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Appendices
A. Pool of Agents
Here is the cross-play matrix of all the 100 agents trained with different MARL algorithms. There are five types of
architectures (Table 3) with two different seeds per MARL algorithm.

Figure 6. The pool of 100 agents pre-trained through Self-Play using different MARL methods (IQL/VDN/OP/AUX/SAD, and their
combinations). 10 agents having 5 different architectures with 2 seeds are generated with each of these MARL methods. pi, jqth element
is the average score of agent i paired with j over 5k games. The diagonal entries indicate SP scores.
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B. List of agents
In this section, we present the exact type of agents that we use as the learner and its partners in both easy and hard settings,
as well as the set of 10 partners used in section 5.3 and in Appendix C. All these settings have an IQL agent of Type-2 as the
learner and a sequence of 5/10 agents (can be extended to any number of agents) as its partners. Table 3 has details of the
exact architectures corresponding to these Types.

• Easy : Learner —
!

IQL (Type-2)
)

Partners —
!

IQL (Type-1), VDN (Type-3), VDN (Type-5), IQL+OP (Type-2), VDN+OP (Type-5)
)

.

• Hard : Learner —
!

IQL (Type-2)
)

Partners —
!

VDN+OP (Type-3), VDN (Type-4), VDN (Type-5), IQL+OP (Type-3), VDN (Type-3)
)

.
The partner agents in the Figure 2 are these hard agents.

• 10 agents: Learner —
!

IQL (Type-2)
)

Partners —
!

VDN (Type-2), VDN (Type-3), IQL+OP (Type-2), VDN+OP (Type-5), IQL (Type-4), VDN+OP

(Type-1), VDN (Type-4), IQL+OP (Type-3), VDN+OP (Type-1), VDN (Type-5)
)

.

The below are the set of 20 held-out agents that we use for across method evaluation in Tables 6 and 7.

Inter-CP :
!

IQL (Type-1), IQL (Type-3), IQL+OP (Type-4), IQL+OP (Type-5), VDN+AUX (Type-2), VDN+AUX (Type-
3), SAD+OP (Type-3), SAD+OP (Type-1), SAD+OP+AUX (Type-3), SAD+OP+AUX (Type-1), SAD+AUX (Type-3),
SAD+AUX (Type-1), SAD (Type-3), SAD (Type-2), IQL+AUX (Type-3), IQL+AUX (Type-1), VDN (Type-4), VDN
(Type-2), VDN+OP (Type-5), VDN+OP(Type-4)

)

.

Table 3. Exact architectures used in the pool.

AGENT RNN TYPE NUM OF FEED-FORWARD LAYERS NUM OF RNN LAYERS RNN HID DIM

TYPE-1 LSTM 1 1 256
TYPE-2 LSTM 2 2 256
TYPE-3 LSTM 1 2 512
TYPE-4 GRU 1 2 256
TYPE-5 GRU 2 1 512

C. LLL algorithms benchmarks
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Figure 7. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL algorithms with Adam optimizer on hard task.
From left to right: current score, average score, forgetting and average future score respectively.

Figure 8. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL algorithms with Adam optimizer on easy task.
From left to right: current score, average score, forgetting and average future score respectively.

For Figures 7-10, the learner is pre-trained with IQL method and is continually trained with either hard or easy agents
mentioned in section B.
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Figure 9. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL algorithms with SGD optimizer on hard task.
From left to right: current score, average score, forgetting and average future score respectively.

Figure 10. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL algorithms with SGD optimizer on easy task.
From left to right: current score, average score, forgetting and average future score respectively.

The sequential order of partners were chosen at random from the pre-trained pool in both easy and hard setting. Careful
curation of the partner ordering and its effect on lifelong learning is left as future work.
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Figure 11. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL algorithms with Adam optimizer on 10 tasks.
From left to right: current score, average score, forgetting and average future score respectively.
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Figure 12. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL algorithms with SGD optimizer on 10 tasks.
From left to right: current score, average score, forgetting and average future score respectively.

For Figures 11-12, the learner is pre-trained with IQL method and is continually trained with 10 partners mentioned in
section B.
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D. All hyperparameters and experiment details

Table 4. All common hyperparameters and their description.

HYPERPARAMETERS VALUE DESCRIPTION

batchsize 32 BATCHSIZE USED FOR BOTH TRAINING
AND FEW-SHOT EVALUATION

max train steps 200M MAXIMUM NUMBER OF TRAINING STEPS PER TASK
max eval steps 500K MAXIMUM NUMBER OF TRAINING STEPS

DURING FEW-SHOT EVALUATION
burn in frames 10K NUMBER OF SAMPLES USED TO WARM-UP REPLAY BUFFER
eval burn in frames 1K NUMBER OF SAMPLES USED TO WARM-UP

EVALUATION REPLAY BUFFER
replay buffer size 32768 REPLAY BUFFER SIZE DURING CONTINUAL TRAINING
eval replay buffer size 10000 REPLAY BUFFER SIZE FOR FEW-SHOT EVALUATION
epoch len size 200 NUMBER OF GRADIENT UPDATES PER EPOCH
eval epoch len size 50 NUMBER OF GRADIENT UPDATES FOR FEW-SHOT EVALUATION
eval freq 25 LEARNER IS EVALUATED AFTER EACH 25 EPOCHS
num thread 10 NUMBER OF THREADS USED FOR R2D2 ACTORS
num game per thread 80 NUMBER OF GAME PER THREADS USED FOR R2D2 ACTORS
eval num thread 10 NUMBER OF THREADS USED FOR R2D2 ACTORS

DURING FEW-SHOT EVALUATION
eval num game per thread 10 NUMBER OF GAMES PER THREADS USED FOR R2D2 ACTORS

DURING FEW-SHOT EVALUATION
sgd momentum 0.8 MOMENTUM FOR SGD OPTIMIZER

Table 5. Specific hyperparameters to each algorithm and their description

HYPERPARAMETERS VALUE DESCRIPTION

ewc lambda 50000 EWC
ewc gamma 1 EWC
replay buffer size 163840 MULTI-TASK
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E. MARL algorithms benchmarks
In order to obtain the Intra-CP scores for the existing MARL methods in the Table 2 and Table 7 (referenced as BEST in
caption), we take the agent from each training method that performs best with the Inter-CP agents listed above in section B
and evaluate them with the other 9 agents of the same method from the pretrained pool (Figure 6). However, in order
to obtain the Intra-CP scores for each MARL method in the Table 6 (referenced as AVG in caption), we pick one agent,
evaluate it with the rest (barring itself) and repeat the same for all other agents. The average of these scores are reported. A
similar process is followed for reporting Inter-CP scores. The method of evaluating our LLL methods remains consistent in
all the Tables( 2, 6, 7). For IQL+ER, we start with the IQL agent that has the least cross-play score and train it with Hard
agents sequentially using ER algorithm. In the case of IQL+AUX+ER, we start with an IQL agent that is pre-trained with
AUX and is continually trained with the Hard agents using ER algorithm. This continually trained agent is then evaluated
with 9 other agents in either IQL or IQL+AUX respectively in order to obtain Intra-CP scores. However, please note that the
auxiliary task is used only during pre-training and is not used during continual training. Note that the middle row in the
Table 7 is generated using the latest models released by (Hu et al., 2020).

Table 6. AVG : Comparison with other MARL algorithms on self-play (SP), cross-play evaluation scores within method (Intra-CP), and
across different methods (Inter-CP). C: centralized training, GA: agents share their greedy action along with their standard action, L: true
labels of cards needed, SYM: symmetries of the game needed upfront, P: require access to some pre-trained agents in sequence, UP:
Having access to all the fixed pre-trained agents at the same time. (Ò / Ó = Difference in score after continual training red: pre-trained with
MARL method, blue: trained continually with LLL method)

TRAINING METHOD SP INTRA-CP INTER-CP LIMITATIONS

SAD 23.78 ˘ 0.03 4.38 ˘ 0.66 8.40 ˘ 0.23 C+GA
SAD+AUX 23.82 ˘ 0.02 21.15 ˘ 0.26 17.01 ˘ 0.22 C+GA+L
SAD+OP 23.67 ˘ 0.03 12.00 ˘ 0.86 12.79 ˘ 0.24 C+SYM+GA
SAD+AUX+OP 23.88 ˘ 0.03 22.01 ˘ 0.03 17.08 ˘ 0.22 C+SYM+L+GA

IQL + ER 20.91 ˘ 0.05 (Ó 2.98) 15.73˘0.39 (Ò 7.06) 16.32˘0.21 (Ò 8.09) P
IQL+AUX + ER 22.34˘ 0.06 (Ó 1.46) 20.90˘ 0.06 (Ó0.15) 19.17˘0.22(Ò1.33) L+P
IQL + MULTI-TASK 20.93˘0.09 (Ó 2.96) 16.05˘ 0.30(Ò 7.38) 17.88˘0.17 (Ò 9.65) UP

Table 7. BEST : Comparison with other MARL algorithms on self-play (SP), cross-play evaluation scores within method (Intra-CP), and
across different methods (Inter-CP). C: centralized training, GA: agents share their greedy action along with their standard action, L: true
labels of cards needed, SYM: symmetries of the game needed upfront, P: require access to some pre-trained agents in sequence, UP:
Having access to all the fixed pre-trained agents at the same time. (Ò / Ó = Difference in score after continual training, red: pre-trained
with MARL method, blue: trained continually with LLL method, ˚ : results obtained using models released by (Hu et al., 2020))

Training Method SP Intra-CP Inter-CP Limitations

SAD 23.85˘ 0.03 7.70˘ 0.69 14.60˘ 0.24 C + GA
SAD + AUX 23.57˘ 0.03 20.97˘ 0.80 18.51˘ 0.23 C + GA + L
SAD + OP 24.14˘ 0.03 10.10˘ 0.87 16.09˘ 0.25 C + Sym + GA
SAD + AUX + OP 23.40˘ 0.04 21.23˘ 0.25 17.77 ˘ 0.23 C + Sym + L + GA

SAD˚ 23.97˘ 0.04 2.52˘ 0.0.34 11.46˘ 0.35 C + GA
SAD + AUX˚ 24.09˘ 0.03 17.65˘ 0.69 17.60˘ 0.42 C + GA + L
SAD + OP˚ 23.93˘ 0.02 15.32˘ 0.65 17.50˘ 0.34 C + Sym + GA
SAD + AUX + OP˚ 24.06˘ 0.02 22.07˘ 0.11 17.45˘ 0.38 C + Sym + L + GA

IQL + ER 20.91˘ 0.05 (Ó 2.98) 15.73˘ 0.39 (Ò 7.06) 16.32˘ 0.21 (Ò 8.09) P
IQL + AUX + ER 22.34˘ 0.06 (Ó 1.46) 20.90˘ 0.06 (Ó 0.15) 19.17˘ 0.22 (Ò 1.33) L + P
IQL + Multi-task 20.93˘ 0.09 (Ó 2.96) 16.05˘ 0.30 (Ò 7.38) 17.88˘ 0.17 (Ò 9.65) UP


