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Abstract
Variational autoencoder (VAE) estimates the pos-
terior parameters (mean and variance) of latent
variables corresponding to each input data. While
it is used for many tasks, the transparency of
the model is still an underlying issue. This pa-
per provides a quantitative understanding of VAE
property through the differential geometric and
information-theoretic interpretations of VAE. Ac-
cording to the Rate-distortion theory, the opti-
mal transform coding is achieved by using an
orthonormal transform with PCA basis where the
transform space is isometric to the input. Consid-
ering the analogy of transform coding to VAE, we
clarify theoretically and experimentally that VAE
can be mapped to an implicit isometric embed-
ding with a scale factor derived from the posterior
parameter. As a result, we can estimate the data
probabilities in the input space from the prior, loss
metrics, and corresponding posterior parameters,
and further, the quantitative importance of each la-
tent variable can be evaluated like the eigenvalue
of PCA.

1. Introduction
Variational autoencoder (VAE) (Kingma & Welling, 2014)
is one of the most successful generative models, estimating
posterior parameters of latent variables for each input data.
In VAE, the latent representation is obtained by maximiz-
ing an evidence lower bound (ELBO). A number of studies
have attempted to characterize the theoretical property of
VAE. Indeed, there still are unsolved questions, e.g., what
is the meaning of the latent variable VAE obtained, what β
represents in β-VAE (Higgins et al., 2017), whether ELBO
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converges to an appropriate value, and so on. Alemi et al.
(2018) introduced the RD trade-off based on the information-
theoretic framework to analyse β-VAE. However, they did
not clarify what VAE captures after optimization. Dai et al.
(2018) showed VAE restricted as a linear transform can be
considered as a robust principal component analysis (PCA).
But, their model has a limitation for the analysis on each
latent variable basis because of the linearity assumption.
Rolı́nek et al. (2019) showed the Jacobian matrix of VAE is
orthogonal, which seems to make latent variables disentan-
gled implicitly. However, they do not uncover the impact of
each latent variable on the input data quantitatively because
they simplify KL divergence as a constant. Locatello et al.
(2019) also showed the unsupervised learning of disentan-
gled representations fundamentally requires inductive biases
on both the metric and data. Yet, they also do not uncover
the quantitative property of disentangled representations
which is obtained under the given inductive biases. Kumar
& Poole (2020) connected the VAE objective with the Rie-
mannian metric and proposed new deterministic regularized
objectives. However, they still did not uncover the quantita-
tive property of VAE after optimizing their objectives.

These problems are essentially due to the lack of a clear
formulation of the quantitative relationship between the in-
put data and the latent variables. To overcome this point,
Kato et al. (2020) propose an isometric autoencoder as a
non-VAE model. In the isometric embedding (Han & Hong,
2006), the distance between arbitrary two input points is
retained in the embedding space. With isometric embedding,
the quantitative relationship between the input data and the
latent variables is tractable. Our intuition is that if we could
also map VAE to an isometric autoencoder, the behavior
of VAE latent variables will become clear. Thus, the chal-
lenge of this paper is to resolve these essential problems by
utilizing the view point of isometric embedding.

1. First of all, we show that VAE obtains an implicit isomet-
ric embedding of the support of the input distribution as its
latent space. That is, the input variable is embedded through
the encoder in a low dimensional latent space in which the
distance in the given metric between two points in the in-
put space is preserved. Surprisingly, this characterization
resolves most unsolved problems of VAE such as what we
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have enumerated above. This implicit isometric embedding
is derived as a non-linear scaling of VAE embedding.

2. More concretely, we will show the following issues via
the isometric embedding characterization theoretically:
(a) Role of β in β-VAE: β controls each dimensional poste-
rior variance of isometric embedding as a constant β/2.
(b) Estimation of input distribution: the input distribution
can be quantitatively estimated from the distribution of im-
plicit isometric embedding because of the constant Jacobian
determinant between the input and implicit isometric spaces.
(c) Disentanglement: If the manifold has a separate latent
variable in the given metric by nature, the implicit isometric
embedding captures such disentangled features as a result
of minimizing the entropy.
(d) Rate-distortion (RD) optimal: VAE can be considered as
a rate-distortion optimal encoder formulated by RD theory
(Berger, 1971).

3. Finally, we justify our theoretical findings through sev-
eral numerical experiments. We observe the estimated dis-
tribution is proportional to the input distribution in the toy
dataset. By utilizing this property, the performance of the
anomaly detection for real data is comparable to state-of-
the-art studies. We also observe that the variance of each
dimensional component in the isometric embedding shows
the importance of each disentangled property like PCA.

2. Variational autoencoder
In VAE, ELBO is maximized instead of maximizing the log-
likelihood directly. Let x ∈ Rm be a point in a dataset. The
original VAE model consists of a latent variable with fixed
prior z ∼ p(z) = N (z; 0, In) ∈ Rn, a parametric encoder
Encφ : x ⇒ z, and a parametric decoder Decθ : z ⇒ x̂.
In the encoder, qφ(z|x) = N (z;µ(x),σ(x)) is provided by
estimating parameters µ(x) and σ(x). Let Lx be a local cost
at data x. Then, ELBO is described by

Ep(x)
[
Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))

]
. (1)

In Ep(x)[ · ], the second term DKL(·) is a Kullback–Leibler
(KL) divergence. Let µj(x), σj(x), and DKLj(x) be j-th
dimensional values of µ(x), σ(x), and KL divergence, re-
spectively. Then DKL(·) is derived as:

DKL(·) =

n∑
j=1

DKLj(x), where

DKLj(x) =
1

2

(
µj(x)

2 + σj(x)
2 − log σj(x)

2 − 1
)
. (2)

The first termEqφ(z|x)[log pθ(x|z)] is called the reconstruc-
tion loss. Instead directly estimate log pθ(x|z) in training,
x̂ = Decθ(z) is derived and D(x, x̂) = − log pRp(x|x̂)
is evaluated as reconstruction loss, where pRp(x|x̂) de-
notes the predetermined conditional distribution. In the case

Gaussian and Bernoulli distributions are used as pRp(x|x̂),
D(x, x̂) becomes the sum square error (SSE) and binary
cross-entropy (BCE), respectively. In training β-VAE (Hig-
gins et al., 2017), the next objective is used instead of Eq. 1,
where β is a parameter to control the trade-off.

Lx = Ez∼qφ(z|x)[D(x, x̂)] + βDKL(·). (3)

3. Isometric embedding
Isometric embedding (Han & Hong, 2006) is a smooth em-
bedding from x to z (x, z ∈ Rm) on a Riemannian mani-
fold where the distances between arbitrary two points are
equivalent in both the input and embedding spaces. Assume
that x and z belong to a Riemannian metric space with a
metric tensorGx and a Euclidean space, respectively. Then,
the isometric embedding from x to z satisfies the following
condition for all inputs and dimensions as shown in Kato
et al. (2020), where δjk denotes Kronecker delta:

t∂x/∂zj Gx ∂x/∂zk = δjk. (4)

The isometric embedding has several preferable properties.
First of all, the probability density of input data at the given
metric is preserved in the isometric embedding space. Let
p(x) and p(z) be distributions in their respective metric
spaces. Jdet denotes |det(∂x/∂z)|, i.e., an absolute value
of the Jacobian determinant. Since Jdet is 1 from orthonor-
mality, the following equation holds:

p(z) = Jdet p(x) = p(x). (5)

Secondly, the entropies in both spaces are also equivalent.
Let X and Z be sets of x and z, respectively. H(X) and
H(Z) denotes the entropies of X and Z in each metric
spaces. Then H(X) and H(Z) are equivalent as follows:

H(Z) = −
∫
p(z) log p(z) dz

= −
∫
Jdet p(x) log (Jdet p(x)) J−1det dx

= −
∫
p(x) log p(x) dx

= H(X). (6)

Thus, the isometric embedding is a powerful tool to analyse
input data. Note that Eqs. 5-6 do not hold in general if the
embedding is not isometric.

Recently, Kato et al. (2020) proposed an isometric autoen-
coder RaDOGAGA (Rate-distortion optimization guided au-
toencoder for generative analysis), inspired by deep image
compression (Ballé et al., 2018). In the conventional im-
age compression using orthonormal transform coding, Rate-
distortion optimization (RDO) objective has been widely
used (Sullivan & Wiegand, 1998). Let R and D be a rate
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and distortion after encoding, respectively. Then RDO finds
the best encoding parameters that minimizes L = D+λR at
given Lagrange multiplier λ. In the deep image compression
(Ballé et al., 2018), the model is composed of a parametric
prior and posterior with constant variance, then trained us-
ing the RDO objective. Kato et al. (2020) proved that such a
model achieves an isometric embedding in Euclidean space,
and they proposed an isometric autoencoder RaDOGAGA
for quantitative analysis. By contrast, VAE uses a fixed
prior with a variable posterior. Here, we have an intuition
that VAE can be mapped to an isometric embedding such as
RaDOGAGA by introducing a non-linear scaling of latent
space. If our intuition is correct, the behavior of VAE will
be quantitatively explained.

4. Understanding of VAE as a scaled
isometric embedding

This section shows the quantitative property of VAE by in-
troducing an implicit isometric embedding. First, we present
the hypothesis of mapping VAE to an implicit isometric em-
bedding. Second, we theoretically formulate the derivation
of implicit isometric embedding as the minimum condition
of the VAE objective. Lastly, we explain the quantitative
properties of VAE to provide a practical data analysis.

4.1. Mapping β-VAE to implicit isometric embedding

In this section, we explain our motivations for introduc-
ing an implicit isometric embedding to analyse β-VAE.
Rolı́nek et al. (2019) showed that each pair of column vec-
tors in the Jacobian matrix ∂x/∂µ(x) is orthogonal such
that t∂x/∂µj(x) · ∂x/∂µk(x) = 0 for j 6= k when D(x, x̂)
is SSE. From this property, we can introduce the implicit
isometric embedding by scaling the VAE latent space appro-
priately as follows: xµj denotes ∂x/∂µj(x). Let y and yj
be an implicit variable and its j-th dimensional component
which satisfies dyj/dµj(x) = |xµj |2. Then ∂x/∂yj forms
the isometric embedding in Euclidean space:

t∂x/∂yj · ∂x/∂yk = δjk. (7)

If the L2 norm of xµj is derived mathematically, we can
formulate the mapping VAE to an implicit isometric embed-
ding as in Eq. 7. Then, this mapping will strongly help to
understand the quantitative behavior of VAE as explained in
section 3. Thus, our motivation in this paper is to formulate
the implicit isometric embedding theoretically and analyse
VAE properties quantitatively.

Figure 1 shows how β-VAE is mapped to an implicit iso-
metric embedding. In VAE encoder, µ(x) is calculated from
an input x ∈ X . Then, the posterior z is derived by adding
a stochastic noise N (0,σ(x)) to µ(x). Finally, the recon-
struction data x̂ ∈ X̂ is decoded from z.

Figure 1. Mapping of β-VAE to implicit isometric embedding.

Our theoretical analysis in section 4.2 reveals that implicit
isometric embedding y ∈ Y can be introduced by map-
ping µ(x) to y with a scaling dyj/dµj(x) = |xµj |2 =√
β/2/σj(x) in each dimension. Then, the posterior ŷ ∈ Ŷ

is derived by adding a stochastic noise N (0, (β/2)In) to y.
Note that the noise variances, i.e., the posterior variances,
are a constant β/2 for all inputs and dimensions, which is
analogous to RaDOGAGA. Then, the mutual information
H(X; X̂) in β-VAE can be estimated as:

I(X; X̂) = I(Y ; Ŷ )

' H(Y )−H (N (0, (β/2)In))

= H(Y )− n

2
log(πeβ). (8)

This implies that the posterior entropy n
2 log(πeβ) should

be smaller enough than H(X) to give the model a sufficient
expressive ability. Thus, the posterior variance β/2 should
be also sufficiently smaller than the variance of input data.
Note that Eq. 8 is consistent with the Rate-distortion (RD)
optimal condition in the RD theory as shown in section 6.

4.2. Theoretical derivation of implicit isometric
embedding

In this section, we derive the implicit isometric embedding
theoretically. First, we reformulate D(x, x̂) and DKL( · )
in β-VAE objective Lx in Eq. 3 for mathematical analy-
sis. Then we derive the implicit isometric embedding as
a minimum condition of Lx. Here, we set the prior p(z)
to N (z; 0, In) for easy analysis. The condition where the
approximation in this section is valid is that β/2 is smaller
enough than the variance of the input dataset, which is im-
portant to achieve a sufficient expressive ability. We also
assume the data manifold is smooth and differentiable.

Firstly, we introduce a metric tensor to treat arbitrary kinds
of metrics for the reconstruction loss in the same framework.
D(x, x́) = − log pRp(x|x́) denotes a metric between two
points x and x́. Let δx be x́−x. If δx is small, D(x, x́) =
D(x,x+ δx) can be approximated by tδxGxδx using the
second order Taylor expansion, whereGx is an x dependent
positive definite metric tensor. Appendix G.2 shows the
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derivations of Gx for SSE, BCE, and structural similarity
(SSIM) (Wang et al., 2001). Especially for SSE,Gx is an
identity matrix I , i.e., a metric tensor in Euclidean space.

Next, we formulate the approximation of Lx via the follow-
ing three lemmas, to examine the Jacobian matrix easily.

Lemma 1. Approximation of reconstruction loss:
Let x̆ be Decθ(µ(x)). xµj denotes ∂x/∂µj(x). Then the
reconstruction loss in Lx can be approximated as:

Ez∼qφ(z|x) [D(x, x̂)] ' D(x, x̆)+

n∑
j=1

σj(x)
2 txµjGxxµj .

(9)
Proof: Appendix A.1 describes the proof. The outline is as
follows: Rolı́nek et al. (2019) show D(x, x̂) can be decom-
posed to D(x, x̆)+D(x̆, x̂). We call the first term D(x, x̆)
a transform loss. Obviously, the average of transform loss
over z ∼ qφ(z|x) is still D(x, x̆). We call the second term
D(x̆, x̂) a coding loss. The average of coding loss can be
further approximated as the second term of Eq. 9.

Lemma 2. Approximation of KL divergence:
Let p(µ(x)) = N (µ(x); 0, In) be a prior probability density
where z = µ(x). Then the KL divergence in Lx can be
approximated as:

DKL(qφ(z|x)‖p(z))

' − log
(
p(µ(x))

n∏
j=1

σj(x)

)
− n log 2πe

2

' − log
(
p(x)

∣∣∣∣det
( ∂x

∂µ(x)

)∣∣∣∣ n∏
j=1

σj(x)

)
− n log 2πe

2
. (10)

Proof: The detail is described in Appendix A.2. The out-
lines is as follows: First, σj(x)2 � 1 will be observed in
meaningful dimensions. For example, σj(x)2 < 0.1 will
almost hold if the dimensional component has information
that exceeds only 1.2 nat. Furthermore, when σj(x)2 < 0.1,
we have −(σj(x)

2/ log σj(x)
2) < 0.05. Thus, by ignoring

the σj(x)2 in Eq. 2, DKLj(x) can be approximated as:

DKLj(x) '
1

2

(
µj(x)

2 − log σj(x)
2 − 1

)
= − log

(
σj(x) N (µj(x); 0, 1)

)
− log 2πe

2
. (11)

As a result, the second equation of the proposition Eq. 10
is derived by summing the last equation of Eq. 11. Then,
using p(µ(x)) = p(x) |det(∂x/∂µ(x))|, the last equation
of Eq. 10 is derived. Appendix A.2 shows that the approxi-
mation of the second line in Eq. 10 can be also derived for
arbitrary priors, which suggests that the theoretical deriva-
tions that follow in this section also hold for arbitrary priors.

Lemma 3. Estimation of transform loss:
Let x ∼ N (x; 0, σx

2) be a 1-dimensional dataset. When

β-VAE is trained for x, the ratio between the transform loss
D(x, x̆) and the coding loss D(x̆, x̂) is estimated as:

D(x, x̆)

D(x̆, x̂)
' β/2

σx2
. (12)

Proof: Appendix A.3 describes the proof. As explained
there, this is analogous to the Wiener filter (Wiener, 1964),
one of the most basic theories for signal restoration.

Lemma 3 is also validated experimentally in the multi-
dimensional non-Gaussian toy dataset. Fig. 24 in Appendix
D.2 shows that the experimental results match the theory
well. Thus, we ignore the transform loss D(x, x̆) in the dis-
cussion that follows, since we assume β/2 is smaller enough
than the variance of the input data. Using Lemma 1-3, we
can derive the approximate expansion of Lx as follows:

Theorem 1. Approximate expansion of VAE objective:
Assume β/2 is smaller enough than the variance of input
dataset. The objective Lx can be approximated as:

Lx '
n∑
j=1

σj(x)
2 txµjGxxµj

−β log
(
p(x)

∣∣∣∣det
( ∂x

∂µ(x)

)∣∣∣∣ n∏
j=1

σj(x)

)
− nβ log 2πe

2
. (13)

Proof: Apply Lemma 1-3 to Lx in Eq. 3.

Then, we can finally derive the implicit isometric embedding
as a minimum condition of Eq. 13 via Lemma 4-5.

Lemma 4. Orthogonality of Jacobian matrix in VAE:
At the minimum condition of Eq. 13, each pair xµj and xµk
of column vectors in the Jacobian matrix ∂x/∂µ(x) show
the orthogonality in the Riemannian metric space, i.e., the
inner product space with the metric tensorGx as:

(2σj(x)
2/β) txµjGxxµk = δjk. (14)

Proof: Eq. 14 is derived by examining the derivative
dLx/dxµj = 0. The proof is described in Appendix A.4.
A diagonal posterior covariance is the key for orthogonality.

Eq. 14 is consistent with Rolı́nek et al. (2019) who show the
orthogonality for SSE metric. In addition, we quantify the
Jacobian matrix for arbitrary metric spaces.

Lemma 5. L2 norm of xµj :
the L2 norm of xµj in the metric space ofGx is derived as:

|xµj |2 =
√
txµjGxxµj =

√
β/2/σj(x). (15)

Proof: Apply k = j to Eq. 14 and arrange it.

Theorem 2. Implicit isometric embedding:
An implicit isometric embedding y is introduced by map-
ping j-th component µj(x) of VAE latent variable to yj with
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the following scaling factor:

dyj/dµj(x) = |xµj |2 =
√
β/2/σj(x). (16)

xyj denotes ∂x/∂yj . Then xyj satisfies the next equation:

txyjGxxyk = δjk. (17)

This shows the isometric embedding from the inner product
space of x with metricGx to the Euclidean space of y.

Proof: Apply xµj = dyj/dµj(x) xyj to Eq. 14.

Remark 1: Isometricity in Eq. 17 is on the decoder
side. Since the transform loss D(x, x̆) is close to 0,
Decθ(µj(x)) ' Enc−1φ (µj(x)) holds. As a result, the iso-
metricity on the encoder side is also almost achieved. If
D(x, x̆) is explicitly reduced by using a decomposed loss,
the isometricity will be further promoted.

Theorem 3. Posterior variance in isometric embedding:
The posterior variance of implicit isometric embedding is a
constant β/2 for all inputs and dimensional components.

Proof: Let σyj(x)
2 be a posterior variance of the implicit

isometric component yj . By scaling σj(x) for the original
VAE latent variable with Eq. 16, σyj(x) is derived as:

σyj(x) ' σj(x)
dyj

dµj(x)
=
√
β/2. (18)

Thus, the posterior variance σyj(x)
2 is a constant β/2 for

all dimensions j at any inputs x as in Section 4.1.

4.3. Quantitative data analysis method using implicit
isometric embedding in VAE

This section describes three quantitative data analysis meth-
ods by utilizing the property of isometric embedding.

4.3.1. ESTIMATION OF THE DATA PROBABILITY
DISTRIBUTION:

Estimation of data distribution is one of the key targets in
machine learning. We show VAE can estimate the distribu-
tion in both metric space and input space quantitatively.

Proposition 1. Probability estimation in metric space:
Let pGx(x) be a probability distribution in the inner product
space ofGx. pGx(x) can be quantitatively estimated as:

pGx(x) ' p(y) ∝ p(µ(x))

m∏
j=1

σj(x)

∝ exp(−Lx/β). (19)

Proof: Appendix A.5 explains the detail. The outline is as
follows: The third equation is derived by applying Eq. 16
to p(y) =

∏
j p(yj) =

∏
j(dyj/dµj(x))

−1p(µj), showing

that σj(x) bridges between the distributions of input data
and prior. The fourth equation is derived by applying Eq. 16
to Eq. 13. The last equation implies that the VAE objective
converges to the log-likelihood of the input x as expected.
When the metric is SSE, Eq. 19 show the probability distri-
bution in the input space sinceGx is an identity matrix.

Proposition 2. Probability estimation in the input space:
In the the case m = n, the probability distribution p(x) in
the input space can be estimated as:

p(x) = |det(Gx)| 12 pGx(x) ' |det(Gx)| 12 p(y)

∝ |det(Gx)| 12 p(µ(x))

m∏
j=1

σj(x)

∝ |det(Gx)| 12 exp(−Lx/β). (20)

In the case m > n and Gx = axIm holds where ax is an
x-dependent scalar factor, p(x) can be estimated as:

p(x) ∝ ax
n
2 p(µ(x))

n∏
j=1

σj(x) ∝ ax
n
2 exp(−Lx/β). (21)

Proof: The absolute value of Jacobian determinant between
the input and metric spaces gives the the PDF ratio. In
the case m = n, this is derived as |det(Gx)| 12 . In the
case m > n andGx = axIm, the Jacobian determinant is
proportional to axn/2. Appendix A.6 explains the detail.

4.3.2. QUANTITATIVE ANALYSIS OF DISENTANGLEMENT

Assume the data manifold has a disentangled property with
independent latent variable by nature. Then each yj will
capture each disentangled latent variable like to PCA. This
subsection explains how to derive the importance of each
dimension in the given metrics for data analysis.

Proposition 3. Meaningful dimension:
The dimensional components yj with DKLj(x) > 0 have
meaningful information for representation, where the en-
tropy of yj is larger than H(N (0, β/2)) = log(βπe)/2. In
contrast, the dimension with DKLj(x) = 0 has no informa-
tion, where µj(x) = 0 and σj(x) = 1 will be observed.

Proof: Appendix A.7 shows the detail in view of RD theory.
This appendix also explains that the entropy of y becomes
minimum after optimization.

Proposition 4. Importance of each dimension:
Assume that the prior p(z) is a Gaussian distribution
N (z; 0, In). Let Var(yj) be the variance of the j-th im-
plicit isometric component yj , indicating the quantitative
importance of each dimension. Var(yj) in the meaningful
dimension (DKLj(x) > 0) can be roughly estimated as:

Var(yj) ' (β/2) Ex∼p(x)[σj(x)
−2]. (22)

Proof: Appendix A.8 shows the derivation from Eq. 16.
The case other than Gaussian prior is also explained there.
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Figure 2. PDFs of three variables to generate a toy dataset.

4.3.3. CHECK THE ISOMETRICITY AFTER TRAINING

This subsection explains how to determine if the model
acquires isometric embedding by evaluating the norm of
xyj . Let e(j) be a vector (0, · · · , 1, · · · , 0) where the
j-th dimension is 1 and others are 0. Let D′j(z) be
D(Decθ(z),Decθ(z+εe(j)))/ε

2, where ε denotes a minute
value for the numerical differential. Then the squared L2
norm of yj can be evaluated as the last equation:

txyjGxxyj ' (2/β)
(
σj(x)

2 txµjGxxµj
)

' (2/β) σj(x)
2D′j(z). (23)

Observing a value close to 1 means a unit norm and indicates
that an implicit isometric embedding is captured.

Remark 2: Eq. 23 will not hold and the norm will be 0
in such a dimension where DKLj(x) = 0, since the recon-
struction loss, i.e., β/2 times squared L2 norm of yj , and
DKLj(x) do not have to be balanced in Eq. 13.

5. Experiment
This section describes three experimental results. First, the
results of the toy dataset are examined to validate our theory.
Next, the disentanglement analysis for the CelebA dataset
is presented. Finally, an anomaly detection task is evaluated
to show the usefulness of data distribution estimation.

5.1. Quantitative evaluation in the toy dataset

The toy dataset is generated as follows. First, three dimen-
sional variables s1, s2, and s3 are sampled in accordance
with the three different shapes of distributions p(s1), p(s2),
and p(s3), as shown in Fig. 2. The variances of s1, s2, and
s3 are 1/6, 2/3, and 8/3, respectively, such that the ratio of
the variances is 1:4:16. Second, three 16-dimensional uncor-
related vectors v1, v2, and v3 with L2 norm 1 are provided.
Finally, 50, 000 toy data with 16 dimensions are generated
by x =

∑3
i=1 sivi. The data distribution p(x) is also set to

p(s1)p(s2)p(s3). If our hypothesis is correct, p(yj) will be
close to p(sj). Then, σj(x) ∝ dzj/dyj = p(yj)/p(zj) will
also vary a lot with these varieties of PDFs. Because the
properties in Section 4.3 are derived from σj(x), our theory
can be easily validated by evaluating those properties.

Then, the VAE model is trained using Eq. 3. We use two
kinds of the reconstruction loss D(·, ·) to analyze the effect
of the loss metrics. The first is the square error loss equiva-

lent to SSE. The second is the downward-convex loss which
we design as Eq. 24, such that the shape becomes similar to
the BCE loss as in Appendix G.2:

D(x, x̂) = ax‖x− x̂‖22,
where ax = (2/3 + 2 ‖x‖22/21) andGx = axIm. (24)

Here, ax is chosen such that the mean of ax for the toy
dataset is 1.0 since the variance of x is 1/6+2/3+8/3=7/2.
The details of the networks and training conditions are writ-
ten in Appendix C.1.

After training with two types of reconstruction losses, the
loss ratioD(x, x̆)/D(x̆, x̂) for the square error loss is 0.023,
and that for the downward-convex loss is 0.024. As expected
in Lemma 3, the transform losses are negligibly small.

First, an implicit isometric property is examined. Tables 1
and 2 show the measurements of 2

βσj(x)
2D′j(z) (shown as

2
βσj

2D′j), D
′
j(z), and σj(x)−2 described in Section 4.3. In

these tables, z1, z2, and z3 show acquired latent variables.
”Av.” and ”SD” are the average and standard deviation, re-
spectively. In both tables, the values of 2

βσ(x)j
2D′j(z) are

close to 1.0 in each dimension, showing isometricity as in
Eq. 21. By contrast, the average of D′j(z), which corre-
sponds to txµjGxxµj , is different in each dimension. Thus,
xµk for the original VAE latent variable is not isometric.

Next, the disentanglement analysis is examined. The av-
erage of σj(x)−2 in Eq.22 and its ratio are shown in Ta-
bles 1 and 2. Although the average of σj(x)−2 is a rough
estimation of variance, the ratio is close to 1:4:16, i.e.,
the variance ratio of generation parameters s1, s2, and s3.
When comparing both losses, the ratio of s2 and s3 for
the downward-convex loss is somewhat smaller than that
for the square error. This is explained as follows. In the
downward-convex loss, |xyj |22 tends to be 1/ax from Eq.
17, i.e. txyj (axIm)xyk = δjk. Therefore, the region in the
metric space with a larger norm is shrunk, and the estimated
variances corresponding to s2 and s3 become smaller.

Finally, we examine the probability estimation. Figure 3
shows the scattering plots of the data distribution p(x) and
estimated probabilities for the downward-convex loss. Fig-
ure 3a shows the plots of p(x) and the prior probabilities
p(µ(x)). This graph implies that it is difficult to estimate
p(x) only from the prior. The correlation coefficient shown
as ”R” (0.434) is also low. Figure 3b shows the plots of
p(x) and exp(−Lx/β) in in Eq. 19. The correlation coef-
ficient (0.771) becomes better, but is still not high. Lastry,
Figures 3c-3d are the plots of ax3/2 p(µ(x))

∏
j σj(x) and

ax
3/2 exp(−Lx/β) in Eq. 21, showing high correlations

around 0.91. This strongly supports our theoretical proba-
bility estimation which considers the metric space.

Appendix D also shows results using square error loss. The
correlation coefficient for exp(−Lx/β) also gives a high
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Table 1. Property measurements of the toy dataset
trained with the square error loss.

variable z1 z2 z3
2
βσj

2D′j Av. 0.965 0.925 0.972
SD 0.054 0.164 0.098

D′j(z) Av. 0.162 0.726 2.922
SD 0.040 0.466 1.738

σj(x)
−2 Av. 3.33e1 1.46e2 5.89e2

(Ratio) Av. 1.000 4.39 17.69

Table 2. Property measurements of the toy dataset
trained with the downward-convex loss.

variable z1 z2 z3
2
βσj

2D′j Av. 0.964 0.928 0.978
SD 0.060 0.160 0.088

D′j(z) Av. 0.161 0.696 2.695
SD 0.063 0.483 1.573

σj(x)
−2 Av. 3.30e1 1.40e2 5.43e2

(Ratio) Av. 1.000 4.25 16.22

(a) p(µ(x)) (b) exp(−Lx/β) (c) a3/2x p(µ(x))
∏
j σj(x) (d) a3/2x exp(−Lx/β)

Figure 3. Scattering plots of the data distribution (x-axis) versus four estimated probabilities (y-axes) for the downward-convex loss.
y-axes are (a) p(µ(x)), (b) exp(−Lx/β), (c) a3/2x p(µ(x))

∏
j σj(x), and (d) a3/2x exp(−Lx/β).

score 0.904, since the input and metric spaces are equivalent.

Appendix D shows the exhaustive ablation study with differ-
ent PDFs, losses, and β, which further supports our theory.

5.2. Evaluations in CelebA dataset

This section presents the disentanglement analysis using
VAE for the CelebA dataset 1 (Liu et al., 2015). This dataset
is composed of 202,599 celebrity facial images. In use, the
images are center-cropped to form 64 × 64 sized images.
As a reconstruction loss, we use SSIM which is close to
subjective quality evaluation. The details of networks and
training conditions are written in Appendix C.2.

Figure 4 shows the averages of σj(x)−2 in Eq.22 as the
estimated variances, as well as the average and the stan-
dard deviation of 2

βσj(x)
2D′j(z) in Eq.23 as the estimated

square norm of implicit transform. The latent variables zi
are numbered in descending order by the estimated variance.
In the dimensions greater than the 27th, the averages of
σj(x)

−2 are close to 1 and that of 2
βσj(x)

2D′j(z) is close to
0, implying DKL(·) = 0. Between the 1st and 26th dimen-
sions, the mean and standard deviation of 2

βσj(x)
2D′j(z)

averages are 1.83 and 0.13, respectively. This also implies
the variance σyj(x)

2 is around 1.83(β/2). These values
seem almost constant with a small standard deviation; how-
ever, the mean is somewhat larger than the expected value 1.
This suggests that the implicit embedding y′ which satisfies
dyj
′/dµj(x) =

√
1.83(β/2)/σj(x) can be considered as al-

1(http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)

most isometric. Thus, σj(x)−2 averages still can determine
the quantitative importance of each dimension.

We also train VAE using the decomposed loss explicitly,
i.e., Lx = D(x, x̆) + D(x̆, x̂) + βDKL(·). Figure 5
shows the result. Here, the mean and standard deviation
of 2

βσj(x)
2D′j(z) averages are 0.92 and 0.04, respectively,

which suggests almost a unit norm. This result implies that
the explicit use of decomposed loss promotes isometricity
and allows for better analysis, as explained in Remark 1.

Figure 6 shows decoder outputs where the selected latent
variables are traversed from −2 to 2 while setting the rest
to 0. The average of σj(x)−2 is also shown there. The
components are grouped by σj(x)−2 averages, such that
z1, z2, z3 to the large, z16, z17 to the medium, and z32
to the small, respectively. In the large group, significant
changes of background brightness, face direction, and hair
color are observed. In the medium group, we can see minor
changes such as facial expressions. However, in the small
group, there are almost no changes. In addition, Appendix
E.1 shows the traversed outputs of all dimensional com-
ponents in descending order of σj(x)−2 averages, where
the degree of image changes clearly depends on σj(x)−2

averages. Thus, it is strongly supported that the average
of σj(x)−2 indicates the importance of each dimensional
component like PCA.

5.3. Anomaly detection with realistic data

Using a vanilla VAE model with a single Gaussian prior,
we finally examine the performance in anomaly detection
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Figure 4. Graph of σj(x)
−2 average and

2
β
σj(x)

2D′j(z) in VAE for CelebA
dataset.

Figure 5. Graph of σj(x)
−2 average and

2
β
σj(x)

2D′j(z) in VAE for CelebA dataset
with explicit decomposed loss.

Figure 6. Dependency of decoded image
changes with zj = −2 to 2 on the average
of σj(x)

−2.

Table 3. Average and standard deviations (in brackets) of F1

Dataset Methods F1

KDDCup

GMVAE∗ 0.9326
DAGMM∗ 0.9500 (0.0052)
RaDOGAGA(d)∗ 0.9624 (0.0038)
RaDOGAGA(log(d))∗ 0.9638 (0.0042)
vanilla VAE 0.9642 (0.0007)

Thyroid

GMVAE∗ 0.6353
DAGMM∗ 0.4755 (0.0491)
RaDOGAGA(d)∗ 0.6447 (0.0486)
RaDOGAGA(log(d))∗ 0.6702 (0.0585)
vanilla VAE 0.6596 (0.0436)

Arrythmia

GMVAE∗ 0.4308
DAGMM∗ 0.5060 (0.0395)
RaDOGAGA(d)∗ 0.5433 (0.0468)
RaDOGAGA(log(d))∗ 0.5373 (0.0411)
vanilla VAE 0.4985 (0.0412)

KDDCup-rev

DAGMM∗ 0.9779 (0.0018)
RaDOGAGA(d)∗ 0.9797 (0.0015)
RaDOGAGA(log(d))∗ 0.9865 (0.0009)
vanilla VAE 0.9880 (0.0008)

in which PDF estimation is the key issue. We use four
public datasets‡: KDDCUP99, Thyroid, Arrhythmia, and
KDDCUP-Rev. The details of the datasets and network con-
figurations are given in Appendix H. For a fair comparison
with previous works, we follow the setting in Zong et al.
(2018). Randomly extracted 50% of the data were assigned
to the training and the rest to the testing. Then the model
is trained using normal data only. Here, we use the explicit
decomposed loss to promote isometricity. The coding loss is

‡Datasets can be downloaded at https://kdd.ics.uci.
edu/ and http://odds.cs.stonybrook.edu.
∗Scores are cited from Liao et al. (2018) (GMVAE) and Kato

et al. (2020)(DAGMM, RaDOGAGA)

set to SSE. For the test, the anomaly score for each sample
is set to Lx in Eq. 3 after training since −Lx/β gives a
log-likelihood of the input data from Proposition 1. Then,
samples with anomaly scores above the threshold are identi-
fied as anomalies. The threshold is given by the ratio of the
anomaly data in each data set. For instance, in KDDCup99,
data with Lx in the top 20 % is detected as an anomaly.
We run experiments 20 times for each dataset split by 20
different random seeds.

5.3.1. BASELINE METHODS

We compare previous methods such as GMVAE (Liao et al.,
2018), DAGMM (Zong et al., 2018), and RaDOGAGA
(Kato et al., 2020) that conducted the same experiments. All
of them apply GMM as a prior because they believe GMM
is more appropriate to capture the complex data distribution
than VAE with a single Gaussian prior.

5.3.2. RESULTS

Table 3 reports the average F1 scores and standard devi-
ations (in brackets). Recall and precision are shown in
Appendix H. Liao et al. (2018) insisted that the vanilla VAE
is not appropriate for PDF estimation. Contrary to their
claim, by considering the quantitative property as proven
in this paper, even a vanilla VAE achieves state-of-the-art
performance in KDDCup99 and KDDCup-rev. In other data
sets, the score of VAE is comparable with RaDOGAGA,
which is the previous best method. Here, RaDOGAGA at-
tempts to adapt the parametric distribution such as GMM
to the input distribution in the isometric space. However,
fitting sufficiency is strongly dependent on the capability of
the parametric distribution. By contrast, VAE can flexibly
adapt a simple prior distribution to the input distribution
via trainable posterior variance σj(x). As a result, VAE can
provide a simpler tool for estimating the data distribution.

https://kdd.ics.uci.edu/
https://kdd.ics.uci.edu/
http://odds.cs.stonybrook.edu
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(a) Features for large β (b) Features for small β

Figure 7. Conceptual explanation of captured features in the im-
plicit isometric space for 2D manifold with non-zero Gaussian
curvature.

6. Relation with previous studies
First of all, we show VAE can be interpreted as a Rate-
distortion (RD) optimal encoder based on RD theory
(Berger, 1971), which has been successfully applied to im-
age compression in the industry. The optimal transform
coding (Goyal, 2001) for the Gaussian data with SSE metric
is formulated as follows: First, the data are transformed de-
terministically using the orthonormal transform (orthogonal
and unit norm) with a PCA basis. Note that the orthonormal
transform is a part of the isometric embedding where the
encoder is restricted as linear. Then, the transformed data
is entropy-coded. Here, the key point for optimizing RD
is to introduce equivalent stochastic distortion in all dimen-
sions (or to use a uniform quantizer for image compression).
Then the rate Ropt at the optimum condition is derived as
follows: z ∈ Z denotes transformed data from inputs. Let
zj be the j-th dimensional component of z. σzj2 denotes
a variance of zj in a dataset. Note that σzj2 is equivalent
to the eigenvalue of PCA in each dimension. Let σd2 be
a distortion equally allowed in each dimensional channel.
Assume the input dimension is m and σd2 is smaller than
σzj

2 for all j. Then, Ropt is derived as:

Ropt =

m∑
j=1

(
H(N (zj ; 0, σzj

2)−H(N (zj ; 0, σd
2)
)

= H(Z)−H(0, σd
2 Im). (25)

Here, if σd2 is set to β/2, Eq. 8 is equivalent to Eq. 25. This
suggests that VAE can be considered as a rate-distortion op-
timal encoder where RD theory is extended from linear or-
thonormal transform to general isometric embedding in the
given metric. More details are described in Appendix B.6.

Next, our theory can intuitively explain how the captured
features in β-VAE behave when varying β. Higgins et al.
(2017) suggests that β-VAE with large β can capture a
global features while degrading the reconstruction quality.
Our intuitive explanation is as follows: Assume the case of
2D manifold in 3D space. According to Gauss’s Theorema
Egregium, the Gaussian curvature is an intrinsic invariant
of a 2D surface and its value is unchanged after any iso-

metric embeddings (Andrews, 2002). Figure 7 shows the
conceptual explanation of captured features in the implicit
isometric space for 2D manifold with non-zero Gaussian
curvature. Our theory shows that β/2 is considered as the
allowable distortion in each dimensional component of im-
plicit isometric embedding. If β is large as shown in Fig. 7a,
β-VAE can capture global features in the implicit isomet-
ric space allowing large distortion with lower rate. If β is
small as shown in Fig. 7b, by contrast, β-VAE will cap-
ture only fragmented features allowing small distortion with
higher rate. We believe similar behaviors occur in general
higher-dimensional manifolds.

Finally, we correct the analysis in Alemi et al. (2018). They
describe ”the ELBO objective alone cannot distinguish be-
tween models that make no use of the latent variable versus
models that make large use of the latent variable and learn
useful representations for reconstruction,” because the re-
construction loss and KL divergence have unstable values
after training. From this reason, they introduce a new ob-
jective D(x, ẑ) + |DKL(·)− σ| to fix this instability using
a target rate σ. Correctly, the reconstruction loss and KL
divergence are stably derived as a function of β as shown in
Appendix B.1 and B.4.

Our theory can further explain the analysis results of re-
lated prior works such as Higgins et al. (2017); Alemi et al.
(2018); Dai et al. (2018); Dai & Wipf (2019), and Tishby
et al. (1999). The details are described in Appendix B.

7. Conclusion
This paper provides a quantitative understanding of VAE by
non-linear mapping to an isometric embedding. According
to the Rate-distortion theory, the optimal transform coding is
achieved by using orthonormal transform with a PCA basis,
where the transform space is isometric to the input. From
this analogy, we show theoretically and experimentally that
VAE can be mapped to an implicit isometric embedding
with a scale factor derived from the posterior parameter.
Based on this property, we also clarify that VAE can provide
a practical quantitative analysis of input data such as the
probability estimation in the input space and the PCA-like
quantitative multivariate analysis. We believe the quantita-
tive properties thoroughly uncovered in this paper will be a
milestone to further advance the information theory-based
generative models such as VAE in the right direction.
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