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Abstract
Recently, local SGD has got much attention and
been extensively studied in the distributed learn-
ing community to overcome the communication
bottleneck problem. However, the superiority
of local SGD to minibatch SGD only holds in
quite limited situations. In this paper, we study
a new local algorithm called Bias-Variance Re-
duced Local SGD (BVR-L-SGD) for nonconvex
distributed optimization. Algorithmically, our pro-
posed bias and variance reduced local gradient
estimator fully utilizes small second-order hetero-
geneity of local objectives and suggests randomly
picking up one of the local models instead of
taking the average of them when workers are syn-
chronized. Theoretically, under small heterogene-
ity of local objectives, we show that BVR-L-SGD
achieves better communication complexity than
both the previous non-local and local methods
under mild conditions, and particularly BVR-L-
SGD is the first method that breaks the barrier of
communication complexity Θ(1/ε) for general
nonconvex smooth objectives when the hetero-
geneity is small and the local computation budget
is large. Numerical results are given to verify the
theoretical findings and give empirical evidence
of the superiority of our method.

1. Introduction
Nowadays, optimization problems arising in machine learn-
ing are often large and require huge computational time.
Distributed learning is one of the attractive approaches to
reduce the computational time by utilizing parallel com-
puting. In classical distributed learning, each worker has
the whole dataset used in optimization or a random sub-
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set of the whole dataset which is not explicitly exchanged.
In recent federated learning, introduced by Konečnỳ et al.
(2015); Shokri & Shmatikov (2015); McMahan et al. (2017),
we build a global model across multiple devices or servers
without explicitly exchanging their own local datasets, and
local datasets can be heterogeneous, i.e., each local dataset
may be generated from a different distribution. There are
various federated learning scenarios (e.g., personalization,
preservation of the privacy of local information, robustness
to attacks and failures, guarantees of fairness) and refer to
the extensive survey (Kairouz et al., 2019) for these topics.

One of the most naive and widely used approaches to dis-
tributed learning is minibatch Stochastic Gradient Descent
(SGD) (Dekel et al., 2012), which is also called as Feder-
ated Averaging (FedAvg) (McMahan et al., 2017). Each
worker computes minibatch stochastic gradient of the own
local objective and then their average is used to update
the global model. Also, more computationally efficient
methods including minibatch Stochastic Variance Reduced
Gradient (SVRG) (Johnson & Zhang, 2013; Allen-Zhu &
Hazan, 2016; Reddi et al., 2016a) and its variant (Lei et al.,
2017), minibatch StochAstic Recursive grAdient algoritHm
(SARAH) (Nguyen et al., 2017; 2019) and its variants (Fang
et al., 2018; Zhou et al., 2018) are applicable to the problem.
Particularly, SARAH achieves the optimal total computa-
tional complexity in nonconvex optimization.

Unfortunately, minibatch methods suffer from their com-
munication cost because of the necessity to communicate
local gradients for every single global update. One of the
possible solutions is using a large batch to compute local
gradients (Goyal et al., 2017), but the communication com-
plexity, that is the necessary number of communication
rounds to optimize, is theoretically never smaller than the
one of deterministic GD and thus communication cost is
still problematic.

To overcome the communication bottleneck problem, lo-
cal methods have got much attention due to its empirical
effectiveness (Konečnỳ et al., 2015; Lin et al., 2018). In
local SGD (also called Parallel Restart SGD), each worker
independently updates the local model based on his own
local dataset, and periodically communicates and averages
the local models. Many papers (Stich, 2018; Yu et al., 2019;
Haddadpour & Mahdavi, 2019; Haddadpour et al., 2019;
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Koloskova et al., 2020; Khaled et al., 2020) have stated the
superiority of local SGD to minibatch SGD, but these results
are based on unfair comparisons and hence not satisfactory.
Concretely, they have compared the two algorithms with the
same local minibatch size b, which means that local SGD
with K local updates requires K times larger number of lo-
cal computations per communication round than minibatch
SGD.1 If we fix the number of single stochastic gradient
computations per communication round to B := Kb for
each worker, their results indicates that the communication
complexity of local SGD with K local updates and b local
minibatch size are never better than the one of minibatch
SGD with B local minibatch size for any B. This point is
quite important, but many papers have overlooked it.

Recently, Woodworth et al. (2020b;a) have shown that, for
the first time, theoretical superiority of local SGD to mini-
batch SGD under fair comparison for convex optimization
when the heterogeneity of local objectives is small. On the
other hand, their derived lower bound of local SGD also
suggests the limitation of local SGD. Specifically, they have
shown that if the first-order heterogeneity of local objec-
tives2 is greater than

p
ε, where ε is the desired optimization

accuracy, the communication complexity of local SGD is
even worse than the one of minibatch SGD. In other words,
the quite small heterogeneity of local objectives is essential
for the superiority of local SGD to minibatch SGD, which is
a clear limitation of local SGD. SCAFFOLD (Karimireddy
et al., 2020b) is a new local algorithm based on the idea
of reducing their called client-drift, which uses a similar
formulation to the variance reduction technique. However,
the communication complexity is the same as minibatch
SGD for general nonconvex objectives and it requires small
heterogeneity and quadraticity of local objectives to surpass
minibatch SGD, which is also quite limited. Inexact DANE
(Reddi et al., 2016b) is another variant of local methods that
uses a general local subsolver that returns an approximate
minimizer of the regularized local objective. Again, the
superiority to non-local methods has been only shown for
quadratic convex objectives.

In summary, both in classical distributed learning and recent
federated learning, naive minibatch (i.e., non-local) meth-
ods often suffer from their communication cost. Several
local methods surpass non-local ones in terms of communi-
cation complexity. However, the necessary conditions for
the superiority of the previous local algorithms to non-local
ones are quite limited (i.e., extremely small heterogeneity

1Practically, it is said that a larger minibatch size sometimes
causes bad generalization ability in deep learning and thus compar-
ing minibatch SGD and local SGD with a common local minibatch
size is meaningful in some sense. But at least from a theoretical
point of view, this comparison is questionable.

2First-order heterogeneity �1 is defined as follows: krfp(x)�
rfp0 (x)k � �1; 8x 2 Rd;8p; p0 2 [P ].

or quadraticity of local objectives). A natural question is
that: is there a local algorithm which surpasses non-local
(and existing local) ones in terms of communication com-
plexity with a fixed local computation budget under more
relaxed conditions?

Main Contributions

We propose a new local algorithm called Bias-Variance Re-
duced Local SGD (BVR-L-SGD) for nonconvex distributed
learning. The main features of our method are as below.

Algorithmic Features. The algorithm is based on our bias
and variance reduced gradient estimatorthat simultane-
ously reduces the bias caused by local updates and the vari-
ance caused by stochastization based on the idea of SARAH
like variance reduction technique. Importantly, to fully uti-
lize the second-order heterogeneity of local objectives, a
randomly picked local modelis used as a synchronized
global model instead of taking the average of them, which
is typical in the previous local methods.

Theoretical Features. We analyse BVR-L-SGD for gen-
eral nonconvex smooth objectives under second-order het-
erogeneity assumption, which interpolates the heterogene-
ity of local objectives between the identical case and the
extremely non-IID case, and plays a critical role in our
nonconvex analysis. The comparison of the communica-
tion complexities of our method with the most relevant
existing results is given in Table 1. The communication
complexity of BVR-L-SGD has a better dependence onε
than minibatch SGD, local SGD and SCAFFOLD. When
BP �

p
n ^ 1/ε and the second-order heterogeneity ζ of

local objectives is small relative to the smoothness L, BVR-
L-SGD strictly surpasses minibatch SARAH. Furthermore,
BVR-L-SGD is the first method that breaks the barrier of
communication complexity1/ε when local computation
budget B ! 1, for general smooth nonconvex objectives
with small heterogeneity ζ. Importantly, even when the
heterogeneity is high, the communication complexity of
our method is never worse than the ones of the existing
methodssince the second-order heterogeneity ζ is bounded
by two times the smoothness L of local objectives4.

As a result, BVR-L-SGD is a novel and promising commu-
nication efficient method for nonconvex optimization both
in classical distributed learning (i.e., local data distributions
are nearly identical) and recent federated learning (i.e., local
data distributions can be highly heterogeneous).

3Note that from the extra assumption, the communication
complexity is always lower bounded by 1

ε
+ 1

BPε2 for any B even
if �di� = 0 (i.e., we are in overparamterized regimes). Thus,
the communication complexity is never better than the one of
minibatch SGD.

4For the details, see Assumption 1 in Section 2
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Algorithm Communication Complexity Extra Assumptions
Minibatch SGD 1

" + 1
BP " 2 None

Minibatch SARAH (Nguyen et al., 2019) 1
" +

p
n ^ 1

"
BP " None

Local SGD (Yu et al., 2019) 1
B" + 1

BP " 2 + 1

"
3
2

G gradient boundedness

Local SGD (Khaled et al., 2020)3 1+ � 4
dif

BP " 2 + � 2
dif BP

"

convexity

B � 1+ � 2
dif

P " or � 2
dif � "

Local SGD (Woodworth et al., 2020a) 1
B" + 1

BP " 2 + 1
p

B"
3
2

+ � 1

"
3
2

convexity,
1st-order� 1 heterogeneity

Local SGD (Woodworth et al., 2020a)
(Lower bound)

1

B"
3
2

+ 1
BP " 2 +

�
1
" ^ � 1

"
3
2

� convexity,
1st-order� 1 heterogeneity

SCAFFOLD (Karimireddy et al., 2020b) 1
" + 1

BP " 2 None

SCAFFOLD (Karimireddy et al., 2020b) 1
B" + 1

BP " 2 + �
"

quadraticity,
2nd-order� heterogeneity

BVR-L-SGD (this paper) 1p
B"

+
p

n ^ 1
"

BP " + �
" 2nd-order� heterogeneity

Table 1.Comparison of the order of the necessary number of communication rounds to satisfyEkf (xout )k2 � " (or f (xout ) � f (x � ) � "
for convexf ). "Extra Assumptions” indicates the necessary assumptions to derive the results other than Assumptions 2, 3 and 4 in Section
2. " is the desired optimization accuracy.B is the local computation budget that is the allowed number of single stochastic gradient
computations per communication round for each worker.P is the number of workers.n is the total number of samples and is possibly1
in online (i.e., expected risk minimization) settings. The smoothness of local objectivesL , the variance of a single stochastic gradient� 2

and gradient boundednessG are regarded as�(1) for ease of presentation. Note that in this notation,second-order heterogeneity� always
satis�es� � �( L ) = �(1) . � 2

dif is the squared local gradient norm at an optimum (for the precise de�nition, see (Khaled et al., 2020)).

Other Related Work. Several recent papers have also stud-
ied local algorithms combined with variance reduction tech-
nique (Sharma et al., 2019; Das et al., 2020; Karimireddy
et al., 2020a). Sharma et al. (2019) have considered Parallel
Restart SPIDER (PR-SPIDER), that is a local variant of
SPIDER (Fang et al., 2018) and shown that the proposed
algorithm achieves the optimal total computational com-
plexity and the communication complexity of1=" for non-
covnex smooth objectives. However, these rates essentially
match the ones of non-local SARAH and no advantage
of localization has been shown. Also, Das et al. (2020)
have considered a SPIDER like local algorithm called Fed-
GLOMO but the derived communication complexity is only
1="3=2 in general and the rate is even worse than mini-
batch SARAH. Karimireddy et al. (2020a) have proposed
MIME, which is essentially a combination of local SGD
and SVRG-like variance reduction technique. They have
shown that MIME achieves the communication complexity
of 1=(B") + 1 =(P3=4"3=2) + �=" for � second-order het-
erogeneous nonconvex smooth objectives. Importantly, the
second term of the rate of BVR-L-SGD has better depen-
dencies onP andB than the one of MIME. Particularly,
BVR-L-SGD achieves�=" whenB ! 1 but MIME does
not possess this property.

2. Problem De�nition and Assumptions

In this section, we �rst introduce the notations used in this
paper. Then, the problem setting considered in this paper is

illustrated and theoretical assumptions are given.

Notation. k�k denotes the EuclideanL 2 normk�k2: kxk =p P
i x2

i for vectorx. For a matrixX , kX k denotes the
induced norm by the EuclideanL 2 norm. For a natural
numberm, [m] denotes the setf 1; 2; : : : ; mg. For a setA,
# A means the number of elements, which is possibly1 .
For any numbera; b, a _ banda ^ bdenotemaxf a; bg and
minf a; bg respectively. We denote the uniform distribution
overA by Unif( A).

2.1. Problem Setting

We want to minimize nonconvex smooth objective

f (x) :=
1
P

PX

p=1

f p(x); wheref p(x) := Ez� D p [`(x; z)]

for x 2 Rd, whereDp is the data distribution associated
with worker p. Although we consider both of�ine (i.e.,
#supp( Dp) < 1 for every p 2 [P]) and online (i.e.,
#supp( Dp) = 1 for somep 2 [P]) settings, it is as-
sumed for of�ine settings that each local dataset has an
equal number of samples, i.e.,#supp( Dp) = #supp( Dp0)
for everyp; p0 2 [P] just for simplicity. We assume that
each workerp can only access the own data distributionDp

without communication. Aggregation (e.g., summation) of
all the worker'sd-dimensional parameters or broadcast of
a d-dimensional parameter from one worker to the other
workers can be realized by single communication. In typical
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situations, single communication is more time-consuming
than single stochastic gradient computation. LetCdenotes
the single communication cost andGdoes the single stochas-
tic gradient computation. Using these notations, we assume
C � G . Since we expect that a larger number of available
stochastic gradients in a communication round leads to faster
optimization, we can increase the number of stochastic gra-
dient computations unless the total gradient computational
time exceedsC. This motivates the concept oflocal com-
putation budgetB (� C =G): given a communication and
computational environment, it is assumed thateach worker
can only compute at mostB single stochastic gradients per
communication round on average. Then, we compare the
communication complexity, that is the total number of com-
munication rounds of a distributed optimization algorithm
to achieve the desired optimization accuracy. From the
de�nition, given a communication and computational envi-
ronment, the communication complexity with a �xed local
computation budgetB := C=Gcaptures the best achievable
total execution time of an algorithm. Generally, for a larger
budget, we expect smaller communication complexity.

2.2. Theoretical Assumptions

In this paper, we always assume the following four assump-
tions. Assumptions 2, 3 and 4 are fairly standard in �rst-
order nonconvex optimization.
Assumption 1 (Heterogeneity). f f pgP

p=1 is second-order
� -heterogeneous, i.e., for anyp; p0 2 [P],




 r 2f p(x) � r 2f p0(x)




 � �; 8x 2 Rd:

Assumption 1 characterizes the heterogeneity of local ob-
jectivesf f pgP

p=1 and has a critical role in our analysis. We
expect that relatively small heterogeneity to the smoothness
reduces the necessary number of communication to optimize
global objectivef = (1 =P)

P P
p=1 f p. If the local objec-

tives are identical, i.e.,Dp = Dp0 for everyp; p0 2 [P],
� becomes zero. When eachDp is the empirical distribu-
tion of n=P IID samples from common data distribution
D, we havekr 2f p(x) � r 2f p0(x)k � e�(

p
P=nL) with

high probability by matrix Hoeffding's inequality under As-
sumption 2 for �xedx 5. Hence, in classical distributed
learning regimes, Assumption 1 naturally holds. An impor-
tant remark is thatAssumption 2 implies� � 2L , i.e., the
heterogeneity is bounded by the smoothness. This means
thatAssumption 1 gives an interpolation between the iden-
tical data setting� = 0 and the extremely non-IID setting
� = 2L . Even in federated learning regimes� �

p
P=nL,

we can expect� � 2L for some problems.

5Although to show the high probability bound for everyx 2
Rd is generally dif�cult, we can use the high probability bounds on
the discrete optimization path rather than the entire spaceRd and
then the same bound still holds. For only simplicity, we assume
the heterogeneity condition on entire spaceRd in this paper.

Algorithm 1 Local GD(ex0, � , B , b, K , T)
1: for t = 1 to T do
2: for p = 1 to P in parallel do
3: Setx (p)

0 = ex t � 1.
4: for k = 1 to K do
5: Updatex (p)

k = x (p)
k � 1 � � r f p(x (p)

k � 1)
6: end for
7: end for
8: Communicatef x (p)

t gP
p=1 .

9: ex t = 1
P

P P
p=1 x (p)

k̂
(k̂ � Unif[K ]).

10: end for
11: Return: ex t̂ (t̂ � Unif[T ]).

Assumption 2 (Smoothness). For anyp 2 [P] andz 2
supp(Dp), `(�; z) is L -smooth, i.e.,

kr `(x; z) � r `(y; z)k � Lkx � yk; 8x; y 2 Rd:

We assumeL-smoothness of loss̀rather than riskf . This
assumption is a bit strong, but is typically necessary in the
analysis of variance reduced gradient estimators.

Assumption 3 (Existence of global optimum). f has a
global minimizerx � 2 Rd.

Assumption 4(Bounded gradient variance). For everyp 2
[P],

Ez� D p kr `(x; z) � r f p(x)k2 � � 2:

Assumption 4 says that the variance of stochastic gradient
is bounded for every local objective.

3. Approach and Proposed Algorithms

In this section, we introduce our approach and provide de-
tails of the proposed algorithms.

3.1. Core Concepts and Approach

Here, we describe four main building blocks of our algo-
rithm, that arelocalization, bias reduction, stochastization
andvariance reduction. Although our algorithm relies on
SARAH like variance reduction technique, in this subsec-
tion we will describe our approach using SVRG like vari-
ance reduction rather than SARAH like one to simply con-
vey the core ideas.

Localization. One of the promising methods for reducing
communication cost is local methods. In local methods,
each worker independently optimizes the local objective
and periodically communicate the current solution. For ex-
ample, the algorithm of local GD, which is a deterministic
variant of local SGD, is given in Algorithm 1. In some
sense,the local gradientr f p(x) can be regard as a biased
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estimator of the global gradientr f (x). One of the limita-
tions of local GD is the existence of the potential bias of
the local gradientr f p(x) to approximate the global one
r f (x) for heterogeneous local objectivesf f pgP

p=1 . The
biaskr f p(x) � r f (x)k critically affect the convergence
speed and can be bounded askr f p(x) � r f (x)k � � 1 un-
der the �rst order� 1-heterogeneity condition. This implies
that the bias heavily depends on the heterogeneity parameter
� 1 and does not converge to zero asx ! x � . Hence, the
existing analysis of local methods requires extremely small
� 1 that typically depends on the optimization accuracy"
to surpass non-local methods including GD and minibatch
SGD in terms of communication complexity, which is quite
limited in many situations.

Bias Reduction. To reduce the bias of local gradient, we
introducebias reductiontechnique. Concretely, we con-
struct the local estimatorr f p(x) � r f p(x0) + r f (x0)
to approximater f (x). Here,x0 is the previously com-
municated solution. This construction evokes the famous
variance reduction technique. Analogically to the anal-
ysis of variance reduced gradient estimators, under the
second order� -heterogeneity, the bias can be bounded as
kr f p(x) � r f p(x0) + r f (x0) � r f (x)k � � kx � x0k.
This means that the bias converges to zero asx andx0 ! x � .
Hence,the bias of the introduced estimator is reduced by
utilizing the periodically computed global gradientr f (x).
This enables us to show faster convergence than vanilla
non-local and local GD even for not too small� .

Stochastization.Generally,deterministic methods require
huge computational cost for single updatein large scale
optimization. The classical idea to handle this problem is
stochastization. For example, non-distributed SGD naively
usesr `(x; z) with single samplez � Dp to approximate
r f (x) = Ez� D [r `(x; z)]. Although stochastization re-
duces the computational cost per update, the variance due
to it generally slows down the convergence speed. Similar to
standard SGD, we can naively stochastize our bias reduced
estimator as̀ (x; z) � `(x0; z) + (1 =P)

P P
p0=1 `(x0; zp0),

wherez � Dp andzp0 � Dp0 for p0 � [P ]. Here,f zp0gP
p0=1

is sampled only at communication time. As pointed
out before, the varianceEz;z 0� D p k`(x; z) � `(x0; z) +
(1=P)

P P
p0=1 `(x0; zp0)� (r f p(x)�r f p(x0)+ r f (x0))k2

caused by stochastization may leads to slow convergence.

Variance Reduction. To reduce the variance of the gradi-
ent estimator due to stochastization, we introduce variance
reduction technique. Variance reduction is also classical
technique and has been extensively analysed both in con-
vex and nonconvex optimization. The essence of variance
reduction is the utilization of periodically computed full gra-
dientr f (x). In non-distributed cases, a variance reduced
estimator is de�ned asr `(x; z) � r `(x0; z) + r f (x0)
with z � D . This estimator is unbiased and the vari-

Algorithm 2 BVR-L-SGD(ex0, � , b, eb, K , T, S)
1: for s = 1 to S do
2: for p = 1 to P in parallel do
3: if eb � 1

P

P P
p=1 #supp( Dp) then

4: er (p) = r f p(exs� 1).
5: else
6: er (p) = 1

eb

P eb
l =1 r `(exs� 1; zl ) (zl

i:i:d:� Dp).
7: end if
8: end for
9: Communicatef er (p) gP

p=1 , setev0 = 1
P

P P
p=1

er (p) .
10: Setx0 = x � 1 = exs� 1.
11: for t = 1 to T do
12: for p = 1 to P in parallel do
13: g(p)

t (x t � 1) = 1
Kb

P Kb
l =1 r `(x t � 1; zl ),

14: g(p)
t (x t � 2) = 1

Kb

P Kb
l =1 r `(x t � 2; zl )

15: for zl
i:i:d:� Dp.

16: ev(p)
t = g(p)

t (x t � 1) � g(p)
t (x t � 2) + ev(p)

t � 1.
17: end for
18: Communicatef ev(p)

t gP
p=1 , setevt = 1

P

P P
p=1 ev(p)

t .
19: for p = 1 to P in parallel do
20: x (p)

t , x (p) ;out
t =

21: Local-Routine(p; xt � 1; �; evt ; b; K ).
22: end for
23: Communicatef x (p)

t gP
p=1 andf x (p) ;out

t gP
p=1 .

24: Setx t = x ( p̂)
t andxout

t = x ( p̂) ;out
t (p̂ � Unif[P]).

25: end for
26: Setexs = xT andexout

s = xout
t̂

(t̂ � Unif[T ]).
27: end for
28: Return: exout = exout

ŝ (ŝ � Unif[S]).

anceEz� D kr `(x; z) � r `(x0; z) + r f (x0) � r f (x)k2

can be bounded byL 2kx � x0k2, whereL is the smooth-
ness parameter of`. If x andx0 ! x � , the variance con-
verges to zero. In this mean,the estimator reduces the
variance caused by stochastization and also maintains com-
putational ef�ciency by using periodically computed global
full gradients. Analogous to this formulation, each worker
p computes a variance reduced local gradient estimator
r `(x; z) � r `(x0; z) + r f (x0) with z � Dp.

Concrete Algorithm

In this paragraph, we illustrate the concrete procedure of
our proposed algorithm based on the concepts described in
the previous paragraph.

The proposed algorithm for nonconvex objectives is pro-
vided in Algorithm 2. In line 2-9, workerp computes the
full gradient of local objectivef p (or a large batch stochas-
tic gradient off p if the learning problem is on-line, which
means that#supp( Dp) = 1 for somep). Then, each
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Algorithm 3 Local-Routine(p, x0, � , v0, b, K )

1: Setx (p)
0 = x (p)

� 1 = x0.
2: for k = 1 to K do
3: g(p)

k (x (p)
k � 1) = 1

b

P b
l =1 `(x (p)

k � 1; zl ), g(p)
k (x (p)

k � 2) =
1
b

P b
l =1 `(x (p)

k � 2; zl ) (zl
i:i:d:� Dp).

4: v(p)
k = g(p)

k (x (p)
k � 1) � g(p)

k (x (p)
k � 2) + v(p)

k � 1.

5: Updatex (p)
k = x (p)

k � 1 � �v (p)
k

6: end for
7: Return: x (p)

K , x (p)
k̂

(k̂ � Unif[K ]).

worker broadcasts it and the gradient of global objectivef
is executed by averaging the communicated local gradients
(line 9). Then, for each iterationt, each worker computes
variance reduced local gradientev(p)

t that approximates the
full local gradient usingKb IID samples(line 13-16), that
is an important process for computational ef�ciency. Then,
f ev(p)

t gP
p=1 is communicated andevt is obtained by averaging

them. Using previous solutionx t � 1 andevt as inputs, each
worker runs Local-Routine (Algorithm 3) (line 21). The
next solutionx t at iterationt is set to the randomly cho-
sen solutions from Local-Routine's outputsf x t gP

p=1 rather
than averaging them. When we terminate the for loop from
line 11 to 22, the next solution at stages is set to the ran-
domly chosen solutions fromf x t g

P;T
p=1 ;t =1 (line 24) rather

than averaging them again. Although the model averaging
process has a critical role in all the previous local algorithms,
the random picking process is essential in our analysis to
fully utilize the second-order heterogeneity and is one of the
algorithmic novelties of our method.

The local computation algorithm Local-Routine is illus-
trated in Algorithm 3. In lines 3-5, we again use variance
reduction withv0 as a snapshot gradient. Here,we adopt the
SARAH like variance reduction rather than the SVRG like
onebecauseSARAH achieves the optimal computational
complexityfor non-distributed nonconvex optimization.

Remark(Communication and computational complexity).
The communication complexity is�( ST) and the averaged
number of single gradient computations per communication
round for each worker is�(( Kb + eb=T)) .

Remark(Generalization of SARAH). WhenK = 1 , BVR-
L-SGD exactly matches to minibatch SARAH. In this sense,
BVR-L-SGD is a generalization of minibatch SARAH.

Remark(Practical Implementation). Practically, in line 19-
24 of Algorithm 2, we randomly choose workerp̂ at �rst
and execute Local-Routine only for workerp̂. Note that
this procedure gives an equivalent algorithm to the original
one but reduces the computational and communication cost.
More speci�c procedures of the practical implementation
are found in the supplementary material (Section C).

4. Convergence Analysis

In this section, we provide theoretical convergence analysis
of our proposed algorithm. For the proofs, see the supple-
mentary material (Section A and B).

4.1. Analysis of Local-Routine

Here, we analyse Local-Routine (Algorithm 3).

Lemma 4.1(Descent Lemma). Suppose that Assumption 2
holds. There exists� 1 = �(1 =L) such that for any� � � 1,
Local-Routine(p, x0, � , v0, b, K ) satis�es fork 2 [K ],

Ekr f (x (p)
k � 1)k2 � �

�
1
�

�
(Ef (x (p)

k � 1) � Ef (x (p)
k ))

+
5
2

Ekv(p)
k � r f (x (p)

k � 1)k2:

The deviation ofv(p)
k from r f (x (p)

k � 1) can be bounded by
the following lemma.

Lemma 4.2. Suppose that Assumptions 1 and 2 hold. Then,
there exists� 2 = �(1 =(K� ) ^

p
b=(

p
KL )) such that for

� � � 2, Local-Routine(p, x0, � , v0, b, K ) satis�es

1
K

KX

k=1

Ekv(p)
k � r f (x (p)

k � 1)k2

� � ( C� )
KX

k=1

E





 r f (x (p)

k � 1)







2
+ �(1) kv0 � r f (x0)k2;

whereC� := � 2L 2=b+ � 2� 2K .

Combining Lemma 4.1 and 4.2 results in the following
proposition.

Proposition 4.3. Suppose that Assumptions 1 and 2 hold.
There exists� 3 = �(1 =L ^ 1=(K� ) ^

p
b=(

p
KL )) such

that for � � � 3, Local-Routine(p, x0, � , v0, b, K ) satis�es

Ekr f (x (p)
k̂

)k2 � �
�

1
�K

�
(Ef (x0) � Ef (x (p)

K ))

+ �(1) kv0 � r f (x0)k2:

4.2. Analysis of BVR-L-SGD

Here, we analyse BVR-L-SGD (Algorithm 2). The fol-
lowing lemma bounds the variance ofevt , which arises in
Proposition 4.3.

Lemma 4.4. Suppose that Assumptions 1, 2 and 4 hold.
Then, there exists� 4 = �(1 =(K� ) ^

p
b=(

p
KL ) ^p

Pb=(
p

KTL )) such that for� � � 4, BVR-L-SGD(ex0,
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� , b, eb, K , T, S) satis�es

1
T

TX

t =1

Ekevt � r f (x t � 1)k2

� �
�
C0

�

� 1
T

TX

t 0=1

1
P

PX

p=1

E[G(p)
t 0 ] + 1eb< n

P

� 2

Peb
:

whereC0
� := � 2L 2KT=(Pb) + � 2L 2K=b + � 2� 2K 2, n :=

P P
p=1 #supp( Dp) andG(p)

t 0 := kr f (x (p) ;out
t 0� 1 )k2.

Using the result of Local-Routine (Proposition 4.3) and
Lemma 4.4, we obtain the following theorem.

Theorem 4.5. Suppose that Assumptions 1, 2, 3 and 4 hold.
Then, there exists� = �(1 =L ^ 1=(K� ) ^

p
b=(

p
KL ) ^p

Pb=(
p

KTL )) such that BVR-L-SGD(ex0, � , b, eb, K , T,
S) satis�es

Ekr f (exout )k2 � �
�

1
�KTS

�
(Ef (ex0) � f (x � ))

+ �(1) 1eb< n
P

� 2

Peb
;

wheren :=
P P

p=1 #supp( Dp).

Theorem 4.5 immediately implies the following corollary
which characterises the communication complexity of BVR-
L-SGD.

Corollary 4.6. Suppose that Assumptions 1, 2, 3 and 4 hold.
We denoten =

P P
p=1 #supp( Dp). Leteb = �(( n=P) ^

(� 2=(P "))) . Then, there exists� = �(1 =L ^ 1=(K� ) ^p
b=(

p
KL ) ^

p
Pb=(

p
KTL ))) such that BVR-L-SGD(ex0,

� , b, eb, K , T, S) with S = �(1 + 1 =(�KT " )) satis�es
Ekr f (exout )k2 � �( " ) with communication complexity

ST = �

 
L

K"
+

�
"

+
L

p
Kb"

+

r
T

KbP
L
"

+ T

!

:

Remark(Communication ef�ciency). Given local computa-
tion budgetB, we setT = �(1+ eb=B) andKb = �( B) with
b � �(

p
B), whereebwas de�ned in Corollary B.1. Then,

we have the averaged number of local computations per com-
munication roundKb + eb=T = �( B) and the total commu-
nication complexity with budgetB becomes�(( L=(

p
B")+p

n ^ (� 2=")L=(BP") + ( n ^ (� 2="))=(BP) + �=" ).

5. Numerical Resutls

In this section, we provide several experimental results to
verify our theoretical �ndings.

We conducted a ten-class classi�cation on CIFAR106

dataset. Several heterogeneity patterns of local datasets

6https://www.cs.toronto.edu/~kriz/cifar.
html .

Figure 1.An illustraion of our local datasets generation process.

were arti�cially created. For each heterogeneity, we com-
pared the empirical performances of our method and several
existing methods.

Data Preparation. We �rst equalized the number of data
per class by randomly removing the excess data for both
the train and test datasets for only simplicity. Then, for
�xed q 2 f 0:1; 0:35; 0:6; 0:85g, q � 100 % of the data
of classp was assigned to workerp for p 2 [P]. Here,
we set the number of workers to the number of classes.
Then, for each classp, we equally divided the remained
(1� q) � 100% data of classp into P � 1 sets and distributed
them to correspondence workerp0 6= p. As a result, we
obtained several patterns of class imbalanced local datasets
with various heterogeneity (we expect smaller heterogeneity
for smallerq and particularly� � 0 whenq = 0 :1 since
P = 10). An illustration of this process forP = 3 is given
in Figure 1. From this process, we �xed the number of
workersP to ten. Finally, we normalized each channel of
the data to be mean and standard deviation0:5.

Models. We conducted our experiments using an one-
hidden layer fully connected neural network with100
hidden units and softplus activation. For loss function,
we used the standard cross-entropy loss. We initialized
parameters by uniformly sampling the parameters from
[�

p
6=(nin + nout );

p
6=(nin + nout )] (Glorot & Bengio,

2010), wherenin andnout are the number of units in the
input and output layers respectively. Furthermore, we add
L 2-regularizer to the empirical risk with �xed regularization
parameter5 � 10� 3.

Implemented Algorithms. We implemented mini-
batch SGD, Local SGD, SARAH, SCAFFOLD and our
BVR-L-SGD. For each local computation budgetB 2
f 256; 512; 1024g, we setK = B=16 andb = 16 for lo-
cal methods (Local SGD, SCAFFOLD and BVR-L-SGD),
and b = B for non-local ones (minibatch SGD and
SARAH). Note that each algorithm requires the same or-
der of stochastic gradient computations per communica-
tion. For each algorithm, we tuned learning rate� from
f 0:005; 0:01; 0:05; 0:1; 0:5; 1:0g. The details of the tuning
procedure are found in the supplementary material (Section
D).

Evaluation. We compared the implemented algorithms us-
ing four criteria of train loss; train accuracy; test loss and test
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(a) Best Train Loss (b) Best Test Accuracy

Figure 2.Comparison of the best train loss and test accuracy
against heterogeneity parameterq.

accuracy against (i) heterogeneityq; (ii) local computation
budgetsB and (iii) the number of communication rounds.
The total number of communication rounds was �xed to
3; 000for each algorithm. We independently repeated the
experiments5 times and report the mean and standard devi-
ation of the above criteria. Due to the space limitation, we
will only report train loss and test accuracy in the main pa-
per. The full results are found in the supplementary material
(Section D).

Results 1: Effect of the heterogeneity. Here, we inves-
tigate the effect of the heterogeneity on the convergence
speed of the algorithms. To clarify the pure effect of the
heterogeneity, we �xed the local computation budgetB to
1; 024, which was the largest one in our experiments. Fig-
ure 2 shows the comparison of the best-achieved train loss
and test accuracy in3; 000communication rounds against
heterogeneity parameterq. From this, we can see that the
convergence speed of the local methods deteriorated as het-
erogeneity parameterq increased. Particularly, the degree
of the performance degradation of L-SGD and SCAFFOLD
was serious. In contrast, this phenomenon was not observed
for non-local methods, because the convergence rates of
non-local methods do not depend on heterogeneity� as in
Table 1. Importantly, even for the largestq, BVR-L-SGD
signi�cantly outperformed the other methods.

Results 2: Effect of the local computation budget size.
Now, we examine the effect of the size of the local computa-
tion budgetB to the convergence speed. For this purpose, we
�xed heterogeneity parameterq to the smallest one. Figure
3 shows the comparison of the best-achieved train loss and
test accuracy against local computation budgetB. We can
see that the local methods improved their performances as
local computation budgetB increased, but non-local meth-
ods did not. This is because local methods can potentially
achieve a smaller communication complexity than1=" by
increasingB for small � , but non-local methods can not
break the barrier of1=" for anyB as in Table 1.

Results 3: Effect of the number of communication
rounds. Finally, to see the trends of train loss and test
accuracy during optimization, we give the comparison of

(a) Best Train Loss (b) Best Test Accuracy

Figure 3.Comparison of the best train loss and test accuracy
against local computation budgetB.

the train loss and test accuracy against the number of com-
munication rounds (Figure 4). For the space limitation, we
only report the caseB = 1 ; 024. From these results, it
can be seen that our proposed BVR-L-SGD consistently
outperformed the other methods from beginning to end.

In summary, for small heterogeneity, local methods signif-
icantly surpassed non-local methods. For relatively large
heterogeneity, the performances of the existing local meth-
ods were seriously degraded. In contrast, the degree of
deterioration of BVR-L-SGD was small and BVR-L-SGD
consistently out-performed both the existing non-local and
local methods. These observations strongly verify the theo-
retical �ndings and showed the empirical superiority of our
method.

6. Conclusion and Future Work

In this paper, we studied our proposed BVR-L-SGD for
nonconvex distributed learning, which is based on the bias-
variance reduced gradient estimator to fully utilize the small
second-order heterogeneity of local objectives and suggests
randomly picking up one of the local models instead of
taking the average of them when workers are synchronized.
Our theory implies the superiority of BVR-L-SGD to previ-
ous non-local and local methods in terms of communication
complexity. The numerical results strongly encouraged our
theoretical results and suggested the empirical superiority
of the proposed method.

One promising and challenging future work is to extend our
algorithm and theory to the problem of �nding second-order
stationary points. Although there are many papers for �nd-
ing second-order stationary points for general nonconvex
problems (Ge et al., 2015; Allen-Zhu, 2017; Jin et al., 2017;
Li, 2019), it might be inherently dif�cult for local algorithms
to ef�ciently �nd a local minima due to the nature of local
updates. An open question is that: can we construct a local
algorithm that guarantees to �nd second-order stationary
points and is more communication ef�cient than non-local
methods for local objectives with small heterogeneity?


