
Policy Caches with Successor Features

Mark Nemecek 1 Ronald Parr 1

A. Theoretical Proof
Let Λπi be a matrix with each row corresponding to a state
s ∈ S, and each column corresponding to a successor fea-
ture. Thus, each row corresponds to a row vector of suc-
cessor features for a state under πi: Λπi(s) = ψπi(s, πi(s))
and is analogous to the relationship between V πi and Qπi .

Definition 1. An approximate successor features matrix
Λ̃πi differs from the exact matrix Λπi by a state-wise error
matrix ∆πi = Λ̃πi − Λπi .

Definition 2. If wj is the weight vector for task j, then the
approximate value function matrix induced by Λ̃πi in task j
is the column vector Ṽ πi

j = Λ̃πiwj .

Definition 3. The state-wise approximation error of Ṽ πi
j is

the column vector επi
j = |Ṽ πi

j − V
πi
j | = |∆πiwj | where

| · | denotes the element-wise absolute value.

Theorem 1. If πR is an optimal policy under rR and rR
is a positive conical combination, i.e., αi ≥ 0 and α =∑
i∈T αi > 0, then

max
i∈T

[
Ṽ πi

R (s)− επi

R (s)
]
≤

V πR

R (s) ≤∑
i∈T

αiṼ
πi
i (s) +

∑
i∈T

αiε
πi
i (s)

Proof. From the definition of an optimal policy:

V πi

R ≤ V
πR

R ∀ i ∈ T∑
i∈T

αiV
πi

R ≤
∑
i∈T

αiV
πR

R∑
i∈T

αiV
πi

R ≤ V
πR

R

∑
i∈T

αi∑
i∈T

αiV
πi

R ≤ αV
πR

R

1

α

∑
i∈T

αiV
πi

R ≤ V
πR

R (1)

Similarly, let wi be the weight vector for task i. Then

αiV
πR
i ≤ αiV πi

i ∀ i ∈ T∑
i∈T

αiV
πR
i ≤

∑
i∈T

αiV
πi
i∑

i∈T
αi[Λ

πR]wi ≤
∑
i∈T

αiV
πi
i

[ΛπR]
∑
i∈T

αiwi ≤
∑
i∈T

αiV
πi
i

[ΛπR]wR ≤
∑
i∈T

αiV
πi
i

V πR

R ≤
∑
i∈T

αiV
πi
i (2)

Combining inequalities 1 and 2 gives us

1

α

∑
i∈T

αiV
πi

R ≤ V
πR

R ≤
∑
i∈T

αiV
πi
i (3)

We note that, when considered point-wise over the states,
the left hand side can be no greater than the max over all
terms in the sum and this max cannot exceed the value under
the optimal policy. Using (s) to indicate indexing into a
matrix or vector by the state s, it follows that

∀s max
i∈T

V πi

R (s) ≤ V πR

R (s) ≤
∑
i∈T

αiV
πi
i (s) (4)

Finally, consider the successor feature approximation Λ̃πi .
Then ∀ i, j ∈ T and ∀ s ∈ S,

V πi
j (s) = Λπi(s)Twj

=
[
Λ̃πi(s)−∆πi(s)

]Twj

And it follows that

Λ̃πi(s)Twj − |∆πi(s)Twj | ≤[
Λ̃πi(s)−∆πi(s)

]Twj ≤
Λ̃πi(s)Twj + |∆πi(s)Twj |

Policy Caches with Successor Features

And thus that

Ṽ πi
j (s)− επi

j (s) ≤
V πi
j (s) ≤

Ṽ πi
j (s) + επi

j (s) (5)

Combine this information with inequality 4 and have ∀ s,

max
i∈T

[
Ṽ πi

R (s)− επi

R (s)
]
≤

V πR

R (s) ≤∑
i∈T

αiṼ
πi
i (s) +

∑
i∈T

αiε
πi
i (s) (6)

B. Tightness of Barreto et al. Bounds
We consider the tightness of the Barreto et al. (2017) bounds
in the case no approximation error, i.e., ε = 0. Their bounds
use only φmax, and the norm of the difference between re-
ward function weight vectors. Given this limited amount
of information, these bounds are close to tight. These re-
sults do not preclude obtaining tighter bounds using more
information, as we and others do.

B.1. Lower Bound

Consider an MDP with just one possible policy, π. For all
i and all j in τ , π∗j = π, and for all s and a, Q

π∗
j

i (s, a) =

Q
π∗
i
i (s, a), which shows that Theorem 1 from Barreto et al.

holds with equality in this case.

B.2. Upper Bound

Consider and MDP with two states s0, s1, and two actions,
a0 and a1. In any case, P (sk|si, ak) = 1.0, i, k ∈ {0, 1}.
Define reward features over states with φi(si) = δ(si),
i ∈ {0, 1}, i.e., delta functions on the state. φmax =
maxi ‖φi‖ = 1. The reward function is, thus, parameter-
ized by w = [w1, w2]. For w1 = [1, 0], π∗1 chooses action
0 in all states with:

Q
π∗
1

1 (s0, a0) =
w1

1− γ
=

1

1− γ
Q
π∗
1

1 (s1, a0) =
γw1

1− γ
=

γ

1− γ

Q
π∗
1

1 (s0, a1) =
γ2w1

1− γ
=

γ2

1− γ

Q
π∗
1

1 (s1, a1) =
γ2w1

1− γ
=

γ2

1− γ

For w2 = [w1, w2] = [0, 1], the optimal policy chooses
action 1 in all states with:

Q
π∗
2

2 (s0, a0) =
γ2w2

1− γ
=

γ2

1− γ

Q
π∗
2

2 (s1, a0) =
γ2w2

1− γ
=

γ2

1− γ
Q
π∗
2

2 (s0, a1) =
γw2

1− γ
=

γ

1− γ

Q
π∗
2

2 (s1, a1) =
w2

1− γ
=

1

1− γ

The value of applying π∗1 on task 2 is:

Q
π∗
1

2 (s0, a0) =
w1

1− γ
= 0

Q
π∗
1

2 (s1, a0) =
γw1

1− γ
= 0

Q
π∗
1

2 (s0, a1) =
γ2w1

1− γ
= 0

Q
π∗
1

2 (s1, a1) =
γ2w1

1− γ
= 0

The suboptimality of using this policy in state 1 is:

Q
π∗
2

2 (s1, a1)−Qπ
∗
1

2 (s1, a1) =
1

1− γ
.

From the Barreto et al. bound for ε = 0, we have:

Q
π∗
2

2 (s1, a1)−Qπ
∗
1

2 (s1, a1) ≤ 2

1− γ
φmax‖w1 −w2‖

=
2

1− γ

This shows that the Barreto et al. bound is close to tight –
it cannot be improved by more than a factor of 2 without
taking additional information into account.

C. Hunt et al. Theorem Applied to Hard-Max
An upper bound on the optimal action-value function can
be constructed based on Theorem 3.2 of Hunt et al. (2019)
by removing their C∞b term, since it is subtracted away
to get the optimal Q function for the new task. This term
corrects for the divergence between the known policies and
the optimal policy for the new task.

Due to the fact that soft Q-learning approaches hard-max Q-
learning as the temperature parameter α→ 0+, it is intuitive
to think that this result applies to hard-max Q-functions as
well. However, while our result shows that such a bound
does indeed hold, it does not follow from their Theorem 3.2,
which we show with a proof by contradiction.

Policy Caches with Successor Features

Proof. Assume that Theorem 3.2 applies to hard-max Q-
functions. In that case, we have optimal hard-max policies
πi, πj with respect to reward functions ri, rj , corresponding
action-value functions Qi, Qj , a composite reward function
rb ≡ bri + (1 − b)rj , and the following equation from
Theorem 3.2 holds:

Q∗b(s, a) = bQi(s, a) + (1− b)Qj(s, a)− C∞b (s, a) (7)

Since this must hold for all bounded action-value functions,
we consider a case with reward functions r̂i ≡ kri and r̂j ≡
krj , where k > 0 is a bounded real-valued constant and k 6=
1. We therefore also have a new, different composite reward
function defined by the weight b: r̂b ≡ br̂i+(1−b)r̂j ≡ krb.
Scaling a reward function by a positive constant does not
change the corresponding optimal hard-max policies but
does scale the action-value functions for those policies by
the same constant, so we have π̂i ≡ πi, π̂j ≡ πj , Q̂i ≡ kQi,
Q̂j ≡ kQj , and Q̂∗b ≡ kQ∗b . As C∞b (s, a) is a function of
the policies and not the reward or value functions, it follows
that this function also does not change with our scaling.
Therefore, the following holds according to Theorem 3.2:

Q̂∗b(s, a) = bQ̂i(s, a) + (1− b)Q̂j(s, a)− C∞b (s, a) (8)

Let us further stipulate that ri and rj are different enough
such that C∞b (s, a) > 0 for at least one state-action pair,
i.e., there is some divergence between the policies. For any
such pair, we can rearrange Equations 7 and 8 as follows:

bQi(s, a) + (1− b)Qj(s, a)−Q∗b(s, a)

= C∞b (s, a)

= bQ̂i(s, a) + (1− b)Q̂j(s, a)− Q̂∗b(s, a)

bQi(s, a) + (1− b)Qj(s, a)−Q∗b(s, a)

= bQ̂i(s, a) + (1− b)Q̂j(s, a)− Q̂∗b(s, a)

bQi(s, a) + (1− b)Qj(s, a)−Q∗b(s, a)

= bkQi(s, a) + (1− b)kQj(s, a)− kQ∗b(s, a)

bQi(s, a) + (1− b)Qj(s, a)−Q∗b(s, a)

= k
[
bQi(s, a) + (1− b)Qj(s, a)−Q∗b(s, a)

]
k = 1

However, this contradicts our requirement that k 6= 1 and
thus Theorem 3.2 cannot hold.

D. Additional Experimental Results
We performed additional experiments with the same under-
lying environment as Gridworld, but with the alternate grid
shown in Figure 5, which we reference as Gridworld 5x6.
For this grid, picking up any object requires increasing the
number of steps taken to reach the goal, so depending on
the reward assigned to a given object, it may or may not be
optimal leave the shortest path to the goal to pick it up.

Figure 5. GridWorld 5x6 with start (S), walls (W), goal (G), objects
(A-E)

There are three additional significant differences from the
Gridworld experiments in Section 5: (1) new tasks were con-
vex combinations of the base tasks sampled from a uniform,
random distribution over such combinations, (2) feature-
based representations were used, and (3) function approx-
imation was used for the successor features in the form of
neural networks.

For the five base tasks in these experiments, a reward of
1.0 is received for reaching the goal and a reward of 0.4
is received for picking up one of the objects. In each run,
50 additional tasks were sampled from a uniform, random
distribution over convex combinations of the base tasks. We
collected data from 100 runs, each of which corresponds to
a different seed for the sampling of tasks.

The first state representation we used consisted of a one-hot
encoding of the agent’s position concatenated with the cur-
rent object inventory, which has an indicator for each object,
and a constant bias feature. The second representation was
pixel-based with 50x60 pixels (10x10 for each cell) and 3
color channels where the agent and objects were visualized
as circles of different colors.

The results for these experiments are shown in Figure 6,
which follow a similar pattern to those in Section 5. These
results demonstrate that the benefits of our method appear
even when exact representations are not used. The differ-
ences between the results for the two representations are the
effect of a slightly larger error in the SF approximations for
the pixel-based representation.

Policy Caches with Successor Features

0 10 20 30 40 50
Number of tasks experienced

0.85

0.90

0.95

1.00

1.05

Va
lu

e

 = 0.08 upper
 = 0.04 upper

all pol upper
learned

 = 0.08 lower
 = 0.04 lower

all pol lower

(a) Bounds for for indicator representation, mean and variance

0 10 20 30 40 50
Number of tasks experienced

10

20

30

40

50

Nu
m

be
r o

f p
ol

ici
es

 in
 c

ac
he

all policies
 = 0.02
 = 0.04
 = 0.06
 = 0.08

(b) Cache size for indicator representation, mean and std. dev.

0 10 20 30 40 50
Number of tasks experienced

0.85

0.90

0.95

1.00

1.05

Va
lu

e

 = 0.08 upper
 = 0.04 upper

all pol upper
learned

 = 0.08 lower
 = 0.04 lower

all pol lower

(c) Bounds for pixel representation, mean and variance

0 10 20 30 40 50
Number of tasks experienced

10

20

30

40

50
Nu

m
be

r o
f p

ol
ici

es
 in

 c
ac

he

all policies
 = 0.02
 = 0.04
 = 0.06
 = 0.08

(d) Cache size for pixel representation, mean and std. dev.

Figure 6. Data for the GridWorld 5x6 environment, 100 runs

E. Experimental Methodology
E.1. Gridworld 5x6

For the Gridworld 5x6 experiments in Section D, multiple
neural network architectures and hyperparameter settings
were explored. Table 1 lists the necessary hyperparameters,
the values used for the reported results, and the set of values
considered during our experiments. The values used for
our results were chosen based on preliminary experiments
which provided an estimate of the approximation error of the
successor features after training as well as the performance
of the induced policy.

For the indicator-based state representation, MLPs with
different numbers of layers with ReLU nonlinearities were
considered, while for the image-based representation, the
structure used was that of DQN (Mnih et al., 2015) with

three convolutional layers and two fully-connected layers.
For each task, SFs were trained using a modified version of
SFQL. The modifications allowed for the use of arbitrary
neural network models, replay memory, batch sizes larger
than one, and a target network. Each task was trained on
independently, so GPI was not used.

E.2. Reacher

The hyperparameters for the Reacher environment are
shown in Table 2.

References
Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul,

T., van Hasselt, H. P., and Silver, D. Successor features
for transfer in reinforcement learning. In Advances in

Policy Caches with Successor Features

HYPERPARAMETER VALUE USED FOR RESULTS OTHER VALUES CONSIDERED

LEARNING RATE 0.1 0.01, 0.05
MINIBATCH SIZE 32 1, 16
OPTIMIZATION FREQUENCY 1 32
TARGET UPDATE FREQUENCY 500 1, 32
OPTIMIZER SGD SGD
ε DECAY SCHEDULE LINEAR CONSTANT
ε START 1.0 1.0
ε END 0.05 0.15
ε DECAY PERIOD (# SAMPLES) 500K 100K
ε (FOR CONSTANT) N/A 0.15
TRAINING SAMPLES 500K 200K
INDICATOR-BASED NETWORK ARCH 2-LAYER LINEAR, 3-LAYER
INDICATOR-BASED HIDDEN LAYER WIDTH 72 36
IMAGE-BASED NETWORK ARCHITECTURE DQN STRUCTURE (MNIH ET AL., 2015) N/A

Table 1. Hyperparameters for the GridWorld 5x6 experiments. Frequencies refer to the number of samples collected between steps.

HYPERPARAMETER VALUE USED FOR RESULTS OTHER VALUES CONSIDERED

LEARNING RATE 1E-5 1E-3, 1E-4
MINIBATCH SIZE 128 32
OPTIMIZATION FREQUENCY 1 N/A
TARGET UPDATE FREQUENCY 500 N/A
OPTIMIZER ADAM SGD
ε DECAY SCHEDULE CONSTANT LINEAR
ε START N/A 1.0
ε END N/A 0.05
ε DECAY PERIOD (# SAMPLES) N/A 100K, 500K
ε (FOR CONSTANT) 0.1 0.15
TRAINING SAMPLES 15M 1M, 5M, 10M
NETWORK ARCH 2-LAYER LINEAR, 3-LAYER
HIDDEN LAYER WIDTH 256 64, 128

Table 2. Hyperparameters for the Reacher experiments. Frequencies refer to the number of samples collected between steps.

Neural Information Processing Systems 30, pp. 4055–
4065. Curran Associates, Inc., 2017.

Hunt, J., Barreto, A., Lillicrap, T., and Heess, N. Composing
entropic policies using divergence correction. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp. 2911–2920. PMLR, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, February 2015. ISSN 00280836.

