
Supplementary File for “Randomized Dimensionality Reduction for Facility
Location and Single-Linkage Clustering”

Shyam Narayanan * 1 Sandeep Silwal * 1 Piotr Indyk 1 Or Zamir 2

A. Omitted Preliminaries
In this section, we state all of the preliminary results needed
relating to random projections that were omitted in Section
2 of the main paper. In all of the following results, we treat
G as a random projection from Rm to Rd.

First, if x ∈ Sm−1 then the following statements hold about
the distribution of ‖Gx‖ (Indyk & Naor, 2007):

Pr(|‖Gx‖ − 1| ≥ t) ≤ exp(−dt2/8), (1)

Pr(‖Gx‖ ≤ 1/t) ≤
(

3

t

)d
. (2)

The following serves as a converse to Equation (2).

Proposition A.1. If x ∈ Sm−1 and t ≥ 1 then the following
is true about the distribution of ‖Gx‖:

Pr(‖Gx‖ ≤ 1/t) ≥
(

1

et

)d
. (3)

Proof. Since x ∈ Sm−1, d · ‖Gx‖2 is a chi-squared random
variable with d degrees of freedom so it has density

1

2d/2Γ(d/2)
xd/2−1 exp(−x/2).

Thus, for all t ≤ 1, the probability that ‖Ga‖2 is less than
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1/t2 is at least

1

2d/2Γ(d/2)

∫ d/t2

0

xd/2−1 exp(−x/2)dx

≥ exp(−d/2t2)

2d/2Γ(d/2)

∫ d/t2

0

xd/2−1dx

≥ exp(−d)

2d/2Γ(d/2)(d/2)
·
(
d

t2

)d/2
≥ exp(−d)

2d/2 · (d/2)d/2
·
(
d

t2

)d/2
=

(
1

e · t

)d
,

where we used the well-known fact that Γ(x) · x ≤ xx for
all x ≥ 1.

We will need the following lemma to prove some of our
lower bound results from Section 6 of the main paper.

Lemma A.2. Let C ≥ 1 and fix some point v of norm at
mostC in Rd. Then, if x ∼ 1√

d
·N (0, Id) is a d-dimensional

scaled multivariate Normal, then Pr(‖x − v‖ ≤ 1
C ) ≥

n−1/10, if d ≤ log n/(10C2) and n is sufficiently large.

Proof. By the rotational symmetry of the multivariate nor-
mal, assume v = (r, 0, . . . , 0), where 0 ≤ r ≤ C.
Then, if x = (x1, y) for x1 ∈ R, y ∈ Rd−1, then if
r − 1

2C ≤ x1 ≤ r and ‖y‖ ≤ 1
2C , then we indeed have

‖x − v‖ ≤ 1
C . Since

√
dx1 ∼ N (0, 1) and r ≤ C, the

probability that r − 1
2C ≤ x1 ≤ r equals the probabil-

ity that N (0, 1) ∈ [(r − 1/2C)
√
d, r
√
d], which is at least√

d
2C ·

1√
2π
·e−C2d/2.Moreover, the probability that ‖y‖ ≤ 1

2C

is at least
(

1
2eC

)d
by Proposition A.1. Therefore,

Pr

(
‖x− v‖ ≤ 1

C

)
≥
√
d

2C
· 1√

2π
· e−C

2d/2 ·
(

1

2eC

)d
≥ n−1/10,

where the last inequality is true because d ≤ log n/(10C2)
and that n is sufficiently large.
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The following lemma due to Indyk and Naor (2007) was
Lemma 2.2 in the main paper, but we restate it here for
convenience.

Lemma A.3 (Lemma 4.2 in (Indyk & Naor, 2007)). Let
X ⊆ B(0, 1) be a subset of the m-dimensional Euclidean
unit ball. Then there exist universal constants c, C > 0 such
that for d ≥ C · dX + 1 and t > 2, Pr(∃x ∈ X, ‖Gx‖ ≥
t) ≤ exp(−cdt2).

Indyk and Naor also prove the following result about the
distance to the nearest neighbor after a random projection.

Theorem A.4 (Theorem 4.1 in (Indyk & Naor, 2007)).
Let G be a random projection from Rm to Rd for d =
O(dX · log(1/ε)/ε2 log(1/δ)). Then for every x ∈ X , with
probability at least 1− δ, the following statements hold:

1. D(Gx,G(X \ {x})) ≤ (1 + ε)D(x,X \ {x})

2. Every y ∈ X with ‖x− y‖ > (1 + 2ε)D(x,X \ {x})
satisfies ‖Gx−Gy‖ > (1 + ε)D(x,X \ {x}) where
D(x,X) = miny∈X ‖x− y‖.

B. The Mettu-Plaxton (MP) Algorithm and
Local Optimality

First, we give the pseudocode for the Mettu-Plaxton (MP)
algorithm for facility location, described in Section 3 of the
main paper.

Algorithm 1 MP ALGORITHM

Input :Dataset X = {p1, · · · , pn} ⊆ Rd
Output :Set F of facilities

1 F ← ∅ for i = 1 to n do
2 Compute ri satisfying:

∑
q∈B(pi,ri)

(ri−‖pi−q‖) = 1

3 Sort such that r1 ≤ . . . ≤ rn for i = 1 to n do
4 if B(pi, 2ri) ∩ F = ∅ then
5 F ← F ∪ {pi}

6 Output F

Next, we prove Lemma 3.3 in the main paper, which roughly
stated that a globally optimal solution for facility location is
always locally optimal.

Proof of Lemma 3.3 in the main paper. Consider an arbi-
trary point p ∈ X . We first establish a lower bound on
the number of points in B(p, rp) ∩X . Note that by defini-
tion of rp, we have

|B(p, rp) ∩X|rp ≥
∑

q∈B(p,rp)

(rp − ‖p− q‖) = 1

so it follows that

|B(p, rp) ∩X| ≥ 1/rp. (4)

Now suppose that B(p, 3rp) ∩ F = ∅ and let m be the
number of points in |B(p, rp) ∩X| excluding p. The total
connection cost of all these points to their nearest facility
must be at least 2mrp. Accounting for point p, the total
connection costs of points inB(p, rp)∩X is at least 2mrp+
3rp. Now if we open a new facility at point p, then the
connection costs of these points is at most mrp but we also
incur an additional cost for opening a facility at p. Therefore,
the total cost of the solution decreases by at least

(2mrp + 3rp)− (1 +mrp) = (m+ 3)rp − 1.

Now from Eq. (4), we have that (m + 3)rp > 1, which
means that the total cost decreases if we open a new facility
at p.

C. Dimension Reduction for Facility Location:
Omitted Proofs

C.1. Approximating the Optimal Facility Location Cost

In this subsection, we prove Theorem 4.1 in the main paper.
As stated in Subsection 4.1 in the main paper, our proof
involves computing an upper bound and a lower bound for
E[r̃p]. We first proceed with an upper bound in Lemma C.1.
Lemma C.1. Let X ⊆ Rm and let p ∈ X . Let G be
a random projection from Rm to Rd for d = O(log λX ·
log(1/ε)/ε2). Let rp and r̃p be the radius of p and Gp in
Rm and Rd respectively, computed according to Eq. (3) in
the main paper. Then

E[r̃p] ≤ (2 +O(ε))rp.

Proof. Let δ > 0 be fixed and let Ek be the event that

max
x∈B(p,rp)∩X

‖G(x− p)‖ ∈ [(k− 1)(1 + δ)rp, k(1 + δ)rp)

Note that Ek implies that there exists an x ∈ B(p, rp) ∩X
such that ‖G(x − p)‖ ≥ (k − 1)(1 + δ)rp, so by Lemma
A.3 we have

Pr(Ek) ≤ Pr(∃x ∈ B(p, rp) ∩X, ‖G(x− p)‖ ≥ k(1 + δ)rp)

≤ exp(−c(k − 1)2(1 + δ)2d) (5)

for some constant c. We now show that conditioned on Ek,
we have r̃p ≤ (k+1)rp(1+δ). This is because conditioning
on Ek gives us∑

Gq∈B(Gp,(k+1)(1+δ)rp)

((k+ 1)rp(1 + δ)−‖Gp−Gq‖)

≥
∑

q∈B(p,rp)

(1 + δ)rp,
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where Gq ∈ B(Gp, (k + 1)(1 + δ)rp) is interpreted as
summing over the points in the set

GX ∩B(Gp, (k + 1)(1 + δ)rp).

Furthermore,∑
q∈B(p,rp)

rp(1 + δ) ≥
∑

q∈B(p,rp)

rp

≥
∑

q∈B(p,rp)

(rp − ‖p− q‖) = 1.

Therefore, by the observation that the function f(r) =∑
q∈B(p,r)(r − ‖p − q‖) is increasing in r, it follows that

(k + 1)(1 + δ)rp ≥ r̃p. Therefore, we have

E[r̃p | Ek] ≤ (k + 1)(1 + δ)rp. (6)

Now using Eq. (5)

E[r̃p] =

∞∑
k=1

E[r̃p | Ek] Pr(Ek)

≤ (2 + δ)rp

+ rp

∞∑
k=2

(k + 1) exp(−c(k − 1)2(1 + δ)2d)

≤ (2 + δ)rp

+ (1 + δ)rp

∫ ∞
0

(x+ 2) exp(−C ′x2) dx

where C ′ = c(1 + δ)2d. We can explicitly evaluate that∫ ∞
0

(x+ 2) exp(−C ′x2) dx =

√
π

C ′
+

1

2C ′
.

Noting that d = Ω(1/ε2), we have that

E[r̃p] ≤ (2 +O(ε))rp

by picking δ = O(ε).

We now show the corresponding lower bound.
Lemma C.2. Let X ⊆ Rm and let p ∈ X . Let G be
a random projection from Rm to Rd for d = O(log λX ·
log(1/ε)/ε2). Let rp and r̃p be the radius of p and Gp in
Rm and Rd respectively, computed according to Eq. (3)
from the main paper. Then

E[r̃p] ≥
(1− ε)rp

4
.

Proof. Let k be the size of the set |B(p, rp/2) ∩ X|. By
definition of rp, the following inequality holds:

1 =
∑

q∈B(p,rp)

(rp − ‖p− q‖)

≥
∑

q∈B(p,rp/2)

(rp − ‖p− q‖) ≥
krp
2
. (7)

Now let E be the event that the ball B(Gp, (1 − ε)rp/2)
contains at most k points. By invoking Theorem A.4, we
will show that Pr(E) ≥ 1/2. Consider the setX without the
k− 1 points in B(p, rp/2)− {p}, and with an extra point q
at distance (1−ε)rp/2 from p. The added point q becomes a
nearest neighbor of p ∈ X . By Theorem A.4 part (2) applied
to an appropriately chosen ε′ = O(ε), with probability at
least 1/2, no point outside of B(p, rp/2) is mapped within
(1 − ε)rp/2 of p. After removing q, only the originally
removed k − 1 points (and p) can lie in B(p, rp(1− ε)/2).

Conditioning on E , it follows that∑
Gq∈B(Gp,(1−ε)rp/2)

(
(1− ε)rp

2
− ‖Gp−Gq‖

)

≤ (1− ε)krp
2

. (8)

Combining Eq. (8) with (7), we have that∑
Gq∈B(Gp,(1−ε)rp/2)

(
(1− ε)rp

2
− ‖p− q‖

)
≤ 1− ε < 1.

Therefore, conditional on E , it follows that r̃p ≥ (1−ε)rp/2.
Hence,

E[r̃p] ≥
E[r̃p | E ]

2
≥ (1− ε)rp

4
.

Combining Lemma C.1 and C.2 gives us the complete proof
of Theorem 4.1 in the main paper.

Proof of Theorem 4.1 in the main paper. The theorem fol-
lows from combining the result given in Lemma 3.1 from
the main paper, that the sum of the radii rp is a constant
factor approximation to the global optimal solution, and
Lemmas C.1 and C.2 that state that E[r̃p] is a constant factor
approximation to rp.

C.2. Obtaining a Solution to Facility Location in
Larger Dimension

Recall that the main technical challenge is to show that if
a facility is within distance O(r̃p) of a fixed point p in Rd
(note that r̃p is calculated according to Eq. (3) from the main
paper, in Rd), then the facility must also be within distance
O(rp) in Rm, the larger dimension. We prove this claim
formally in Theorem C.4.

Before presenting Theorem C.4, we need the following
technical result later on for our probability calculations.
Lemma C.3. Denote erf(x) to be the error function defined
as

erf(x) =
2√
π

∫ x

0

exp(−t2) dt.

Then,
1− erf(x) ≤ exp(−x2)
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for all x ≥ 1.

Proof. Note that f(x) exp(−t2)/
√
π is a valid probability

density function over R so that

erf(x) = 1− Pr(|Z| ≥ x)

where Z is distributed according to the density f . Now

Pr(Z ≥ x) =
1√
π

∫ ∞
x

exp(−t2) dt

≤ 1√
π

∫ ∞
x

t

x
exp(−t2) dt

=
exp(−x2)

2x
√
π

where the inequality follows from the fact that t ≥ x. By
symmetry, we have

erf(x) + exp(−x2)− 1 ≥ exp(−x2)

(
1− 1

x
√
π

)
≥ 0

for x ≥ 1.

The proof of Theorem C.4 relies on the careful balancing
of the following two events. First, we control the value
of the radius r̃p and show that r̃p ≈ rp. In particular, we
show that the probability of r̃p ≥ krp for any constant k is
exponentially decreasing in k. The argument for this part
follows similarly to the argument in Lemma C.1.

Next, we need to bound the probability that a ‘far’ point
comes ‘close’ to p after the dimensionality reduction. While
Theorem A.4 roughly states that ‘far’ points do not come
too ‘close’, we need a more detailed result to quantify how
close far points can come after the dimension reduction.

To study this in a more refined manner, we bucket the points
in X \ {p} according to their distance from p. The distance
spacing between buckets will be a linear scale. We show
that points in X \ {p} that are in ‘level’ i do not shrink to a
‘level’ smaller thanO(

√
i). Note that we need to control this

even across all levels. To do this requires a chaining type ar-
gument which crucially depends on the doubling dimension
of X . Finally, a careful combination of probabilities gives
us our result.
Theorem C.4. Let X ⊆ Rm and let G be a random projec-
tion from Rm to Rd for d = O(log λX · log(1/ε)/ε2). Fix
p ∈ X and let x ∈ X be the point that maximizes ‖p− x‖
subject to the condition Gx ∈ B(Gp,Cr̃p) where C is a
fixed constant. Then

E‖p− x‖ ≤ 2C(1 +O(ε))rp.

Proof. For simplicity, let r = rp, r̃ = r̃p, and define t−1 =
0, t0 = 1, and

ti = 1 + 2ε+
ε(i− 1)

4

for all i ≥ 1. Define Ei to be the event that 2Crti ≤
‖p − x‖ ≤ 2Crti+1 (the range 2Crti to 2Crti+1 are our
‘buckets’ from the discussion preceding the proof). Then

E‖p− x‖ =
∑
i≥−1

E[‖p− x‖ | Ei] Pr(Ei). (9)

We first bound Pr(Ei) in two different ways. By condition-
ing on the value of r̃, we can write this probability as

Pr(Ei) =
∑
j≥−1

Pr(Ei and 2rtj ≤ r̃ ≤ 2rtj+1) (10)

=
∑
j≥−1

[
Pr(Ei | 2rtj ≤ r̃ ≤ 2rtj+1)

· Pr(2rtj ≤ r̃ ≤ 2rtj+1)
]
. (11)

In the first of our two bounds for Pr(Ei), we proceed by
bounding Pr(2rtj ≤ r̃ ≤ 2rtj+1). Heuristically, the event
2rtj ≤ r̃ ≤ 2rtj+1 would mean that some point in B(p, r)
will be very far away from p after the random projection
and the probability of this event can be controlled very well.

More formally, we first claim that the event 2rtj ≤ r̃ ≤
2rtj+1 implies that there exists a point z in B(p, r) such
that ‖G(z − p)‖ ≥ rtj . This is because otherwise, we have
‖Gp−Gq‖ < rtj for all q ∈ B(p, r). This means that∑
q∈B(Gp,2rtj)

(2rtj − ‖Gp−Gq‖) >
∑

q∈B(p,rtj)

(2rtj − rtj)

≥ |B(p, r) ∩X| · rtj
≥ |B(p, r) ∩X| · r.

We also know that |B(p, r)∩X|·r ≥ 1 from (4). Altogether,
we have that

∑
q∈B(Gp,2rtj)

(2rtj−‖Gp−Gq‖) > 1 which
cannot happen by definition of r̃ and our assumption that
2rtj ≤ r̃ (see Figure 2 in the main paper). Therefore by
Lemma A.3, we have

Pr(2rtj ≤ r̃ ≤ 2rtj+1) ≤ exp(−C1dt
2
j ) (12)

for some constant C1. Summing over the variable j in
inequality (12) gives us a bound on Pr(Ei). We will only
end up using this bound for j ≥ Ω(

√
i), and will use the

second bound for small j.

We now give a second bound on Pr(Ei) by controlling
Pr(Ei and 2rtj ≤ r̃ ≤ 2rtj+1). Note that the event
Ei and 2rtj ≤ r̃ ≤ 2rtj+1 together imply that there ex-
ists some x that satisfies

2Crti ≤ ‖p−x‖ ≤ 2Crti+1 and ‖G(x−p)‖ ≤ 2Crtj+1

due to the fact that Gx is a point in B(Gp,Cr̃p). Therefore,

Pr(Ei and 2rtj ≤ r̃ ≤ 2rtj+1)

≤Pr(∃x, 2Crti ≤ ‖p− x‖ ≤ 2Crti+1

and ‖G(x− p)‖ ≤ 2Crtj+1).
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We bound the right hand side of the above probability for
the range j = O(

√
i). Let

Xi = {x ∈ X | 2Crti ≤ ‖x− p‖ < 2Crti+1}.

By the definition of doubling dimension, we can find a
covering of Xi with at most λO(log(ti/ε)) balls of radius
2Crε/4 centered at points in some set S ⊆ X . Then by
Lemma A.3, we have

Pr

(
∃s ∈ S ∃x ∈ B(s, 2Crε/4) ∩Xi,

‖Gs−Gx‖ ≥ 2Crε
√
i

8

)
≤ exp(−O(di)) (13)

if d ≥ Ω(log(λ) log(1/ε)/ε2). Now fix s ∈ S. If ‖G(s −
p)‖ < 2Cr(1 + ε+ ε

√
i/4) then

‖G(s− p)‖
‖s− p‖

≤ 1 + ε+ ε
√
i/4

1 + 2ε+ εi/4

≤

{
1− ε/4, for 0 ≤ i ≤ 1/ε2

O(1)/
√
i, for i > 1/ε2

.

Hence by applying the two inequalities (1) and (2) to the
unit vector (s− p)/‖s− p‖, we have

Pr

(
∃s ∈ S, ‖G(s− p)‖ ≤ 2Cr

(
1 + ε+

ε
√
i

4

))

≤

{
exp(−c′′dε2), for 0 ≤ i ≤ 1/ε2

i−c
′′
d, for i > 1/ε2

.

Note that we used the inequality (1) for the bound i ≤ 1/ε2

and the inequality (2) for i > 1/ε2. Combining the above
bound with the inequality in (13) gives us

Pr

(
∃x ∈ Xi, ‖G(x− p)‖ ≤ 2Cr

(
1 + ε+

ε
√
i

8

))

≤

{
2 exp(−c′′dε2), for 0 ≤ i ≤ 1/ε2

2i−c
′′
d, for i > 1/ε2

.

Thus for j ≤ C2

√
i, we have

Pr(∃x, 2Crtj+1 > ‖G(x− p)‖
and 2Crti ≤ ‖x− p‖ < 2Crti+1)

≤

{
2 exp(−C3dε

2), for 0 ≤ i ≤ 1/ε2

2i−C3d, for i > 1/ε2

where C2, C3 are fixed constants. Using the representation
given in (11) for Pr(Ei) along with (12), we see that for
0 ≤ i ≤ 1/ε2, we can bound

Pr(Ei) ≤ 4 exp(−C2dε
2) +

∑
j≥1

exp(−C1dj
2ε2) (14)

while for i > 1/ε2, we instead use the following stronger
bound

Pr(Ei) ≤ 2C2

√
i · i−C3d +

∑
j≥C2

√
i

exp(−C1dj
2ε2) (15)

which comes from using (10) for j ≤ C2

√
i and (11) for

larger j. Combing these bounds with (9), we have

E‖p− x‖ ≤ 2C(1 +O(ε))r+
∑
i≥0

2Crti+1 Pr(Ei). (16)

Our task is to now bound the sum
∑
i≥0 ti+1 Pr(Ei). In the

rest of the proof, we will show that this sum is O(ε). We
split the sum into two terms depending on if i ≤ 1/ε2 or if
i > 1/ε2. Using the bounds (14) and (15) gives us∑

i≥0

ti+1 Pr(Ei)

≤ C4

∑
i≤1/ε2

i

(
exp(−C2dε

2) +
∑
j≥1

exp(−C1dj
2ε2)

)
(17)

+ C4

∑
i>1/ε2

εi

(
i−C2d+1/2 +

∑
j≥C2

√
i

exp(−C1dj
2ε2)

)
(18)

for some constant C4. In (17), we are using the fact that
ti+1 = O(i) and for (18), we are instead using ti+1 =
O(εi). We can bound (17)

exp(−C2dε
2)

ε4
+

1

ε2

∑
j≥1

exp(−C1dj
2ε2) ≤ O(ε) (19)

by using the fact that d = Ω(log(1/ε)/ε2).

We now focus on bounding (18). As a first step, we have
the estimate

ε
∑
i>1/ε2

i−C2d+3/2 = O(ε)

which holds for large enough constant d. Finally, bounding
the remaining sum of (18) by an integral gives us

ε
∑
i>1/ε2

i
∑

j≥C2

√
i

exp(−C1dj
2ε2)

≤ ε
∫ ∞
1

x

∫ ∞
√
x

exp(−C5dt
2ε2) dt dx

for some constant C5. Now using the definition of the
complementary error function, we can compute that

ε

∫ ∞
1

x

∫ ∞
√
x

exp(−C5dt
2ε2) dt dx

≤ O(d−1/2)

∫ ∞
1

x · erfc(ε
√
C5d · x) dx

≤ O(ε)

∫ ∞
1

x · erfc(ε
√
C5d · x) dx.
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From Lemma C.3, we have∫ ∞
1

x·erfc(ε
√
C5d · x) dx ≤

∫ ∞
1

x·exp(−C2
5ε

2d·x) dx

= O(ε) (20)

using the fact that d = Ω(log(1/ε)/ε2). Altogether,
the bounds (19) and (20) allow us to bound the right
hand side of (17) and (18) and therefore, bound the sum∑
i≥0 ti+1 Pr(Ei) as O(ε). Finally, using (16), we end up

with
E‖p− x‖ ≤ 2C(1 +O(ε))r.

As a corollary, we can prove Theorem 4.2 in the main paper.

Proof of Theorem 4.2 in the main paper. Let Fd be a lo-
cally optimal solution in GX . When we evaluate the cost
of Fd in the larger dimension Rm, the number of facilities
stays the same. Now since Fd is a locally optimal solution
in Rd, each point p has a facility that is within distance Cr̃p
in Rd. Then by Theorem C.4, the connection cost of p in the
larger dimension is bounded by C ′rp, for some constant C ′,
in expected value. Summing over all points p ∈ X gives us

E[costm(Fd)] ≤ |Fd|+O

(∑
p∈X

rp

)
.

Finally, since |Fd| ≤ costd(Fd) by definition, and since∑
p∈X rp = O(F ) by Lemma 3.1 in the main paper, we

have that

|Fd|+O

(∑
p∈X

rp

)
≤ costd(Fd) +O(F ).

Together, these prove the main theorem of this section.

D. Dimension Reduction for MST: Omitted
Proofs

In this section, we prove Lemma 5.2 and Theorem 5.1 from
the main paper.

D.1. Proof of Theorem 5.1 (from the main paper)

In this subsection, we prove that Lemma 5.2 (from the
main paper) implies Theorem 5.1 (from the main paper).
To see why, first note that costX(M̃) ≥ costX(M) and
costGX(M) ≥ costGX(M̃), since M is the minimum
spanning tree onX and M̃ is the minimum spanning tree on
GX . Moreover, for each edge e = (x, y) ∈M, ‖Gx−Gy‖
has distribution χd/

√
d · ‖x − y‖, where χd is the square

root of a chi-square with d degrees of freedom. This has
mean

µ = ‖x−y‖· 1√
2d
·Γ((d+ 1)/2)

Γ(d/2)
= ‖x−y‖·

(
1−O

(
1

d

))

and variance ‖x−y‖2−µ2 = ‖x−y‖2 ·O(1/d) (Wolfram
Research). Therefore, the standard deviation of ‖G(x− y)‖
is at most ε · ‖x − y‖ since d = Ω(ε−2). Therefore, the
expectation of costGX(M) is

∑
e=(x,y)∈M ‖x− y‖ · (1−

O(1/d)) = M · (1−O(1/d)). Also, using the well known
fact that for any (possibly correlated) random variables
X1, . . . , Xn,

√
V ar(X1 + · · ·+Xn) ≤

∑√
V ar(Xi),

we have that the standard deviation of costGX(M) is at
most

∑
e=(x,y)∈M ε · ‖x− y‖ = ε ·M .

To finish, define random variables Z1 = costX(M̃) −
costX(M), Z2 = costX(M) − costGX(M), and Z3 =

costGX(M) − costGX(M̃). Our observations from the
previous paragraph tell us that Z1 and Z3 are nonnegative,
and Z2 has nonnegative expectation and standard deviation
bounded by O(ε) ·M . Finally, Lemma 5.2 (from the main
paper) tells us that E[Z1 +Z2 +Z3] ≤ O(ε) ·M . However,
this means that E[Z1] ≤ O(ε) ·M, so 0 ≤ Z1 ≤ O(ε) ·M
with high probability by Markov’s inequality. Therefore,
costX(M̃) ≤ (1 +O(ε)) ·M with high probability, so the
pullback is a 1 +O(ε) approximation with high probability.
Likewise, we also have that 0 ≤ Z3 = O(ε) with high
probability, and since E[Z2],

√
V ar(Z2) ≤ O(ε) ·M , we

also have that |Z2| = O(ε) with high probability. Thus,
|Z2 + Z3| = O(ε) with high probability, which means
costGX(M̃) ∈ [1 − O(ε), 1 + O(ε)] ·M . As a result, the
MST cost is preserved under dimensionality reduction with
high probability as well.

D.2. Proof of Lemma 5.2 (from the main paper)

In this subsection, we prove prove Lemma 5.2 (from the
main paper). In fact, we show the following stronger state-
ment.

EG

 ∑
e=(x,y)∈M̃

max(0, ‖x− y‖ − (1 + 5ε)‖Gx−Gy‖)


≤ ε ·M. (21)

To see why this implies Lemma 5.2 (from the main paper),
by removing the maximum with 0, Equation (21) implies
that EG[costX(M̃) − (1 + 5ε) · costGX(M̃)] ≤ ε · M.

But EG[costGX(M̃)] ≤ EG[costGX(M)] ≤ (1 + ε) ·M,

which means that EG[costX(M̃)−costGX(M̃)] ≤ ε ·M+
5ε · (1 + ε) ·M = O(ε) ·M.

Proof of Equation (21). Consider some range Ai =[
(1 + ε)i, (1 + ε)i+1

)
. We will bound the expectation of

Ki :=
∑

e=(x,y)∈M̃
‖Gx−Gy‖∈Ai

max
(
0, ‖x−y‖−(1+5ε)‖Gx−Gy‖

)
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and sum our upper bounds for EG[Ki] over a range of i.
For Ki to be nonzero, we need there to exist (x, y) such
that ‖x − y‖ ≥ ‖Gx − Gy‖ and ‖Gx − Gy‖ ∈ Ai, so
‖x− y‖ ≥ (1 + ε)i. Therefore, we only need to sum E[Ki]
over integers i such that (1 + ε)i ≤ diam(X).

To do this, first consider some fixed i and some sufficiently
large constant C1, and define t := ti := ε

C1
· (1 + ε)i. Con-

sider the following greedy procedure of selecting a partition
of X . First, pick some point x1 arbitrarily, then pick some
point x2 of distance more than t from x1 (in the original
space), then some point x3 of distance more than t from x1
and x2, and so on until we have some x1, . . . , xr and can
no longer pick any more points. Finally, we partition X into
subsets X1, . . . , Xr so that each x ∈ X is in Xp if xp is the
closest point to x (breaking ties arbitrarily). Note that the
partitioning is deterministic (independent of G). We show
the following proposition:

Proposition D.1. The MST cost M of the dataset X (in the
original space Rm) is at least r·t2 .

Proof. By a known result on Steiner Trees (Kou et al.,
1981), M is at least r

2(r−1) times the MST cost of the set
{x1, . . . , xr} ⊂ X , assuming r ≥ 2. As the distance be-
tween any xp, xq is at least r, the MST cost of {x1, . . . , xr}
is at least (r − 1) · t, so M ≥ r

2(r−1) · (r − 1) · t = r·t
2 .

Finally, as (1+ε)i ≤ diam(X), we have t ≤ diam(X)/C1,
so if C1 > 2, then the greedy procedure of partitioning X
cannot end with just x1, so indeed r ≥ 2.

Now, we consider partitioning each Xp into subsets
Xp,1, . . . , Xp,s as follows. Since the radius of Xp is at
most t, by definition of the doubling dimension, for each
k ≥ 1 we can split Xp into at most λkX balls of radius at
most t/2k. We choose the smallest integer k so that all of
these balls have diameter at most 2t when projected by G,
and let sp = s be the number of subsets Xp,q formed for
each p. (Note: this partitioning Xp,q is now dependent on
G.) We claim the following:

Proposition D.2. For any fixed p and all integers k ≥ 1,
Pr(sp > λkX) ≤ exp

(
−cd2k

)
.

Proof. For any fixed k, we split Xp into at most λkX balls
of radius at most t/2k: this process is independent of G.
Now, fix a small ball: when we apply the random pro-
jection G, the probability that it has radius more than t
when projected is at most exp

(
−cd22k

)
, by Lemma A.3.

But there are λkX ≤ exp (cdk) such balls if d is at least
c−1 log λX , so the probability that even one of GXp,q has
radius more than t is at most exp

(
−cd22k

)
· exp (cdk) =

exp
(
−cd(22k − k)

)
≤ exp

(
−cd2k

)
.

We also make the following observations:

1. If x ∈ Xp, then ‖x− xp‖ ≤ t, so the diameter of each
Xp is at most 2t. Likewise, the diameter of each Xp,q

is at most 2t in both the original space and the reduced
space.

2. By properties of the doubling dimension, for any xp
and all k ≥ 1, there are at most λC2·k

X points {xp′}rp′=1

within 2k · t of xp for some C2, since x1, . . . , xr are
all at least t apart.

Recall that D(Xp, Xp′) is the maximum distance between
points in Xp and Xp′ (in the original space), as opposed to
d(Xp, Xp′) which is the minimum distance. Now, for any
fixed i, we bound the expectation of

Li :=
∑
p,p′

d(GXp,GXp′ )<(1+ε)i+1

D(Xp,Xp′ )≥(1+5ε)·(1+ε)i

D(Xp, Xp′) · spsp′ ,

where the sum is over all pairs p, p′ ∈ [r].

First, we make the following claim.

Lemma D.3. For all i and any fixed G, Li ≥ Ki.

Proof. For any edge e ∈ M̃, if e has length in range Ai
(in the projected space), then this length is greater than
2C1 · t (assuming ε < 1/2). Then, e is some edge (Gx,Gy)
where x ∈ Xp,q, y ∈ Xp′,q′ , where (p, q) 6= (p′, q′) by
Observation 1. So, if edge e contributes toward the sum in
Ki, thenD(Xp, Xp′) ≥ ‖x−y‖ ≥ (1+5ε) ·‖Gx−Gy‖ ≥
(1 + 5ε) · (1 + ε)i. At the same time, d(GXp, GXp′) ≤
‖Gx−Gy‖ < (1+ ε)i+1. Thus, this pair (p, p′) contributes
toward the sum in Li. Moreover, D(Xp, Xp′) ≥ ‖x−y‖ ≥
max(0, ‖x−y‖− (1+5ε)‖Gx−Gy‖). This will be useful
since Li is a sum over D(Xp, Xp′) (multiplied by spsp′)
andKi is a sum over max(0, ‖x−y‖−(1+5ε)‖Gx−Gy‖).

Finally, it is impossible for two pairs (Gx,Gy) and
(Gx′, Gy′) to both be edges in M̃ that contribute to the
sum Ki, if x, x′ ∈ Xp,q and y, y′ ∈ Xp′,q′ . If there were
such pairs (Gx,Gy), (Gx′, Gy′), this means that the edges
(Gx,Gy) and (Gx′, Gy′) have length in Ai, and therefore
have length at least 2C1 · t. However, the diameters of
GXp,q and GXp′,q′ are at most 2t, so it would be better
to replace edge (Gx′, Gy′) with either edge (Gx,Gx′) or
edge (Gy,Gy′): exactly one of these replacements will
preserve the spanning tree property, and either replace-
ment reduces the total cost. Thus, for each pair (p, p′)
contributing to the sum in Li, at most sp · sp′ correspond-
ing pairs (x, y) can contribute to the sum in Ki, and since
D(Xp, Xp′) ≥ max(0, ‖x − y‖ − (1 + 5ε)‖Gx − Gy‖)
whenever x ∈ Xp,q, y ∈ Xp′,q′ , this finishes the proof.

We will now bound the expectation of Li.
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Lemma D.4. For any fixed i, E[Li] ≤ ε2

10 logn ·M .

Proof. For each j ≥ 1, define Bi,j to be the interval [(1 +
5ε) ·(1+ε)i+j−1, (1+5ε) ·(1+ε)i+j). Fix some p, p′ such
that D(Xp, Xp′) ∈ Bi,j (note: this is independent of G).
Since all points in Xp are at most t from xp (and similar for
Xp′ ), we have that ‖xp − xp′‖ ≥ (1 + 5ε) · (1 + ε)i+j−1 −
2t ≥ (1 + 3ε) · (1 + ε)i+j . Now, if d(GXp, GXp′) <
(1 + ε)i+1, then one of the following three events must be
true:

1. ‖xp − xp′‖ ≤ (1 + ε)i+(j/2) · (1 + 3ε)

2. diam(GXp) ≥ ε · (1 + ε)i+(j/2)

3. diam(GXp′) ≥ ε · (1 + ε)i+(j/2).

Indeed, if all three were false, then d(GXp, GXp′) ≥ ‖xp−
xp′‖− diam(GXp)− diam(GXp′) ≥ (1 + ε)i+(j/2) · (1 +
ε) ≥ (1 + ε)i+1.

Now, the probability of the first event (over the random-
ness of G) is at most the probability that a random projec-
tion shrinks xp − xp′ by a factor of at least (1 + ε)j/2.
By Equation (1), if j ≤ ε−1, then this happens with
probability at most exp

(
−d(jε)2/100

)
, and by Equation

(2), if j > ε−1, then this happens with probability at
most (1 + ε)−(j/2)·d/20 ≤ exp (−d(jε)/100) . The prob-
ability of each of the second and third events occurring,
since diam(Xp),diam(Xp′) ≤ ε · (1 + ε)i/C1, is at most
exp

(
−cd · C2

1 (1 + ε)j
)
≤ exp (−d(jε)/100) by Lemma

A.3. Next, note that by Proposition D.2, for some constant
C3, Pr(sp ≥ λC3·k

X ) ≤ exp(−d ·2k/100) for all real k ≥ 1,
and the same is true for sp′ .

Again consider some fixed j and some p, p′ with
D(Xp, Xp′) ∈ Bi,j . Define the random variable Zp,p′ :=
spsp′ · I

(
d(GXp, GXp′) < (1 + ε)i+1

)
, where I repre-

sents an indicator random variable. Then, if j ≤ ε−1,
d(GXp, GXp′) < (1 + ε)i+1 occurs with probability at
most 3 · exp

(
−d(jε)2/100

)
≤ 3 · exp

(
−d · ε2/100

)
, so

Pr(Zp,p′ > 0) ≤ 3 · exp
(
−d · ε2/100

)
. Next, for any k ≥

1, if Zp,p′ ≥ λ2k·C3

X , then either sp or sp′ is at least λk·C3

X ,
which occurs with probability at most 2 exp

(
−d · 2k/100

)
by Proposition D.2. Hence,

E[Zp,p′ ] ≤ 3 · exp

(
− dε

2

100

)
· λ2·C3

X

+

∞∑
k=1

2 · exp

(
−d · 2

k

100

)
· λ2(k+1)·C3

X

≤ 10 · exp

(
− dε

2

200

)
by our choice of the dimension d. However, if
j > ε−1, then d(GXp, GXp′) occurs with probability

at most 3 · exp (−d(jε)/100), so Pr(Zp,p′ > 0) ≤
3 · exp (−d · (jε)/100). But for any k ≥ 1, if
Zp,p′ ≥ λ

2(k+log(jε))·C3

X , then either sp or sp′ is at least
λ
(k+log(jε))·C3

X , which occurs with probability at most
2 exp

(
−d · 2k · (jε)/100

)
. Hence,

E[Zp,p′ ] ≤ 3 · exp

(
−d(jε)

100

)
· λ2(1+log(jε))·C3

X

+

∞∑
k=1

2 · exp

(
−d · (jε) · 2

k

100

)
· λ2(k+1+log(jε))·C3

X

≤ 10 · exp

(
−d(jε)

200

)
by our choice of the dimension d.

Next, note that for each p, the number of
p′ with D(Xp, Xp′) ≤ (1 + 5ε) · (1 +
ε)i+j ≤

[
C1 · ε−1 · (1 + ε)5+j

]
· t is at most

λ
C2·(logC1+log ε−1+ε·(5+j))
X by Observation 2. Hence,

the total number of pairs (p, p′) with D(Xp, Xp′) ∈ Bi,j is

at most r ·λC2·(logC1+log ε−1+ε·(5+j))
X ≤ r ·λC4·(log ε−1+jε)

X

for some constant C4.

Combining everything together, we have that

E[Li] =
∑
j≥1

∑
p,p′:D(Xp,Xp′ )∈Bi,j

D(Xp, Xp′) · E[Zp,p′ ]

≤
ε−1∑
j=1

(
r · λC4·(log ε−1+jε)

X · (1 + 5ε) · (1 + ε)i+j

· 10 · exp

(
− dε2

200

))
+
∑
j>ε−1

(
r · λC4·(log ε−1+jε)

X · (1 + 5ε) · (1 + ε)i+j

· 10 · exp

(
− d(jε)

200

))

≤ 20C1rt·

(
ε−1∑
j=1

λ
C5(log ε

−1)
X exp

(
− dε

2

200

)
(22)

+
∑
j>ε−1

λ
C5(log ε

−1+jε)
X exp

(
−d(jε)

200

))
(23)

for some constant C5. Above, the first equality follows
by definition of Li. The next inequality follows from our
bound on E[Zp,p′ ], our bound the number of (p, p′) with
D(Xp, Xp′) ∈ Bi,j , and since D(Xp, Xp′) ∈ Bi,j implies
D(Xp, Xp′) ≤ (1 + 5ε) · (1 + ε)i+j . The final inequality
follows from simple factorization and the facts that C1t ≤
(1 + ε)i and 1 + 5ε ≤ 2.

Now, if we choose d = C6 · (log log n+ log ε−1 log λX) ·
ε−2 for some sufficiently large constant C6, we have that
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λ
C5(log ε

−1)
X ·exp(−dε2/200) ≤ ε3

1000C1 logn for all j ≤ ε−1,

and λC5(log ε
−1+jε)

X · exp (−d(jε)/200) ≤ exp
(
j · ε−1

)
·

exp (−d(jε)/400) ≤ exp(−j)
1000C1 logn for all j > ε−1. Hence,

Equation (23) can be upper bounded by

20C1 · rt ·

(
ε−1 · ε3

1000C1 log n
+

∑
j≥ε−1 e−j

1000C1 log n

)

≤ ε2

20 log n
· rt. (24)

Proposition D.1 tells us that rt ≤ 2M . Hence, Equation
(24) is at most ε2

10 logn ·M, as desired.

In sum, we have that E[Ki] ≤ ε2

10 logn ·M for all i. More-
over, for small i, Equation (24) tells us that E[Ki] ≤
ε2

20 logn · rt ≤
ε2

20 logn · n · (1 + ε)i, since r ≤ n and
t ≤ (1 + ε)i. Therefore, the LHS of Equation (21) is at
most ∑

i:(1+ε)i≤diam(X)

E[Ki]

≤ ε2

20 log n
·

∑
i:(1+ε)i≤diam(X)

min
(
2M,n · (1 + ε)i

)
.

Using the bound ε2

10 logn ·M for iwith diam(X)
n < (1+ε)i ≤

diam(X) and the bound ε2

20 logn · n · (1 + ε)i for i with

(1 + ε)i ≤ diam(X)
n , we can bound this by

ε2

20 log n
·

(
2M · log1+ε n+

diam(X)

1− 1
1+ε

)

≤ ε ·M
5

+
diam(X) · ε

10 log n
< ε ·M,

since diam(X) ≤M. This concludes the proof.

E. Lower Bounds: Omitted Proofs
E.1. Dependence on the Doubling Dimension

In this subsection, we prove Theorems 6.1, 6.2, and 6.3 from
the main paper.

We begin with Theorem 6.1 (from the main paper). To do
so, we construct a set X of m points in Rm such that if
we randomly project X to o(logm) dimensions, then with
high probability, the facility location cost is not preserved
up to a constant factor. Moreover, the optimal set of facility
centers in the projected space, with high probability, is not
a constant-factor approximation to facility location in the
original space. The point set X we choose will just be a
scaled set of identity vectors in Rm: it is simple to see that

this point set has λX = m. These points have the convenient
property that each point’s projection is independent of each
other.

Proof of Theorem 6.1 from the main paper. As mentioned
previously, the points in X will just be Re1, . . . , Rem, the
m identity unit vectors in Rm scaled by a factor R ≥ 1.
Since these points each have distance R

√
2 ≥

√
2 from

each other, the optimum set of facilities is all of them, which
has cost m.

Now, consider a random projectionG down to d = o(logm)

dimensions, and define C =
√

logn
10d and R =

√
C. Note

that R,C = ω(1). Our goal will be to show that with at
least 2

3 probability, for all but 3m
C points p ∈ GX , r̃p ≤ 2

R ,
where we recall that r̃p is the positive real number such that∑

q∈B(p,r̃p)∩GX

(r̃p − ‖p− q‖) = 1.

We trivially have the bound r̃p ≤ 1 for all p ∈ GX, which
means that if we show our goal, then

∑
p∈GX r̃p ≤ m ·

2
R +

3m
C · 1 ≤

5m
R = o(m). However,

∑
p∈GX r̃p is a constant-

factor approximation to the optimum facility location cost
by Lemma 3.1 in the main paper, which proves that the
facility location cost of GX is o(m).

Now, for each ei, by Equation (1), we have for any C ≥ 6,

Pr(‖Gei‖ ≤ C) ≥ 1− exp
(
−d(C − 1)2/8

)
≥ 1− exp

(
−(C − 1)2/8

)
≥ 1− 1

2C
.

Moreover, conditioned on ‖Gei‖ ≤ C, by Lemma A.2, we
have that for each j 6= i, Pr(‖Gej −Gei‖ ≤ 1

C ) ≥ n−1/10
if n is sufficiently large. Therefore, if Gei : ‖Gei‖ ≤ C
is fixed, since the Gej’s are independent vectors, we can
apply the Chernoff bound to say that with probability at least
1−n−10, at least log n ≥ R values of j 6= i satisfy ‖Gej −
Gei‖ ≤ 1

C , or equivalently, ‖G(Rej)−G(Rei)‖ ≤ R
C = 1

R .
By removing our conditioning on Gei, we have that with
probability at least 1 − 1

2C − n
−10 ≥ 1 − 1

C , there are at
leastR points inGX that are within 1

R ofG(Rei), in which
case we have that for p = G(Rei), r̃p ≤ 2

R . Therefore, in
expectation, at most mC of the points in GX have r̃p > 2

R .
Thus, by Markov’s inequality, with probability at least 2

3 , at
most 3m

C of the points in GX have r̃p > 2
R . This proves the

first part of the theorem.

To prove the second part of the theorem, note that the opti-
mal facility location cost over GX is o(m) with probability
at least 2/3, which implies that the number of open facil-
ities in any optimal solution Fd is o(m). But then, each
point in X which is not an open facility center is at least
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R
√

2 away from the nearest open facility center in the orig-
inal space X , so the facility location cost in X is at least
(m− o(m)) ·R

√
2 = ω(m).

Next, we prove Theorems 6.2 and 6.3 (from the main paper).
These results prove that the dependence on doubling dimen-
sion dX is required in the projected dimension d, both to
approximate the cost of the minimum spanning tree and to
produce a minimum spanning tree in the lower dimension
that is still an approximate MST in the original dimension.

Proof of Theorem 6.2 from the main paper. Let
X = {0, e1, . . . , em}, where m = n − 1, 0 is the
origin in Rm and ei is the ith identity vector for each
1 ≤ i ≤ m. Clearly, the minimum spanning tree connects
0 to all of the ei’s and has cost M = m. Now, we show

that for C =
√

logn
10d = ω(1), the MST cost of GX is at

most 10m
C = o(m) for sufficiently large m with at least 2/3

probability.

To do so, note that since G’s entries are independent,
Ge1, . . . , Gem are all i.i.d. 1√

d
· N (0, Id). Consider

some ei, ej and suppose that ‖Gei‖, ‖Gej‖ ≤ C but
‖G(ei − ej)‖ ≥ 4

C . Then, if we let v = G(ei + ej)/2,

for each k 6= i, j, Pr(‖Gek − v‖ ≤ 1
C ) ≥ n−1/10 by

Lemma A.2. By the independence of Ge1, . . . , Gem, with
probability at least 1− n−10, there is some k 6= i, j in [m]
such that ‖Gek − v‖ ≤ 1

C . In this case, the minimum span-
ning tree of GX would not have the edge (Gei, Gej), as
this edge could be replaced by either the edge (Gei, Gek)
or (Gek, Gej), both of which are shorter.

Thus, with probability at least 1−n−8, if we just connect the
pointsGei over all iwith ‖Gei‖ ≤ C in an MST, every edge
has length at most 4

C . We can create a possibly suboptimal
spanning tree by connecting all Gei with norm at most C
in an MST, connecting one of these vertices arbitrarily to
0 = G · 0, and finally connecting Gei to 0 for all i with
‖Gei‖ > C. The first part has total cost at most m · 4

C
with probability at least 1 − n−8. The second part has
total cost at most C with probability at least 1 − n−8 (as
long as some ‖Gei‖ ≤ C). Finally, the third part has total
expected cost m · E[‖Gei‖ · I(‖Gei‖ ≥ C)], since each
edge ei contributes to the third part only if ‖Gei‖ ≥ C, and
there are m potential vertices Ge1, . . . , Gem. However, by
the Cauchy-Schwarz inequality, we know that

E [‖Gei‖ · I(‖Gei‖ ≥ C)] ≤
√
E [‖Gei‖2] · Pr(‖Gei‖ ≥ C)

≤
√

1 · exp (−d · (C − 1)2/8)

≤ exp
(
−(C − 1)2/16

)
≤ 1

C
,

with the final inequality true if C ≥ 7. Therefore, with
probability at least 4

5 , the third part has cost at most 5m
C

by Markov’s inequality. So, with probability at least 4
5 −

2n−8 ≥ 2
3 , the total cost of this spanning tree inGX (which

may not even be minimal) is at most 4
C ·m+C + 5

C ·m ≤
10m
C assuming m is sufficiently large.

Proof of Theorem 6.3 from the main paper. As in our

proof of Theorem 6.2, let C =
√

logn
10d = ω(1). Consider

n = C · m + 1 and let X = {0} ∪ {ei · k/C} for
1 ≤ i ≤ m, 1 ≤ k ≤ C. The minimum spanning tree
connects 0 to ei/C to 2ei/C to so on, so each edge has
length 1/C and the total MST cost is M = m.

Now, by Equations (1) and (2), for each ei, the probabil-
ity that ‖Gei‖ ∈ [1/10, 100] is at least 1− exp(−d/10)−
(3/100)d > 0.06 for all d ≥ 1. Thus, with exponential fail-
ure probability inm, among e1, . . . , em/2, at least 0.02m of
the Gei’s have norm between 1/10 and 100. Now, for some
i ≤ m/2 with 1/10 ≤ ‖Gei‖ ≤ 100, since d = o(log n),
by Lemma A.2, the probability that ‖Gej −Gei‖ ≤ 1

100C

for any j > m/2 is at least n−1/10. Hence, with exponential
failure probability, for each i with 1/10 ≤ ‖Gei‖ ≤ 100,
there is some j > m/2 with ‖Gej −Gei‖ ≤ 1

100C .

Let I be the set of i such that ‖Gei‖ ≥ 1
10 and there is some

j with ‖Gej −Gei‖ ≤ 1
100C . For each i ∈ I, the distance

between Gei · k/C and Gei · `/C for any ` 6= k is at least
1

10C but the distance between Gei ·k/C and Gej ·k/C is at
most 1

100C . This means that the closest point toGei ·k/C in
GX is of the form Gej · k′/C for some j 6= i and k′ which
may or may not equal k. However, for every Gx ∈ GX,
the minimum spanning tree of GX must contain the edge
connecting Gx to its closest neighbor, so for each i ∈ I

and 1 ≤ k ≤ C, M̃ must connect Gei · k/C to Gej · k′/C,
which has length at least k/C in the original space Rm.
Therefore, the pullback of the MST has length at least

∑
i∈I

C∑
k=1

k

C
≥ C

2
· |I|,

which with exponential failure probability in m is at least
C
100 ·m = C

100 ·M = ω(M).

E.2. Approximate Solutions Cannot be Pulled Back

In this subsection, we prove Lemmas 6.4 and 6.5 from the
main paper. In other words, we give a simple example
showing that our definition of locally optimal (for FL) and
that optimal (for MST) is necessary, if we want dependence
on dX = log λX as opposed to log n. In particular, our
lemmas give examples showing that pulling back of any
approximately optimal solution found in the projected space
to the original space does not work.

Proof of Lemma 6.4 from the main paper. Consider the fol-
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lowing set of points Y :

Y = {b1, b2, . . . , bm} = {e1, e1+e2, . . . , e1+e2+· · ·+em}

where ei is the ith standard basis vector. We refer to this
dataset as the ‘walk’ dataset. Using the definition of dou-
bling dimension (see Section 2 in the main paper), we can
compute that the doubling dimension of Y is some constant
independent of m. Now construct the dataset X by scaling
all the points in Y by the factor m1+1/2d. This does not
affect the doubling dimension. Consider the projection ofX
into Rd where d = O(1). Before projection, the optimum
solution is to open all facilities, costing m.

Now consider applying a random projection G and note
that the projection of the differences G(bi − bi+1) are inde-
pendent. Therefore, by Proposition A.1, there is a pair
of consecutive points bi, bi+1 such that ‖G(bi − bi+1)‖
shrinks by a factor of C1/m

1/d with probability at least
9/10. Furthermore, by Equation (2), we have that all the
differences ‖G(bi − bi+1)‖ do not shrink by a factor worse
than C2/m

1/d with probability at least 9/10. Hence, with
some constant probability, both the following events occur:

• There exists some i∗ such that ‖G(bi∗ − bi∗+1)‖ =
O(m1−1/2d)

• ‖G(bi − bi+1)‖ = Ω(m1−1/2d) for all i.

In this case, the optimal solution in the projected space is
to include all facilities, which has total cost m. However, a
solution that is within a 1 +O(m−1/2d) multiplicative fac-
tor of the optimal solution is to include all facilities except
for Gb∗i . However, evaluating this solution in the original
dimension incurs a cost at least Ω(m1+1/2d), whereas the
optimal cost is still m. Hence, the approach has approxima-
tion ratio of at leastm1/2d, which is ω(1), i.e., superconstant
unless d = Ω(logm).

Proof of Lemma 6.5 from the main paper. Assume WLOG
that n = 2k2 for some k, that X lies in Rm for m =
k + 1, and that d = ε · log n for some ε = o(1). Now, let
e1, e2, . . . , ek represent the identity vectors in Rk. Now, we
will choose our n points as follows. First, we will choose
the k2 points X ′ = {(0, 0), ( 1

k , 0), . . . , (k
2−1
k , 0)}, where

0 represents the last k coordinates all being 0. For the
remaining k2 points, for each 0 ≤ i ≤ k − 1 we add the
set Xi = {(i, ei), (i + 1

k , ei) . . . , (i + k−1
k , ei)}. We let

X = X ′ ∪X0 ∪ · · · ∪Xk−1.

First, we show that the doubling dimension of X , λX , is
at most O(1). First, note that X ′ and each Xi is trivially
embeddable into one dimension, because the points in X ′

and in eachXi only vary on one coordinate, so each of these
individually have doubling dimension O(1). Therefore,
for any ball B = B(r, p) of radius r ≤ 10 around some

point p, B ∩ X is contained in some union of O(1) of
X ′, X0, . . . , Xk−1. Consequently, the points in B ∩X can
be decomposed into O(1) balls of radius r/2, since B ∩X ′
and B ∩Xi each have doubling dimension bounded by a
constant. Now, if we consider some ball B = B(r, p) of
radius r > 10, suppose that p = (a0, a1, . . . , ak) ∈ Rk+1.
Now, consider the 5 points {(a0 + j

2 · r, 0)}2j=−2, where
the 0 represents the last k coordinates all being 0. For
every point x in X ∩B, x’s first coordinate must be in the
range [a0 − r, a0 + r] and x’s remaining coordinates have
total magnitude at most 1. With these two observations,
it is immediate that every point in X ∩ B is within r/2
of some point {(a0 + j

2 · r, 0)} for some integer −2 ≤
j ≤ 2. Therefore, if r > 10, B ∩ X can be covered by 5
balls of radius r/2. Thus, λX = O(1), so X has doubling
dimension log λX = O(1).

Now, a straightforward verification tells us that for any
i 6= j, the points in Xi and the points in Xj are at least

√
2

away from each other. Moreover, each point (i + j
k , ei)’s

closest point in X ′ is the corresponding point (i + j
k , 0),

and this distance is 1. Therefore, the minimum spanning
trees of X are as follows. First, connect the points in X ′

in a line and all of the points in each Xi in a line. Finally,
for each 0 ≤ i ≤ k − 1, choose some arbitrary j and
connect (i+ j

k , ei) and (i+ j
k , 0). The total MST cost M

is k2−1
k + k · k−1k + k · 1 = 3k − 1− 1

k = (3− o(1))k.

Now, when the random projection G : Rk+1 → Rd is
applied, we have that each vector (0, ei) is independently
mapped to some vector (ai1, . . . , aid), where each aij for
1 ≤ i ≤ k, 1 ≤ j ≤ d is an i.i.d. N (0, 1/d). So for
any ε = o(1) and n sufficiently large, if we choose δ =
e−1/(100ε), we have that Pr(|ai1|, . . . , |aid| ≤ δ/

√
d) =

Θ(δ)d ≤ e− logn/4 < 1/
√

2k, where we used the fact that
d = ε log n. Hence, a simple Chernoff bound tells us that
with 1− o(1) probability, at least

√
k/2 of the (0, ei)’s get

mapped to some (ai1, . . . , aid) with norm at most δ.

Now, consider the following ω(1)-approximate MST for
X . Let A = ε−1, and choose some set I = {i1, . . . , iA}.
Our “approximate” MST will be as follows. For each i ∈ I,
remove the k − 1 edges connecting Xi together, and for
each 1 ≤ j ≤ k, connect (i+ j

k , 0) with (i+ j
k , ei). Each

time this is done, we remove k − 1 edges of length 1/k
and add k − 1 edges of length 1 (recall that one of these
edges of length 1 was already in the MST), so the MST cost
increases by ε−1((k−1)1−(k−1)/k) = ε−1k ·(1−o(1)).
Hence, regardless of what set A we chose, the approximate
MST is a ω(1)-approximation, as the true MST has cost
M = O(k).

However, we claim that with high probability, we can choose
A so that this becomes a (1 + o(1))-approximation in the
projected space. Indeed, since ε ≥ 1

logn , with 1 − o(1)
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probability, at least
√
k/2 ≥ ε−1 values ei get mapped to

some point with norm at most δ. So, we choose A to be
of size ε−1 so that for all i ∈ A, ei gets mapped to a point
with norm at most δ. Recall thatM denote the true MST
for X , and letM′ be this poor-approximation spanning tree.
Note that the only edges inM′\M connect (i + j

k , 0) to
(i+ j

k , ei) for i ∈ I, 0 ≤ j ≤ k− 1. Since there are ε−1 · k
such edges, and each edge has size at most δ when projected,
we have that

costGX(M′) ≤ costGX(M) + δ · ε−1 · k

≤ costGX(M) + ε−1 · e−ε
−1/100 · k

= costGX(M) + o(k).

Now, let’s suppose that d ≥ ω(log log n). We saw in sub-
section D.1 that costGX(M) had expectation at most M =
costX(M) and standard deviation O(M/

√
log log n), re-

gardless of the dataset X . So, with 9/10 probability,
costGX(M′) ≤ costGX(M)+o(k) = (1+o(1))M . More-
over, by Theorem 5.1 from the main paper, with 9/10 prob-
ability, M̃, the cost of the MST in the reduced space GX ,
is within a 1 ± o(1) factor of M . Therefore, with at least
4/5 − o(1) probability, costGX(M′) ≤ (1 + o(1)) · M̃,
soM′ is an ω(1)-approximate MST in X but a 1 + o(1)-
approximate MST in GX .

E.3. Lower Bounds for k-means and k-medians

In this subsection, we prove Theorem 6.6 from the
main paper, which shows the tightness of the bounds of
(Makarychev et al., 2019) for k-means and k-medians clus-
tering even in the case of constant doubling dimension.

We remark that (Makarychev et al., 2019) showed tightness
of their result if doubling dimension is ignored. Namely,
they showed the existence of such a point set X that may
have large doubling dimension. Hence, our contribution is
making such a set that also has doubling dimension O(1).

Proof of Theorem 6.6 from the main paper. We start with
the case where n = 2t and k = 2t − 1 for some t. As
in (Makarychev et al., 2019), we wish to consider t pairs of
points where each pair is of distance 1 from each other, but
all other distances are larger.

Namely, we do the following. First, define D = t1/d/10,
and let R =

√
D. We have that D,R = ω(1), since d =

o(log n) = o(log t). Now, for 1 ≤ i ≤ t, let ai = (2 · i, 0),
meaning that ai’s first coordinate is 2 · i and the remaining
t = m− 1 coordinates are 0. Next, for each 1 ≤ i ≤ t− 1,
define bi = ai + ei+1, i.e., bi has first coordinate 2 · i,
(i + 1)th coordinate 1, and all remaining coordinates 0.
However, define bt = at + 1

R · ei+1. Our set X will be the
union of the ai’s and bi’s.

Now, since k = n− 1, the k-medians cost of X is just the
distance between the closest pair of points inX , which is 1

R .
The k-means cost of X is just the squared distance between
the closest pair of points in X . However, by Proposition
A.1, for each i,

Pr

(
‖Gbi −Gai‖ ≤

10

t1/d

)
= Pr

(
‖Gei+1‖ ≤

10

t1/d

)
≥
(

10

e · t1/d

)d
≥ 3

t
.

Moreover, since e2, . . . , et are all distinct unit vectors, the
vectors Ge2, . . . , Get are independent, which means that
with probability at least 1 − (1 − 3/t)t−1 ≥ 0.9 (for t
sufficiently large), some 1 ≤ i ≤ t − 1 will have ‖Gbi −
Gai‖ ≤ 10/t1/d = 1/D. Thus, some pair of points (ai, bi)
satisfy ‖Gai −Gbi‖ ≤ 1/D, whereas the closest distance
between two points in X was only 1/R. Therefore, with
at least 9/10 probability, the k-medians cost has multiplied
by a R/D = o(1) factor after projection, and likewise, the
k-means cost has multiplied by a R2/D2 = o(1) factor.

Now, let p, q ∈ X be the pair of points minimizing
‖Gp−Gq‖. With probability at least 4/5, ‖Gat −Gbt‖ ≥
1/(20R) > 1/D, which means that either p or q is not in
{at, bt}: assume WLOG that p 6∈ {at, bt}. Thus, an opti-
mal choice of k centers (for either k-means or k-medians)
is choosing all points in X , except p. But then, in the orig-
inal space, these centers have k-medians cost equal to the
distance from p to its closest point in X , which is at least 1.
Likewise, the k-means cost is also at least 1. However, the
optimal k-medians and k-means costs are 1/R and 1/R2,
respectively, so the optimal choice inGX is anR = ω(1) or
R2 = ω(1) approximation for k-medians and k-means, re-
spectively. This finishes the proof in the case that k = n−1.

For general values of k < n, we can simply consider having
n′ = k + 1 points in the configuration as above, but with
exactly one of the points replicated n − k times. In this
case, the cost of k-medians clustering is still the distance of
the closest pair of distinct points, and the cost of k-medians
clustering is still the square of the distance of the closest
pair of distinct points. So, the lower bound of Ω(log k) still
holds.

F. Facility Location with Squared Costs
Recall that the facility location with squared costs problem
is defined as follows. Given a dataset X ⊂ Rm, our goal is
to find a subset F ⊆ X that minimizes the objective

cost(F) = |F|+
∑
x∈X

min
f∈F
‖x− f‖2. (25)

Similar to Equation (3) in the main paper, we give a geo-
metric expression that is a constant factor approximation to
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the cost of the objective presented in (25). For each p ∈ X ,
associate it with a radius rp > 0 that satisfies the relation

∑
q∈B(p,r)

(r2p − ‖p− q‖2) = 1. (26)

We generalize the results in (Mettu & Plaxton, 2000) and
(Badoiu et al., 2005) to give an analogue of Lemma 3.1 in
the main paper for the squared objective (25).

Lemma F.1. Let COPT denote the cost of the optimal solu-
tion to the objective given in (25). Then

1

8
· COPT ≤

∑
p∈X

r2p ≤ 24 · COPT .

To prove Lemma F.1, we first given an algorithm for (25)
inspired by the MP algorithm. Our algorithm, which we
denote as the ‘Squared MP Algorithm,’ is the following.

Algorithm 2 SQUARED MP ALGORITHM

Input :Dataset X = {p1, · · · , pn} ⊆ Rd
Output :Set F of facilities

7 F ← ∅ for i = 1 to n do
8 Compute ri satisfying:

∑
q∈B(pi,ri)

(r2i −‖pi− q‖2) =
1

9 Sort such that r1 ≤ . . . ≤ rn for i = 1 to n do
10 if B(pi, 2ri) ∩ F = ∅ then
11 F ← F ∪ {pi}

12 Output F

We first claim that the set of facilities returned by Algorithm
2 is a constant factor approximation to the optimal set.

Theorem F.2. Let COPT denote the cost of the optimal
solution to the objective given in (25) and let F denote the
set of facilities returned by Algorithm 2. Then cost(F) ≤
6 · COPT .

Proof. The proof follows similarly to Theorem 1 in (Mettu
& Plaxton, 2000) with some adaptations. Let F ′ denote any
set of facilities. For any point x ∈ X , let

charge(x,F ′) = d(x,F ′)2 +
∑
p∈F ′

max(0, r2p − ‖p− x‖2)

where d(x,F ′) denotes the distance between x and the clos-
est point to x in F ′ and rp is defined as in (26). We first
show that

∑
x∈X charge(x,F ′) = cost(F ′). Indeed, this

follows from swapping the order of summation:∑
x∈X

charge(x,F ′)

=
∑
x∈X

∑
p∈F ′

max(0, r2p − ‖p− x‖2) +
∑
x∈X

d(x,F ′)2

=
∑
p∈F ′

∑
x∈X

max(0, r2p − ‖p− x‖2) +
∑
x∈X

d(x,F ′)2

=
∑
p∈F ′

1 +
∑
x∈X

d(x,F ′)2 = cost(F ′).

Now denote F ∗ as the set of facilities for the optimal so-
lution. We first study the individual term charge(x,F∗).
We first give a lower bound for charge(x,F∗). Let q∗

be the closest point to x ∈ F∗. If x 6∈ B(q∗, rq∗) then
charge(x,F∗) ≥ ‖x− q∗‖2 > r2q∗ . Otherwise,

charge(x,F∗) ≥ ‖x− q∗‖2 + r2q∗ − ‖x− q∗‖2

= r2q∗ ≥ ‖x− q∗‖2

so altogether,

charge(x,F∗) ≥ max(r2q∗ , ‖x− q∗‖2). (27)

Now let F denote the set of solutions returned by Algorithm
2. We now upper bound charge(x,F) in terms of the quanti-
ties r2q∗ , ‖x− q∗‖2. Recall that q∗ ∈ F∗ is the closest point
to x in F∗. We note that there must be a point q ∈ F such
that rq ≤ rq∗ and ‖q− q∗‖ ≤ 2rq∗ due to how Algorithm 2
selects the set of facilities in step 6.

Now if x ∈ B(q, rq) then d(x,F) ≤ ‖x − q‖ and thus
charge(x,F) ≤ r2q since step 6 of Algorithm 2 insures that
x 6∈ B(q′, rq′) for any other q′ ∈ F . Otherwise, x 6∈
B(q, rq) in which case we claim that charge(x,F) ≤ ‖x−
q‖2. This claim is immediate unless there exists some q′ ∈
F such that x ∈ B(q′, rq′). However in this case, a similar
reasoning as above means charge(x,F) ≤ r2q′ but

‖x− q‖ ≥ ‖q − q′‖ − ‖x− q′‖ > 2rq′ − rq′ = rq′

where the second inequality again follows from step 6 of
Algorithm 2. Therefore,

charge(x,F) ≤ ‖x− q‖2 ≤ (‖x− q∗‖+ ‖q∗ − q‖)2

≤ 2‖x− q∗‖2 + 2‖q∗ − q‖2

≤ 2‖x− q∗‖2 + 4r2q∗ . (28)

Comparing (27) to (28), we can compute that the ratio of
2‖x−q∗‖2+4r2q∗ to max(r2q∗ , ‖x−q∗‖2) is at most 6 from
which it follows that

charge(x,F) ≤ 6 · charge(x,F∗).

Summing over x ∈ X completes the proof.
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Using Theorem F.2, we are now in position to prove Lemma
F.1. The proof of Lemma F.1 follows similarly to the proof
of Lemma 2 in (Badoiu et al., 2005) with some modifications
to suit our alternate objective function given in (25).

Proof of Lemma F.1. We first prove the lower bound. Note
that for every pi ∈ X , Algorithm 2 will open a facility
within distance at most 2rp. Hence, 4

∑
p∈X r

2
p is an upper

bound on the cost to connect the points to their nearest facil-
ity. Now from similar reasoning as in the proof of Theorem
F.2, we note that each p is in at most one ball B(q, rq) for
some q ∈ F , where F denotes the set of facilities returned
by Algorithm 2. Therefore,∑

p∈X
r2p ≥

∑
q∈F

∑
p∈B(q,rq)

r2p.

Now if p ∈ B(q, rq) for some q ∈ F then we must have
rq ≤ 2rp because otherwise, step 6 of Algorithm 2 would
not have chosen q as a facility center. Thus,∑

p∈X
r2p ≥

∑
q∈F

∑
p∈B(q,rq)

r2p ≥
1

4

∑
q∈F

r2q · |B(q, rq)|.

Finally, we know that

1 =
∑

p∈B(q,rq)

(r2q − ‖p− q‖2) ≤ r2q · |B(q, rq)|

from which it follows that 4
∑
p∈X r

2
p ≥ |F|. Altogether,

we see that 8
∑
p∈X r

2
p is an upper bound to the cost of

the solution returned by Algorithm 2 so the lower bound
follows.

For the upper bound, we will show that the sum of the radii
squared is not too large compared to cost(F) whereF is the
set of facilities returned by Algorithm 2. Consider p 6∈ F
and let q be the closest facility to p. First, we must have r2p ≤
2(‖p− q‖2 + r2q) because otherwise, r2p > (‖p− q‖+ rq)

2

which implies that B(q, rq) ⊆ B(p, rp). Furthermore,∑
p′∈B(p,rp)

(r2p − ‖p− p′‖2)

≥
∑

p′∈B(q,rq)

(r2p − ‖p− p′‖2)

>
∑

p′∈B(q,rq)

(2r2q + 2‖p− q‖2 − ‖p− p′‖2)

≥
∑

p′∈B(q,rq)

(r2q + 2‖p− q‖2 + ‖p′ − q‖2 − ‖p− p′‖2)

≥
∑

p′∈B(q,rq)

(r2q − ‖q − p′‖2) = 1

which contradicts (26). To summarize, if p 6∈ F and q is the
closest facility in F to p, then

r2p ≤ 2(‖p− q‖2 + r2q). (29)

Going back to the upper bound, recall the definition of
charge(p,F) used in the proof of Theorem F.2:

charge(p,F) = d(p,F)2 +
∑
q∈F

max(0, r2q − ‖q − p‖2).

We also showed there that
∑
p∈X charge(p,F) = cost(F).

Now

cost(F) =
∑
p∈X

charge(p,F)

≥
∑
q∈F

r2q +
∑

p∈X\F

max(r2δ(p), ‖p− δ(p)‖
2)

where δ(p) denotes the closest element inF to p. From (29),
we know that r2p ≤ 2(‖p − q‖2 + r2q) so max(r2δ(p), ‖p −
δ(p)‖2) ≥ r2p/4 which gives us

6 · COPT ≥ cost(F) ≥ 1

4
·
∑
p∈X

r2p,

as desired.

We can prove the following statements about the expected
value of rp, defined as in (26), after a random projection to
a suitable dimension depending on the doubling dimension
of the set X . The following lemma is analogous to Lem-
mas C.2 and C.1 and omit its proof since the proof follows
identically from the proofs in Lemmas C.2 and C.1.

Lemma F.3. Let X ⊆ Rm and let p ∈ X . Let G be
a random projection from Rm to Rd for d = O(log λX).
Let rp and r̃p be the radius of p and Gp in Rm and Rd
respectively, computed according to Eq. (26). Then there
exist constants c, C > 0 such that

cr2p ≤ E[r̃2p] ≤ Cr2p.

Combining Lemma F.3, which states that
∑
p r

2
p is a con-

stant factor approximation to thelb optimal solution of the
objective given in (25), with Lemma F.1, we obtain the
following theorem that is analogous to Theorem 4.1 in the
main paper.

Theorem F.4. Let X ⊆ Rm and let p ∈ X . Let G be
a random projection from Rm to Rd for d = O(log λX).
Let Fm be the optimal solution in Rm and let Fd be the
optimal solution for the dataset GX ⊆ Rd. Then there
exists constants c, C > 0 such that

c · cost(Fm) ≤ E[cost(Fd)] ≤ C · cost(Fm).

Note that the crucial ingredient in the proof of Theorem
C.4 that allowed us to connect properties of the doubling
dimension to facility location clustering was the relation
given in Equation (3) in the main paper. The analogous
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relation for our new objective function in (25) is given in
(26) and one can easily check that the steps in the proof of
Theorem C.4 transfer. Therefore, we have the following
theorem.

Theorem F.5. Let X ⊆ Rm and let G be a random projec-
tion from Rm to Rd for d = O(log λX · log(1/ε)/ε2). Fix
p ∈ X and let Gx be any point in B(Gp,Cr̃p) in Rd where
C is a fixed constant and r̃p is computed according to Eq.
(26) in Rd. Then

E‖p− x‖ ≤ 2C(1 +O(ε))rp.

To derive a statement analogous to Theorem 4.2 from the
main paper for our alternate objective function, we need a
notion of a locally optimal solution. This task also follows
from using Section 3 of the main paper as a blue print. In
particular, we can define local optimality of a solution to
(25) as follows.

Definition F.6. A solutionF to the objective given in (25) is
locally optimal if for all p ∈ X , we haveB(p, 3rp)∩F 6= ∅
where rp is computed as in (26).

Then the following lemma follows similarly to Lemma 3.3
of the main paper.

Lemma F.7. Let F be an any collection of facilities. If
there exists a p ∈ X such that B(p, 3rp) ∩ F = ∅, then
cost(F ∪ {p}) < cost(F), i.e., we can improve the solution.

Finally, as a corollary to Lemma F.7 and Theorem F.5, we
have the following corollary.

Corollary F.8. Let X ⊂ Rm and let G be a random pro-
jection from Rm to Rd for d = O(log λX · log(1/ε)/ε2).
Let Fd be a locally optimal solution for the dataset GX for
the objective function given in (25). Then, the cost of Fd
evaluated in Rm, denoted as costm(Fd), satisfies

E[costm(Fd)] ≤ |Fd|+ C ′ ·
∑
p∈X

rp

for some constant C ′ > 0.

Remark F.9. We can compute that a constant smaller than
3 works for Definition F.6 and consequently Lemma F.7
but this choice is inconsequential since we already incur a
multiplicative constant factor in Theorem F.5.

Finally, we argue that the lower bound of Theorem 6.1 in the
main paper also carries over to our new objective function,
meaning that the dimension we project to must depend on
the doubling dimension. We define the connection cost of
the objective (25) as the second portion.

Theorem F.10. Let d = o(log n) and let G be be a random
projection from Rm to Rd. There exists X ⊆ Rm where
|X| = n such that with at least 2/3 probability, the optimal

cost multiplies by o(1) when projected. In addition, there
exists an optimal solution F̃ in Rd that is only an ω(1)-
approximate solution in the original space Rm.

Proof Sketch. The proof follows similarly as in the proof
of Theorem 6.1 in the main paper. We again define X =

{Re1, . . . , Rem}, where R =
√
C and C =

√
logn
10d . As

in the proof of Theorem 6.1, we again have for any fixed
p = Rei, with probability at least 1− 1

C , there are at least
R points in GX within 1

R distance of Gp. For any such
point p, letting r̃p be the associated radius for GX around
Gp as computed by Equation (25), we have that r̃p ≤ 2√

R
.

So, with at least 2/3 probability, at most 3m
C of the points

have r̃p > 2√
R

= o(1). As in the proof of Theorem 6.1, this
shows that the optimal cost multiplies by a o(1) factor, by
using Lemma F.1 this time.

In the original space X ⊂ Rm, the optimal squared facility
location cost ism, which is achievable by setting every point
in X as a facility. However, since the optimal facility cost
in GX is o(m), the optimal solution F̃ in the reduced space
Rd assigns at most o(m) points to be facilities. Therefore,
for the remaining m− o(m) points, the connection cost in
the original space is at least (R

√
2)2 ≥ R2, so the cost of F̃

in the original space X is at least R2 · (m− o(m)) = ω(1) ·
m. Thus, any optimal solution F̃ is an ω(1)-approximate
solution in the original space Rm.
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