(p)
k′−1, z)−∇`(x

(p)
k′−2, z)‖

2]

+ Θ(ζ2K2)
1

K

K∑
k′=1

E‖x(p)k′−1 − x
(p)
k′−2‖

2

+ Θ(1)‖v0 −∇f(x0)‖2

≤ Θ

(
L2K

b
+ ζ2K2

)
1

K

K∑
k′=1

E‖x(p)k′−1 − x
(p)
k′−2‖

2

+ Θ(1)‖v0 −∇f(x0)‖2

≤ Θ

(
η2L2K

b
+ η2ζ2K2

)
1

K

K∑
k′=1

E‖v(p)k′−1 −∇f(x
(p)
k′−1)‖2

+ Θ

(
η2L2K

b
+ η2ζ2K2

)
1

K

K∑
k′=1

E‖∇f(x
(p)
k′−1)‖2

+ Θ(1)‖v0 −∇f(x0)‖2.

Here, The second inequality holds by Assumption 2. Averaging this inequality from k = 1 to K and choosing sufficiently
small η2 such that η2 = Θ(1/(Kζ) ∧

√
b/(
√
KL)), for any η ≤ η′2, the factor Θ(η2L2K/b+ η2ζ2K2) becomes smaller

than 1/2. This gives the desired result.

Proof of Proposition 4.3

From Lemma 4.1, we have

1

K

K∑
k=1

E‖∇f(x
(p)
k−1)‖2 ≤ Θ

(
1

ηK

)
(Ef(x0)− Ef(x

(p)
K )) + Θ(1)

1

K

K∑
k=1

E‖v(p)k −∇f(x
(p)
k−1)‖2.

Applying Lemma 4.2 to this inequality, there exists η3 = Θ((1/L) ∧ η2), where η2 is defined in Lemma 4.2, such that for
every η ≤ η3, we get

1

K

K∑
k=1

E‖∇f(x
(p)
k−1)‖2 ≤ Θ

(
1

ηK

)
(Ef(x0)− Ef(x

(p)
K )) + Θ(1)‖v0 −∇f(x0)‖2.

Finally, since k̂ ∼ Unif[K], taking expectation with respect to k̂ gives the desired result.

B. Analysis of BVR-L-SGD (Algorithm 2)
In this section, we provide the analysis of BVR-L-SGD.

Proof of Lemma 4.4

We define V (p)
t as 1

K

∑K
k=1 E‖v

(p)
k −∇f(x

(p)
k−1)‖2 in Local-Routine at iteration t. Then, we can rewrite the statement in

Lemma 4.2 as

V
(p)
t ≤ Θ

(
η2L2K

b
+ η2ζ2K2

)
E
∥∥∥∇f(x

(p),out
t )

∥∥∥2 + Θ(1)‖ṽt −∇f(xt−1)‖2.

Averaging this inequality from p = 1 to P , we have

1

P

P∑
p=1

V
(p)
t ≤ Θ

(
η2L2K

b
+ η2ζ2K2

)
1

P

P∑
p=1

E
∥∥∥∇f(x

(p),out
t )

∥∥∥2 + Θ(1)‖ṽt −∇f(xt−1)‖2. (1)
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Observe that

E‖ṽt −∇f(xt−1)‖2

= E

∥∥∥∥∥ 1

P

P∑
p=1

(
g
(p)
t (xt−1)− g(p)t (xt−2) + ṽ

(p)
t−1

)
−∇f(xt−1)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

P

P∑
p=1

(
g
(p)
t (xt−1)− g(p)t (xt−2)

)
−∇f(xt−1) +∇f(xt−2)

∥∥∥∥∥
2

+ E‖ṽt−1 −∇f(xt−2)‖2

=
1

P 2

P∑
p=1

E
∥∥∥g(p)t (xt−1)− g(p)t (xt−2)−∇fp(xt−1) +∇fp(xt−2)

∥∥∥2 + E‖ṽt−1 −∇f(xt−2)‖2

≤ 1

PKb

1

P

P∑
p=1

E
[
Ez∼Dp

‖∇`(xt−1, z)−∇`(xt−2, z)‖2
]

+ E‖ṽt−1 −∇f(xt−2)‖2.

Here, the second inequality holds from E[g
(p)
t (xt−1)|t − 1] = ∇fp(xt−1) and E[g

(p)
t (xt−2)|t − 1] = ∇fp(xt−2). The

last equality is from the independency of g(p)t (xt−1)− g(p)t (xt−2) given the history of the iterations 1, . . . , t− 1. The last
inequality holds because the Kb samples used for g(p)t (xt−1) and g(p)t (xt−2) are IID. Recursively using this inequality, we
have

E‖ṽt −∇f(xt−1)‖2

≤ T

PKb

1

T

T∑
t′=1

1

P

P∑
p=1

E
[
Ez∼Dp

‖∇`(xt′−1, z)−∇`(xt′−2, z)‖2
]

+ E‖ṽ0 −∇f(x0)‖2

≤ L2T

PKb

1

T

T∑
t′=1

E ‖xt′−1 − xt′−2‖2 + 1b̃< 1
P

∑P
p=1 #supp(Dp)

σ2

P b̃
.

The last inequality follows from Assumptions 2 and 4 with the definition of ṽ0. From Lemma A.1, we have

E‖xt′ − xt′−1‖2 ≤ Θ(η2K2)
1

P

P∑
p=1

(V
(p)
t′ + E‖∇f(x

(p),out
t′ )‖2).

Hence, we get

1

T

T∑
t=1

E‖ṽt −∇f(xt−1)‖2

≤ L2T

PKb

1

T

T∑
t′=1

E ‖xt′−1 − xt′−2‖2 + 1b̃< 1
P

∑P
p=1 #supp(Dp)

σ2

P b̃

≤ η2L2KT

Pb

1

T

T∑
t′=1

1

P

P∑
p=1

V
(p)
t′ +

η2L2KT

Pb

1

T

T∑
t′=1

1

P

P∑
p=1

E‖∇f(x
(p),out
t′−1 )‖2 + 1b̃< 1

P

∑P
p=1 #supp(Dp)

σ2

P b̃
.

Choosing η4 ≤ η3 such that Θ(η24L
2KT/Pb) < 1/2, for every η ≤ η4, combining (1) yields

1

T

T∑
t=1

E‖ṽt −∇f(xt−1)‖2

≤ Θ

(
η2L2K

b
+ η2ζ2K2 +

η2L2KT

Pb

)
1

T

T∑
t′=1

1

P

P∑
p=1

E‖∇f(x
(p),out
t′−1 )‖2 + 1b̃< 1

P

∑P
p=1 #supp(Dp)

σ2

P b̃
.

This is the desired result.
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Proof of Theorem 4.5

The statement of Proposition 4.3 at iteration t implies

1

P

P∑
p=1

E‖∇f(x
(p),out
t )‖2 ≤ Θ

(
1

ηK

)
(Ef(xt−1)− Ef(xt)) + Θ(1)E‖ṽt −∇f(xt−1)‖2.

Averaging this inequality from t = 1 to T results in

1

T

T∑
t=1

1

P

P∑
p=1

E‖∇f(x
(p),out
t )‖2 ≤ Θ

(
1

ηTK

)
(Ef(x0)− Ef(xT )) + Θ(1)

1

T

T∑
t=1

E‖ṽt −∇f(xt−1)‖2.

Then, applying Lemma 4.4 to this inequality, there exists η = Θ(1/L∧ 1/(Kζ)∧
√
b/(
√
KL)∧

√
Pb/(

√
KTL) such that

1

T

T∑
t=1

1

P

P∑
p=1

E‖∇f(x
(p),out
t )‖2 ≤ Θ

(
1

ηKT

)
(Ef(x0)− Ef(xT )) + Θ(1)1b̃< 1

P

∑P
p=1 #supp(Dp)

σ2

P b̃
.

From the definitions of x̃s and x̃outs , we obtain

E‖∇f(x̃outs )‖2 ≤ Θ

(
1

ηKT

)
(Ef(x̃s−1)− Ef(x̃s)) + Θ(1)1b̃< 1

P

∑P
p=1 #supp(Dp)

σ2

P b̃
.

Finally, averaging this inequality from s = 1 to S and using Assumption 3 yield the desired result.

Corollary B.1. Suppose that Assumptions 1, 2, 3 and 4 hold. We denote n :=
∑P
p=1 #supp(Dp). Let b̃ = Θ((n/P ) ∧

(σ2/(Pε))). Then, there exists η = Θ(1/L∧ 1/(Kζ)∧
√
b/(
√
KL)∧

√
Pb/(

√
KTL))) such that BVR-L-SGD(x̃0, η, b, b̃,

K, T , S) with S = Θ(1 + 1/(ηKTε)) satisfies

E‖∇f(x̃out)‖2 ≤ Θ(ε).

Moreover, the total communication complexity ST is

Θ

(
L

Kε
+
ζ

ε
+

L√
Kbε

+

√
T

KbP

L

ε
+ T

)
.

Remark (Communication efficiency). Given local computation budget B, we set T = Θ(1 + b̃/B) and Kb = Θ(B)

with b ≤ Θ(
√
B), where b̃ was defined in Corollary B.1. Then, we have the averaged number of local computations per

communication round Kb+ b̃/T = Θ(B) and the total communication complexity with budget B becomes Θ((L/(
√
Bε) +√

n ∧ (σ2/ε)L/(BPε) + (n ∧ (σ2/ε))/(BP ) + ζ/ε).

C. Practical Implementation of BVR-L-SGD
In this section, we give practical implementation details of BVR-L-SGD (Algorithm 4). The blue texts indicates the changes
from the original algorithm (Algorithm 2) for more specific, and computational and communication efficient procedures.

In line 1, we set T = d1 + b̃/(Kb)e, which has been theoretically determined. In line 16, we at first pick a worker p̂
uniformly random and send aggregated variance reduced gradient ṽt to it. Then, worker p̂ runs Local-Routine using ṽt (line
18). Central server receive its output and broadcast it to all the worker (line 19). Note that Algorithm 4 only requires single
aggregation and single broadcast for each t ∈ [T ].

D. Supplementary of Numerical Experiments
Parameter Tuning

For all the implemented algorithms, the only tuning parameter was learning rate η. We ran each algorithm with η ∈
{0.005, 0.01, 0.05, 0.1, 0.5, 1.0} and chose the one that maximized the minimum train accuracy at the last 100 global
iterates to take into account not only convergence speed but also stability of convergence.
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Algorithm 4 Practical Implementation of BVR-L-SGD(x̃0, η, b, b̃, K, S)

1: Set T = d1 + b̃/(Kb)e.
2: for s = 1 to S do
3: for p = 1 to P in parallel do
4: if b̃ ≥ 1

P

∑P
p=1 #supp(Dp) then

5: ∇̃(p) = ∇fp(x̃s−1).
6: else
7: ∇̃(p) = 1

b̃

∑b̃
l=1∇`(x̃s−1, zl) for b̃ IID samples zl ∼ Dp.

8: end if
9: end for

10: Central Server: aggregate {∇̃(p)}Pp=1 and broadcast ṽ0 = 1
P

∑P
p=1 ∇̃(p) to all the workers.

11: Set x0 = x−1 = x̃s−1.
12: for t = 1 to T do
13: for p = 1 to P in parallel do
14: g

(p)
t (xt−1) = 1

Kb

∑Kb
l=1 `(xt−1, zl) and g(p)t (xt−2) = 1

Kb

∑Kb
l=1 `(xt−2, zl) for zl

i.i.d.∼ Dp.
15: ṽ

(p)
t = g

(p)
t (xt−1)− g(p)t (xt−2) + ṽ

(p)
t−1.

16: end for
17: Pick p̂ ∼ [P ] uniformly at random.
18: Central Server: aggregate {ṽ(p)t }Pp=1 and send ṽt = 1

P

∑P
p=1 ṽ

(p)
t to worker p̂.

19: x
(p̂)
t , _ = Local-Routine(p̂, xt−1, η, ṽt, b, K)

20: Central Server: receive x(p̂)t and broadcast xt = x
(p̂)
t to all the workers.

21: end for
22: Set x̃s = xT .
23: end for
24: Return: x̃out = x̃S .

Additional Numerical Results

Here, we provide the full results in our numerical experiments. Figures 5, 6 and 7 show the comparisons of train loss, train
accuracy, test loss and test accuracy for various q with fixed local computation budget B = 256, 512 and 1, 024 respectively.

Computing Infrastructures

• OS: Ubuntu 16.04.6

• CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

• CPU Memory: 128 GB.

• GPU: NVIDIA Tesla P100.

• GPU Memory: 16 GB

• Programming language: Python 3.7.3.

• Deep learning framework: Pytorch 1.3.1.
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Figure 5. Comparison of the train loss and test accuracy against the number of communication rounds for local computation budget
B = 256.
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Figure 6. Comparison of the train loss and test accuracy against the number of communication rounds for local computation budget
B = 512.
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Figure 7. Comparison of the train loss and test accuracy against the number of communication rounds for local computation budget
B = 1, 024.


