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Appendix
A. More Specifications of the Search Space
Inspired by EfficientNet (Tan & Le, 2019) and TF-NAS (Hu
et al., 2020), we build a layer-wise search space, as ex-
plained in Section 3.1 and depicted in Figure 2 and in Ta-
ble 3. The input shapes and the channel numbers are the
same as EfficientNetB0. Similarly to TF-NAS and differ-
ently from EfficientNet-B0, we use ReLU in the first three
stages. As specified in Section 3.1.1, the ElasticMBInvRes
block is our elastic version of the MBInvRes block, intro-
duced in (Sandler et al., 2018a). Those blocks of stages 3 to
8 are to be searched for, while the rest are fixed.

Stage Input Operation Cout Act b
1 2242 × 3 3× 3 Conv 32 ReLU 1
2 1123 × 32 MBInvRes 16 ReLU 1
3 1122 × 16 ElasticMBInvRes 24 ReLU [2, 4]
4 562 × 24 ElasticMBInvRes 40 Swish [2, 4]
5 282 × 40 ElasticMBInvRes 80 Swish [2, 4]
6 142 × 80 ElasticMBInvRes 112 Swish [2, 4]
7 142 × 112 ElasticMBInvRes 192 Swish [2, 4]
8 72 × 192 ElasticMBInvRes 960 Swish 1
9 72 × 960 1× 1 Conv 1280 Swish 1

10 72 × 1280 AvgPool 1280 - 1
11 1280 Fc 1000 - 1

Table 3. Macro architecture of the one-shot model. ”MBInvRes” is
the basic block in (Sandler et al., 2018a). ”ElasticMBInvRes” de-
notes our elastic blocks (Section 3.1.1) to be searched for. ”Cout”
stands for the output channels. Act denotes the activation function
used in a stage. ”b” is the number of blocks in a stage, where [b, b̄]
is a discrete interval. If necessary, the down-sampling occurs at
the first block of a stage.

The configurations of the ElasticMBInvRes blocks c ∈ C
are sorted according to their expected latency as specified
in Table 4.

B. Searching for the Expansion Ratio
Searching for expansion ration (er), as specified in Sec-
tion 3.1.1, involves the summation of feature maps of differ-
ent number of channels:

ysb,er =
∑

er∈Aer

αsb,er · PWCsb,er(xsb) (17)

where PWCsb,er is the point-wise convolution of block b in
stage s with expansion ratio er.

The summation in (17) is made possible by calculating
PWCsb,ēr only once, where ēr = maxAer, and masking
its output several times as following:

ysb,er =
∑

er∈Aer

αsb,er · PWCsb,ēr(xsb)� 1C≤er×Cin (18)

where � is a point-wise multiplication, Cin is the number
of channels of xsb and the mask tensors 1C≤er×Cin are of

c er k se
1 3 3× 3 off
2 3 5× 5 on
3 3 3× 3 off
4 3 5× 5 on
5 4 3× 3 off
6 4 5× 5 on
7 4 3× 3 off
8 4 5× 5 on
9 6 3× 3 off

10 6 5× 5 on
11 6 3× 3 off
12 6 5× 5 on

Table 4. Specifications for each indexed configuration c ∈ C. ”er”
stands for the expansion ratio of the point-wise convolutions, ”k”
stands for the kernel size of the depth-wise separable convolutions
and ”se” stands for Squeeze-and-Excitation (SE) with on and off
denoting with and without SE respectively. The configurations are
indexed according to their expected latency.

the same dimensions as of PWCsb,ēr(xsb) with ones for all
channels C satisfying C ≤ er × Cin and zeros otherwise.

Thus, all of the tensors involved in the summation have the
same number of channels, i.e. ēr × Cin, while the weights
of the point-wise convolutions are shared. Thus we gain the
benefits of weight sharing, as specified in Section 3.3.

C. Multipath Sampling Code
We provide a simple PyTorch (Paszke et al., 2019) im-
plementation for sampling multiple distinctive paths (sub-
networks of the one-shot model) for every image in the
batch, as specified in Section 3.3. The code is presented in
figure 6.

1 import torch
2 from torch.nn.functional import

gumbel_softmax
3

4 def multipath(a, ops, x):
5 assert C = len(a) == len(ops)
6 bs = x.shape[0]
7 a = torch.log(a).repeat(bs)
8 a = a.reshape(bs, C).transpose(0, 1)
9 a_hat = gumbel_softmax(a)

10

11 o = torch.zeros_like(x)
12 for ah, op in in zip(a_hat, ops):
13 o += ah.view(-1, 1, 1, 1) * op(x)
14

15 return o

Figure 6. PyTorch Multipath Code

Note that the smaller batch size (16 images per GPU) during
the multi-path stage (section 3.3) is due to the memory
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required for any differentiable NAS applying a weighted
sum of the outputs of different operations. This is due
to storing gradient information for each one and is not an
artifact of the multi-path sampling, i.e. the same batch size
is required by the common single-path approach (Figure 4).

D. A Brief Derivation of the FW Step
Suppose D is a compact convex set in a vector space and
f : D → R is a convex, differentiable real-valued function.
The Frank-Wolfe algorithm (Frank et al., 1956) iteratively
solves the optimization problem:

min
x∈D

f(x). (19)

To this end, at iteration k + 1 it aims at solving:

min
xk+∆∈D

f(xk + ∆). (20)

Using a first order taylor expansion of f , (20) is approxi-
mated in the neighborhood of f(xk), and thus the problem
can be written as:

min
xk+∆∈D

∆T∇f(xk) (21)

Replacing ∆ with γ(s−xk) for γ ∈ [0, 1], problem (21) is
equivalent to:

min
xk+γ(s−xk)∈D

γ(s− xk)T∇f(xk). (22)

Assuming that xk ∈ D, sinceD is convex, xk+γ(s−xk) ∈
D holds for all γ ∈ [0, 1] iff s ∈ D. Hence, (22) can be
written as following:

min
s∈D

sT∇f(xk). (23)

Obtaining the minimizer sk of (23) at iteration k + 1, the
FW update step is:

xk+1 ← xk + γ(sk − xk). (24)

E. Obtaining a Feasible Initial Point
Algorithm 1 requires a feasible initial point (u0,β0) ∈ Slat.
assuming such a point exists, i.e. as t is large enough, a
trivial initial point (u0,β0) := (ũ, β̃) is associated with
the lightest structure in the search space S ⊂ Pζ(S), i.e.
setting:

α̃sb,c = 1{c = 1} ; β̃sb = 1{b = 2} (25)

for all s ∈ {1, .., S}, b ∈ {1, .., d}, c ∈ C, where 1{·} is
the indicator function. However, starting from this point
condemns the gradients with respect to all other structures
to be always zero due to the way paths are sampled from
the space using the Gumbel-Softmax trick, section 3.1.3.

Hence for a balanced propagation of gradients, the closest
to uniformly distributed structure in SLAT is encouraged.
For this purpose we solve the following quadratic programs

(QP) alternately,

min
u∈Sũ

s∑
s=1

d−1∑
b=1

|C|−1∑
c=1

(αsb,c+1 − αsb,c)2 (26)

min
β∈Sβ̃

s∑
s=1

d−1∑
b=1

(βsb+1 − βsb )2

using a QP solver at each step.

Sorting the indices of configurations according to their ex-
pected latency (see Table 4), the objectives in (26) promote
probabilities of consecutive indices to be close to each other,
forming chains of non-zero probability with a balanced dis-
tribution up to an infeasible configuration, there a chain of
zero probability if formed. Illustrations of the formation of
such chains are shown in Figure 7 for several latency con-
straints. Preferring as many blocks participating as possible
over different configurations, the alternating optimization in
(26) starts with β. This yields balanced β probabilities as
long as the constraint allows it.

The benefits from starting with such initial point are quanti-
fied by averaging the relative improvements in top-1 accu-
racy for several latency constraints T = {35, 40, 45, 50, 55}
milliseconds as following:

100
|T |

∑
T∈T

AccTbalance init −AccTlighest init

AccTlighest init
(27)

where AccTbalance init and AccTlighest init are the top-1 accuracy
measured for fine-tuned models generated by searching the
space initialized with (26) and (25) respectively, under la-
tency constraint T . The calculation in (27) yields 8.3% of
relative improvement in favour of (26) on average.

F. Proof of Theorem 3.1
In order to proof 3.1, we start with proving auxiliary lemmas.
To this end we define the relaxed Multiple Choice Knapsack
Problem (MCKP):
Definition F.1. Given n ∈ N, and a collection of k dis-
tinct covering subsets of {1, 2, · · · , n} denoted as Ni, i ∈
{1, 2, · · · , k}, such that ∪ki=1Ni = {1, 2, · · · , n} and
∩ki=1Ni = ∅ with associated values and costs pij , tij ∀i ∈
{1, . . . , k}, j ∈ Ni respectively, the relaxed Multiple
Choice Knapsack Problem (MCKP) is formulated as fol-
lowing:

max
vu

k∑
i=1

∑
j∈Ni

pijuij

subject to
k∑
i=1

∑
j∈Ni

tijuij ≤ T (28)

∑
j∈Ni

uij = 1 ∀i ∈ {1, . . . , k}

uij ≥ 0 ∀i ∈ {1, . . . , k}, j ∈ Ni
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Figure 7. Heat maps representing the initial probability of picking each stage depth (top) and block configuration (bottom), sorted from
the lightest to the heaviest (Table 4). Each couple of frames shows the initial point for a different latency constraint. Rows in each frames
stand for different stages (top) and blocks (bottom). The lightest feasible initial point (25) involves only a single configuration of the first
block in each stage, avoiding gradients from propagating to others (left). The balanced initial points (26) form chains of similar non-zero
probability followed by chains of zero probabilities, such that gradients are propagated through feasible paths with a balanced distribution.

where the binary constraints uij ∈ {0, 1} of the original
MCKP formulation (Kellerer et al., 2004) are replaced with
uij ≥ 0.

Definition F.2. An one-hot vector ui satisfies:

||u∗i ||0 =
∑
j∈Ni

|u∗ij |0 =
∑
j∈Ni

1u∗
ij
>0 = 1

where 1A is the indicator function that yields 1 if A holds
and 0 otherwise.

Lemma F.1. The solution u∗ of the relaxed MCKP (28) is
composed of vectors u∗i that are all one-hot but a single
one.

Proof. Suppose that u∗ is an optimal solution of (28), and
two indices i1, i2 exist such that u∗i1 ,u

∗
i2

are not one-hot
vectors. As a consequence, we show that four indices,
j1, j2, j3, j4 exist, such that u∗i1j1

,u∗i1j2
,u∗i2j3

,u∗i2j4
/∈

{0, 1}.

Define

q = ti2j2 − ti1j1

ti2j3 − ti2j4

(29)

and

f = (ti1j1 − ti1j2)
(
pi1j1 − pi1j2

ti1j1 − ti1j2

− pi2j3 − pi2j4

ti2j3 − ti2j4

)
and assume, without loss of generality, that f > 0, oth-

erwise one could swap the indices j1 and j2 so that this
assumption holds.

Set

∆ = min
(

(1− u∗i1j1
),

1− u∗i2j3

|q|
,u∗i1j2

,
u∗i2j4

|q|

)
(30)

such that ∆ > 0 and construct another feasible solution of
(28) uij ← u∗ij for all i, j but for the following indices:

ui1j1 ← u∗i1j1
+ ∆

ui1j2 ← u∗i2j2
−∆

ui2j3 ← u∗i2j3
+ q∆

ui2j4 ← u∗i2j4
− q∆

The feasibility of u is easily verified by the definitions
in (29) and (30), while the objective varies by:
k∑
i=1

∑
j∈Ni

pij(uij − u∗ij)

= ∆(pi1j1 − pi1j2) + q∆(pi2j3 − pi2j4)

= ∆(ti1j1 − ti1j2)
(
pi1j1 − pi1j2

ti1j1 − ti1j2

− pi2j3 − pi2j4

ti2j3 − ti2j4

)
= ∆f > 0 (31)

where the last inequality holds due to (30) together with the
assumption f > 0. Equation (31) holds in contradiction to
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u∗ being the optimal solution of (28). Hence all the vectors
of u∗ but one are one-hot vectors.

Lemma F.2. The single non one-hot vector of the solution
u∗ of the relaxed MCKP (28) has at most two nonzero
elements.

Proof. Suppose that u∗ is an optimal solution of (28)
and an index î and three indices j1, j2, j3 exist such that
u∗
îj1
,u∗

îj2
,u∗

îj3
/∈ {0, 1}.

Consider the variables ∆ = (∆1,∆2,∆3)T ∈ R3 and the
following system of equations:

t̂ij1
·∆1 + t̂ij2

·∆2 + t̂ij3
·∆3 = 0 (32)

∆1 + ∆2 + ∆3 = 0
At least one non-trivial solution ∆∗ to (32) exists, since the
system consists of two equations and three variables.

Assume, without loss of generality, that

pîj1
·∆1 + pîj2

·∆2 + pîj3
·∆3 > 0 (33)

Otherwise replace ∆∗ with −∆∗.

Scale ∆∗ such that

0 < u∗
îj1

+ ∆∗k < 1 ∀k ∈ {1, 2, 3} (34)

and construct another feasible solution of (28) uij ← u∗ij
for all i, j but for the following indices:

uîj1
← u∗

îj1
+ ∆1

uîj2
← u∗

îj2
+ ∆2

uîj3
← u∗

îj3
+ ∆3

Since ∆∗ satisfies (32) and (34), the feasibility of u is easily
verified while the objective varies by:

k∑
i=1

∑
j∈Ni

pij(uij − u∗ij)

= pîj1
·∆1 + pîj2

·∆2 + pîj3
·∆3 > 0 (35)

where the last inequality is due to (33). Equation (35) holds
in contradiction to u∗ being the optimal solution of (28).
Hence the single non one-hot vector of u∗ has at most two
nonzero entries.

In order to prove Theorem 3.1, we use Lemmas F.1 and F.1
for α and β separately, based on the observation that each
problem in (13) forms a relaxed MCKP (28). Thus replacing
u in (28) with α and β, p is replaced with α∗ and β∗ and
the elements of t are replaced with the elements of β∗TΘT

and α∗TΘ respectively.

Remark One can further avoid the two nonzero ele-
ments by applying an iterative greedy solver as introduced
in (Kellerer et al., 2004), instead of solving a linear program,
with the risk of obtaining a sub-optimal solution.

G. 2 for 1: w∗ Bootstrap - Accuracy vs Cost
In this section we compare the accuracy and total cost for
generating trained models in three ways:

1. Training from scratch
2. Fine-tuning w∗ for 10 epochs with knowledge distilla-

tion from the heaviest model loaded with w̄∗.
3. Fine-tuning w∗ for 50 epochs with knowledge distilla-

tion from the heaviest model loaded with w̄∗.

The last two procedures are specified in Section 4.2.2.

The results, presented in Figure 8, show that with a very
short fine-tuning procedure of less than 7 GPU hours (10
epochs) as specified in Section 4.1.1, in most cases, the
resulted accuracy surpasses the accuracy obtained by train-
ing from scratch. Networks of higher latency benefit less
from the knowledge distillation, hence a longer training is
required. A training of 35 GPU hours (50 epochs) results in
a significant improvement of the accuracy for most of the
models.

37 39 41 43 45 47 49 51 53 55 57 59 61
75.3
75.5
75.7
75.9
76.1
76.3
76.5
76.7
76.9
77.1
77.3
77.5
77.7
77.9
78.1

Latency (milliseconds)

To
p-

1
A

cc
ur

ac
y

(%
)

From scratch (Cost: 400 + 253N)
Short Finetune (Cost: 400 + 15N)
Long Finetune (Cost: 400 + 43N)

Figure 8. Top-1 accuracy on Imagenet vs Latency measured on
Intel Xeon CPU for a batch size of 1, for architectures found with
our method trained from scratch and fine-tuned from the pretrained
super-network

H. Solving the Mathematical Programs
Requires a Negligible Computation Time

In this section we measure the computation time for solving
the mathematical programs associated with the initialization
point, the LP associated with the FW step and the LP associ-
ated with our projection. We show that the measured times
are negligible compared to the computation time attributed
to backpropagation.

The average time, measured during the search, for solv-
ing the linear programs specified in Algorithm 1 and in
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Section 3.4.2 and the quadratic program specified in Ap-
pendix E is 1.15× 10−5 CPU hours.

The average time, measured during the search, for a single
backpropagation of gradients through the one-shot model is
2.15× 10−3 GPU Hours.

The overall cost of solving the mathematical programs for
generatingN networks is about 0.02N CPU hours, which is
negligible compared to the overall 400 + 15N GPU hours.

I. Comparing FLOPS
Figure 9 shows a comparison of Imagenet top-1 accuracy
and FLOPS between generated models by our method and
other leading NAS methods, some of which optimized for
FLOPS. Our models outperform the rest in terms of the
tradeoff between accuracy and FLOPS.
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Figure 9. Top-1 accuracy on Imagenet vs FLOPS for architectures
found with our method trained from scratch and fine-tuned from
the pretrained super-network

J. Comparing other Resources
Talbe 5 presents comparisons in terms of model size, e.g.
number of parameters, FLOPS together with latency.

All of the models in Table 5 (but OFA) are trained from
scratch using the exact same techniques and code, as spec-
ified in section 4.1.1. We report the maximum accuracy
and minimal size and FLOPS between the original paper
and our training and measurements. We emphasize that
all latency values presented are measured without any for-
mula but through actual time measurements of the models,
following the exact same settings, on the same hardware.

Model
Size
(106)

FLOPS
(108)

Latency
(ms)

Top-1
(%)

MnasNetB1 4.4 3.1 39 74.5
TFNAS-B 4.9 2.3 40 75.0
SPNASNet 4.4 3.3 41 74.9
OFA CPU6 4.9 3.6 42 75.7
Ours 40 ms 5.3 2.5 40 75.8
MobileNetV3 5.4 2.2 45 75.2
FBNet 5.5 3.8 47 75.7
MnasNetA1 3.9 3.1 55 75.2
Ours 45 ms 5.2 2.7 44 76.4
MobileNetV2 6.1 5.8 70 76.5
TFNAS-A 7.1 3.0 60 76.5
Ours 50 ms 7.5 2.9 50 77.1
EfficientNetB0 5.3 3.9 85 77.3
Ours 55 ms 8.1 3.3 55 77.6
FairNAS-C 4.4 3.2 60 77.0
Ours 60 ms 8.2 3.4 61 78.0

Table 5. ImageNet top-1 accuracy, model size (number of param-
eters), FLOPS and latency comparison with other methods. The
latency is reported for Intel Xeon CPU with a batch size of 1.

6Finetuning a model obtained by 1200 GPU hours.


