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Abstract
Recent unsupervised machine translation (UMT)
systems usually employ three main principles:
initialization, language modeling and iterative
back-translation, though they may apply them
differently. Crucially, iterative back-translation
and denoising auto-encoding for language
modeling provide data diversity to train the
UMT systems. However, the gains from
these diversification processes have seemed to
plateau. We introduce a novel component to the
standard UMT framework called Cross-model
Back-translated Distillation (CBD), that is aimed
to induce another level of data diversification
that existing principles lack. CBD is applicable
to all previous UMT approaches. In our
experiments, CBD achieves the state of the
art in the WMT’14 English-French, WMT’16
English-German and English-Romanian bilingual
unsupervised translation tasks, with BLEU scores
of 38.2, 30.1, and 36.3, respectively. It also yields
1.5 – 3.3 BLEU improvements in IWSLT English-
French and English-German tasks. Through
extensive experimental analyses, we show that
CBD is effective because it embraces data
diversity while other similar variants do not.

1. Introduction
Machine translation (MT) is a core task in natural language
processing that involves both language understanding and
generation. Recent neural approaches (Vaswani et al., 2017;
Wu et al., 2019) have advanced the state of the art with near
human-level performance (Hassan et al., 2018). However,
they continue to rely heavily on large parallel data. As a
result, the search for unsupervised alternatives using only
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monolingual data has been active. While Ravi & Knight
(2011) and Klementiev et al. (2012) proposed various
unsupervised techniques for statistical MT (SMT), Lample
et al. (2018a;c) established a general framework for modern
unsupervised MT (UMT) that works for both SMT and
neural MT (NMT) models. The framework has three main
principles: model initialization, language modeling and
iterative back-translation. Model initialization bootstraps
the model with a knowledge prior like word-level cross-
lingual transfer (Lample et al., 2018b). Language modeling,
which takes the form of denoising auto-encoding (DAE) in
NMT (Lample et al., 2018c), trains the model to generate
plausible sentences in a language. Meanwhile, iterative
back-translation (IBT) facilitates cross-lingual translation
training by generating noisy source sentences for original
target sentences. The recent approaches differ on how
they apply each of these three principles. For instance,
Lample et al. (2018a) use an unsupervised word translation
model (Lample et al., 2018b) for model initialization, while
Conneau & Lample (2019) use a pre-trained cross-lingual
masked language model (XLM).

In this paper, we focus on a different aspect of the UMT
framework, namely, its data diversification process. In
this context, we refer data diversification as only sentence
level variations, and not contextual topics or genres. If we
look from this view, the DAE and IBT steps of the UMT
framework also perform some form of data diversification
to train the model. Specifically, the noise model in the DAE
process generates new, but noised, versions of the input
data, which are used to train the model with a reconstruction
objective. Likewise, the IBT step involves the same UMT
model to create synthetic parallel pairs (with the source
being synthetic), which are then used to train the model.
Since the NMT model is updated with DAE and IBT
simultaneously, the model generates fresh translations in
each back-translation step. Overall, thanks to DAE and IBT,
the model gets better at translating by iteratively training on
the newly created and diversified data whose quality also
improves over time. This argument also applies to statistical
UMT, except for the lack of the DAE (Lample et al., 2018c).
However, we conjecture that these diversification methods
may have reached their limit as the performance does not
improve further the longer we train the UMT models.
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In this work, we introduce a fourth principle to the standard
UMT framework: Cross-model Back-translated Distillation1

or CBD (§3), with the aim to induce another level of
diversification that the existing UMT principles lack. CBD
initially trains two bidirectional UMT agents (models) using
existing approaches. Then, one of the two agents translates
the monolingual data from one language s to another t in the
first level. In the second level, the generated data are back-
translated from t to s by the other agent. In the final step, the
synthetic parallel data created by the first and second levels
are used to distill a supervised MT model. Crucially, the
second level agent should be a different one from the first
level (hence the name, ‘cross-model’). CBD is applicable
to any existing UMT method and is more efficient than
ensembling approaches (Freitag et al., 2017) (§5.3).

In the experiments (§4), CBD establishes the state of the
art (SOTA) in the bilingual unsupervised translation tasks
of WMT’14 English-French, WMT’16 English-German
and WMT’16 English-Romanian, with 38.2, 30.1 and 36.3
BLEU, respectively. Without large scale pretrained models
and data, our method shows consistent improvements of
1.0-2.0 BLEU compared to the baselines in these tasks. It
also boosts the performance on IWSLT’14 English-German
and IWSLT’13 English-French tasks significantly. In our
analysis, we explain with experiments why other similar
variants (§5.1) and other alternatives from the literature
(§5.4) do not work well and cross-model back-translation is
crucial for our method. We further demonstrate that CBD
enhances the baselines by achieving greater diversity as
measured by back-translation BLEU (§5.2).

2. Background
Ravi & Knight (2011) were among the first to propose a
UMT system by framing the problem as a decipherment
task that considers non-English text as a cipher for English.
Nonetheless, the method is limited and may not be
applicable to the current well-established NMT systems
(Luong et al., 2015; Vaswani et al., 2017; Wu et al., 2019).
Lample et al. (2018a) set the foundation for modern UMT.
They propose to maintain two encoder-decoder networks
simultaneously for both source and target languages, and
train them via denoising auto-encoding, iterative back-
translation and adversarial training. In their follow-up work,
Lample et al. (2018c) formulate a common UMT framework
for both Phrase-based SMT (PBSMT) and NMT with three
basic principles that can be customized. Specifically, the
three main principles of UMT are:

• Initialization: A non-randomized cross- or multi-
lingual initialization that represents a knowledge prior
to bootstrap the UMT model. For instance, Lample et al.

1Code: https://github.com/nxphi47/multiagent_crosstranslate.

(2018a) and Artetxe et al. (2019) use an unsupervised
word-translation model MUSE (Lample et al., 2018b)
as initialization to promote word-to-word cross-lingual
transfer. Lample et al. (2018c) use a shared jointly trained
sub-word (Sennrich et al., 2016b) dictionary. On the other
hand, Conneau & Lample (2019) use a pretrained cross-
lingual masked language model (XLM) to initialize the
unsupervised NMT model.

• Language modeling: Training a language model on
monolingual data helps the UMT model to generate
fluent texts. The neural UMT approaches (Lample et al.,
2018a;c; Conneau & Lample, 2019) use denoising auto-
encoder training to achieve language modeling effects
in the neural model. Meanwhile, the PBSMT variant
proposed by Lample et al. (2018c) uses the KenLM
smoothed n-gram language models (Heafield, 2011).

• Iterative back-translation: Back-translation (Sennrich
et al., 2016a) brings about the bridge between source
and target languages by using a backward model that
translates data from target to source. The (source and
target) monolingual data is translated back and forth
iteratively to progress the UMT model in both directions.

During training, the initialization step is conducted once,
while the denoising and back-translation steps are often
executed in an alternating manner.2 It is worth noting that
depending on different implementations, the parameters
for backward and forward components may be separate
(Lample et al., 2018a) or shared (Lample et al., 2018c;
Conneau & Lample, 2019). A parameter-shared cross-
lingual NMT model has the capability to translate from
either source or target, while a UMT system with parameter-
separate models has to maintain two models. Either way, we
deem a standard UMT system to be bidirectional, i.e., it is
capable of translating from either source or target language.

Our proposed cross-model back-translated distillation
(CBD) works outside this well-established framework.
It employs two UMT agents to create extra diversified
data apart from what existing methods already offer,
rendering it a useful add-on to the general UMT framework.
Furthermore, different implementations of UMT as
discussed above can be plugged into the CBD system to
achieve a performance boost, even for future methods that
may potentially not employ the three principles.

3. Cross-model Back-translated Distillation
In this section, we explain our CBD method in more
details. Specifically, let Xs and Xt denote the two sets
of monolingual data for languages s and t, respectively.

2The KenLM language model in PBSMT (Lample et al., 2018c)
was kept fixed during the training process.

https://github.com/nxphi47/multiagent_crosstranslate
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We first train two UMT agents independently with two
different parameter sets θ1 and θ2 using existing methods
(Lample et al., 2018a;c; Conneau & Lample, 2019).3 Since
a UMT agent with parameter set θi ∈ {θ1, θ2} is deemed
bidirectional in our setup, we denote yt ∼ P (·|xs, θi) to be
a translation sample from language s to t of input sentence
xs using model θi. Assuming Θ = {θ1, θ2}, we then define
xs ∼ Xs, yt ∼ P (·|xs, θα) and zs ∼ P (·|yt, θβ) to be
a sample xs from Xs, a translation of xs to language t
using model θα, and a translation of yt back to language
s using θβ , respectively, with θα being either θ1 or θ2 and
θβ = Θ \ θα. Note that in this formulation, the model θα
that produces yt is different from the one θβ that produces
zs. Similarly, we define xt ∼ Xt, ys ∼ P (·|xt, θα) and
zt ∼ P (·|ys, θβ) in the same manner for Xt. Figure 1
further illustrates this process.

With these generated samples, we train a supervised
MT model parameterized by θ to maximize the joint
probabilities of the aforementioned six random variables,
i.e., xs, yt, zs, xt, ys and zt. Equivalently, we minimize the
following derived objective function:

J (θ) =
1

2

[
− logPθ(yt|zs)− logPθ(yt|xs)

− logPθ(zs|yt)− logPθ(xs|yt)− logPθ(ys|zt)

− logPθ(ys|xt)− logPθ(zt|ys)− logPθ(ys|xt)
] (1)

Mathematical derivations and detailed explanations of
objective J (θ) are further given in the Appendix.
Considering the sampling process of xs, ys, zs, xt, yt and
zt, the model θ is trained by minimizing the following CBD
loss function:

Lθ(θα, θβ) = E
zs∼P (·|yt,θβ),yt∼P (·|xs,θα),xs∼Xs
zt∼P (·|ys,θβ),ys∼P (·|xt,θα),xt∼Xt

[J (θ)]
(2)

where θα, θβ ∈ Θ are the given UMT models; θα is used
to generate yt and ys from xs and xt respectively, while θβ
is used to back-translate yt and ys to zs and zt respectively.
Algorithm 1 describes the overall CBD training process,
where the ordered pair (θα, θβ) is alternated between
(θ1, θ2) and (θ2, θ1)

To describe the CBD strategy more conceptually, in each
iteration step of Algorithm 1, each agent θα ∈ {θ1, θ2}
generates translations from the monolingual data Xs and
Xt of both languages s and t to acquire the first level of
synthetic parallel data (xs, yt) and (xt, ys). In the second
level, the other agent θβ = {θ1, θ2} \ θα is used to generate
the translation zs of the translation yt of xs (and similarly
for zt from the translation ys of xt). This process is basically

3For neural approaches, changing the random seeds would do
the trick, while PBSMT methods would need to randomize the
initial embeddings and/or subsample the training data.

Xs 99K xs
θα−−−→
s→t

yt
θβ−−−→
t→s

zs
(xs,yt),(yt,xs)
=========⇒
(yt,zs),(zs,yt)

θ

Xt 99K xt
θα−−−→
t→s

ys
θβ−−−→
s→t

zt
(xt,ys),(ys,xt)
=========⇒
(ys,zt),(zt,ys)

θ

Figure 1: The sampling process of xs, yt, zs, xt, ys, zt. The
variable ordered set (θα, θβ) is replaced with (θ1, θ2) and
(θ2, θ1) iteratively in Algorithm 1. All synthetic parallel
pairs are used to train θ in a supervised way.

Algorithm 1 Cross-model Back-translated Distillation:
Given monolingual data Xs and Xt of languages s and t,
return a UMT model with parameters θ.

1: Train the 1st UMT agent with parameters θ1
2: Train the 2nd UMT agent with parameters θ2
3: Initialize model θ (randomly or with pretrained model)
4: while until convergence do
5: θ ← θ − η∇θLθ(θα = θ1, θβ = θ2)
6: θ ← θ − η∇θLθ(θα = θ2, θβ = θ1)
7: end while
8: return θ

back-translation, but with the backward model coming from
a different regime than that of the forward model. The
fact that the first level agent must be different from the
second level agent is crucial to achieve the desirable level
of diversity in data generation. After this, we update the
model θ using all the synthetic pairs (x, y) and (y, z) using
the objective function defined in Equation (1).

In this way, firstly, the model θ gets trained on the translated
products {(xs ↔ yt), (xt ↔ ys)} of the UMT teachers,
making it as capable as the teachers. Secondly, the model θ
is also trained on the second-level data {(yt ↔ zs), (ys ↔
zt)} which is slightly different from the first-level data.
Thus, this mechanism provides extra data diversification to
the system θ in addition to what the UMT teachers already
offer, resulting in our final model outperforming the UMT
baselines (§4). However, one may argue that since θ1 and
θ2 are trained in a similar fashion, z will be the same as
x, resulting in a duplicate pair. In our experiments, on the
contrary, the back-translated dataset contains only around
14% duplicates across different language pairs, as shown in
our analysis on data diversity in §5.2.

In the Appendix, we provide a more generalized version of
CBD with n (≥ 2) UMT agents, where we also analyze its
effectiveness on the IWSLT translation tasks.
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4. Experiments
We present our experiments on the large scale WMT (§4.1)
and base WMT (§4.2) tasks, followed by IWSLT (§4.3).

4.1. Large Scale WMT Experiments

Setup. We use the codebase from Conneau & Lample
(2019) and follow exactly their model setup. Specifically,
we use all of the monolingual data from 2007-2017 WMT
News Crawl datasets, which yield 190M, 78M, 309M
and 3M sentences for language English (En), French (Fr),
German (De) and Romanian (Ro), respectively. We filter
out sentences whose lengths are over 175 tokens. For each
language pair, we build a jointly bilingual dictionary of
60K sub-word units using Byte-Pair Encoding (Sennrich
et al., 2016b). To save computation resources, we reuse the
pretrained XLM (Conneau & Lample, 2019) and MASS4

(Song et al., 2019) UMT finetuned models as our two initial
models θ1 and θ2, respectively. We initialize the CBD
supervised MT model θ with the pretrained XLM model
provided by Conneau & Lample (2019) for En-Fr and De-
En pairs and the pretrained MASS model from Song et al.
(2019) for En-Ro pairs, both of which are Transformers with
6 layers and 1024 model dimensions. We train the model
with a 2K tokens per batch on a 8-GPU system. Like all
previous work, we evaluate the models using the tokenized
Moses multi-bleu.perl script (Koehn et al., 2007).

Results. Table 1 shows the performance of CBD in
comparison with recent UMT methods. Our method
establishes the SOTA in the WMT unsupervised tasks with
38.2, 35.5, 30.1, 36.3, 36.3 and 33.8 BLEU for the large
scale WMT En-Fr, Fr-En, En-De, De-En, En-Ro and Ro-
En tasks, respectively. This translates to up to 1.8 BLEU
improvements over the previous SOTA (Song et al., 2019).
More interestingly, given that the hard work in training the
teacher and initial models θ1, θ2 and θ has been done by
Conneau & Lample (2019) and Song et al. (2019), our CBD
requires a fraction of additional resources to outperform the
baselines. This is illustrated in Figure 2, where CBD only
needs around 20K updates to converge while the baseline
XLM requires up to 200K updates to converge.

4.2. Base WMT Experiments

Setup. Since the results in §4.1 may have been influenced
by large scale data and pretrained models, we then seek to
evaluate the effectiveness of our CBD method in scenarios
where none of the above conveniences are provided.
Specifically, we use the News Crawl 2007-2008 datasets
for English (En), French (Fr) and German (De), and News

4MASS outperforms XLM in our Romanian-related
experiments.

Figure 2: Convergence speed of CBD in comparison with
baseline XLM, represented by BLEU score on the WMT’14
En-Fr testset after a number of training updates. Analyses
of other languages are given in the Appendix.

Crawl 2015 dataset for Romanian (Ro), and limit the total
number of sentences per language to 5M. This is, in fact,
the default data setup in the code provided by Lample et al.
(2018c); Conneau & Lample (2019). For the NMT models,
we follow Lample et al. (2018c) to train the UMT agents
with a parameter-shared Transformer (Vaswani et al., 2017)
that has 6 layers and 512 dimensions and a batch size
of 32 sentences. We use joint Byte-Pair Encoding (BPE)
(Sennrich et al., 2016b) and train fastText (Bojanowski et al.,
2017) on the BPE tokens to initialize the token embeddings.
For the PBSMT (Koehn et al., 2003) models, following
Lample et al. (2018c), we use MUSE (Lample et al., 2018b)
to generate the initial phrase table and run 4 iterations of
back-translation. We subsample 500K sentences from the
5M monolingual sentences at each iteration to train the
PBSMT models.5 For XLM (Conneau & Lample, 2019),
we follow the same setup as described in §4.1, except that
we pretrain and finetune the XLM model from scratch on
the base 5M dataset. We choose the best model based
on validation loss and use a beam size of 5. We use a
4-GPU system to train the models. To ensure randomness
in the PBSMT agents, we use different seeds for MUSE
training and randomly subsample different sets of data
during training. To achieve the same for neural agents (NMT
and XLM), we simply use different seeds to initialize the
models and sample batches of training data.

Results. Table 2 shows the experimental results of
different UMT approaches with and without CBD. First
of all, with the datasets that are 30-50 times smaller than the
ones used in §4.1, the baselines perform around 2 to 3 BLEU
worse than the scores reported in Lample et al. (2018c);
Conneau & Lample (2019) (see Table 1). As shown, the

5For PBSMT, Lample et al. (2018c) subsampled 5M out of
193M sentences of monolingual data.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Table 1: BLEU scores on the large scale WMT’14 English-French (En-Fr), WMT’16 English-German (En-De) and WMT’16
English-Romanian (En-Ro) unsupervised translation tasks.

Method / Data En-Fr Fr-En En-De De-En En-Ro Ro-En

NMT (Lample et al., 2018c) 25.1 24.2 17.2 21.0 21.1 19.4
PBSMT (Lample et al., 2018c) 27.8 27.2 17.7 22.6 21.3 23.0
Multi-agent dual learning (Wang et al., 2019) — — 19.3 23.8 — —
XLM (Conneau & Lample, 2019) 33.4 33.3 26.4 34.3 33.3 31.8
MASS (Song et al., 2019) 37.5 34.9 28.3 35.2 35.2 33.1

CBD 38.2 35.5 30.1 36.3 36.3 33.8

Table 2: BLEU scores on the base WMT’14 English-French
(En-Fr), WMT’16 English-German (En-De) and WMT’16
English-Romanian (En-Ro) unsupervised translation tasks.

Method En-Fr Fr-En En-De De-En En-Ro Ro-En

Data 5M 5M 5M 5M 3M 3M

NMT 24.7 24.5 14.5 18.2 16.7 16.3
+ CBD 26.6 25.7 16.6 20.5 18.1 17.8

PBSMT 17.1 16.4 10.9 13.6 10.5 11.7
+ CBD 21.6 20.6 15.0 17.7 11.3 14.5

XLM 33.0 31.5 23.9 29.3 30.6 27.9
+ CBD 35.4 33.0 26.1 31.5 32.2 29.2

CBD-enhanced model with the pretrained XLM achieves
35.4 and 33.0 BLEU on the WMT’14 En-Fr and Fr-En tasks
respectively, which are 2.4 and 1.5 BLEU improvements
over the baseline. It also surpasses Conneau & Lample
(2019) by 2.0 BLEU in En-Fr task, despite the fact that
their model was trained with 274M combined bilingual
sentences (compared to our setup of 10M sentences). CBD
also boosts the scores for XLM in En-De, De-En, En-
Ro, Ro-En by around 2.0 BLEU. For the NMT systems,
CBD also outperforms the baselines by 1 to 2 BLEU. More
interestingly, PBSMT models are known to be deterministic,
but CBD is still able to improve data diversity and provide
performance boost by up to 4.0 BLEU points.

4.3. IWSLT Experiments

We also demonstrate the effectiveness of CBD on relatively
small datasets for IWSLT En-Fr and En-De translation tasks.
The IWSLT’13 En-Fr dataset contains 200K sentences for
each language. We use the IWSLT15.TED.tst2012 set for
validation and the IWSLT15.TED.tst2013 set for testing.
The IWSLT’14 En-De dataset contains 160K sentences for
each language. We split it into 95% for training and 5% for
validation, and we use IWSLT14.TED.{dev2010, dev2012,
tst2010,tst1011, tst2012} for testing. For these experiments,

we use the neural UMT method (Lample et al., 2018c) with
a Transformer of 5 layers and 512 model dimensions, and
trained using only 1 GPU.

From the results in Table 3, we can see that CBD improves
the performance in all the four tasks by 2-3 BLEU compared
to the NMT baseline of (Lample et al., 2018c).

Table 3: BLEU scores on the unsupervised IWSLT’13
English-French (En-Fr) and IWSLT’14 English-German
(En-De) tasks.

Method En-Fr Fr-En En-De De-En

NMT 29.6 30.7 15.8 19.1
+ CBD 31.8 31.8 18.4 21.7

5. Understanding CBD
5.1. Cross-model Back-translation is Key

As mentioned, crucial to our strategy’s success is the cross-
model back-translation, where the agent operating at the
first level must be different from the one in the second level.
To verify this, we compare CBD with similar variants that
do not employ the cross-model element in the WMT tasks.
We refer to these variants commonly as back-translation
distillation (BD). The first variant BD(1,1) has only 1 UMT
agent that translates the monolingual data only once and
uses these synthetic parallel pairs to distill the model θ. The
second variant BD(1,2) employs 2 UMT agents, similar
to CBD, to produce 2 sets of synthetic parallel data from
the monolingual data and uses both of them for distillation.
Finally, the third variant BD(2,2) uses 2 UMT agents to
sample translations from the monolingual data in forward
and backward directions using the same respective agents.
In other words, BD(2,2) follows similar procedures in
Algorithm 1, except that it optimizes the following loss
with θα being alternated between θ1 and θ2:

Lθ(θα) = E
zs∼P (·|yt,θα),yt∼P (·|xs,θα),xs∼Xs
zt∼P (·|ys,θα),ys∼P (·|xt,θα),xt∼Xt

[J (θ)] (3)
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From the comparison in Table 4, we see that none of the
BD variants noticeably improves the performance across
the language pairs, while CBD provides consistent gains
of 1.0-2.0 BLEU. In particular, the BD(1,1) variant fails
to improve as the distilled model is trained on the same
synthetic data that the UMT agent is already trained on. The
variant BD(1,2) is in fact similar in sprit to (Nguyen et al.,
2020), which improves supervised and semi-supervised MT.
However, it fails to do so in the unsupervised setup, due to
the lack of supervised agents. The variant BD(2,2) also fails
because the 2nd level synthetic data is already optimized
during iterative back-translation training of the UMT agents,
leaving the distilled model with no extra information to
exploit. Meanwhile, cross-model back-translation enables
CBD to translate the second-level data by an agent other
than the first-level agent. In this strategy, the second agent
produces targets that the first agent is not aware of, while the
second agent receives as input the sources that are foreign
to it. This process creates corrupted but new information,
which the supervised MT model can leverage to improve
the overall MT performance through more data diversity.

Table 4: BLEU comparison of CBD vs. no cross-model
variants in the base WMT’14 English-French (En-Fr),
WMT’16 English-German (En-De) and English-Romanian
(En-Ro) tasks.

Method En-Fr Fr-En En-De De-En En-Ro Ro-En

NMT 24.7 24.5 14.5 18.2 16.7 16.3
BD(1/1) 24.5 24.5 14.0 17.5 16.1 15.9
BD(1/2) 24.6 24.6 14.1 17.8 16.4 16.2
BD(2/2) 24.8 24.7 14.4 18.1 16.9 16.4
CBD 26.6 25.7 16.6 20.5 18.1 17.8

5.2. CBD Produces Diverse Data

Having argued that cross-model back-translation creates
extra information for the supervised MT model to leverage
on, we hypothesize that such extra information can be
measurable by the diversity of the generated data. To
measure this, we compute the reconstruction BLEU and
compare the scores for BD(2,2) and CBD in the WMT En-
Fr, En-De and En-Ro tasks. The scores are obtained by
using the first agent to translate the available monolingual
data in language s to t and then the second agent to translate
those translations back to language s. After that, a BLEU
score is measured by comparing the reconstructed text with
the original text. In BD(2,2), the first and second agents are
identical, while they are distinct for CBD. From the results
in Table 5, we observe that the reconstruction BLEU scores
of CBD are more than 10 points lower than those of BD,
indicating that the newly generated data by CBD are more
diverse and different from the original data.

Table 5: Reconstruction BLEU scores of BD and CBD
in different languages for the base WMT unsupervised
translation tasks. Lower BLEU means more diverse.

Method En-Fr Fr-En En-De De-En En-Ro Ro-En

BD 76.0 72.4 75.3 63.7 73.2 71.5
CBD 63.1 59.7 60.3 50.5 61.1 56.9

In Table 6, we further report the ratio of duplicate source-
target pairs to the amount of synthetic parallel data created
by CBD. We sample 30M synthetic parallel data using the
CBD strategy and examine the amount of duplicate pairs
for the WMT En-Fr, En-De and En-Ro tasks. We can notice
that across the language pairs, only around 14% of the
parallel data are duplicates. Given that only about 5M (3.5M
for En-Ro) sentences are real sentences and the remaining
25M sentences are synthetic, this amount of duplicates is
surprisingly low. This fact also explains why CBD is able
to exploit extra information better than any standard UMT
to improve the performance.

Table 6: Comparison between the amount of real data,
generated data by CBD and the duplicates per language
pair for the base WMT’14 En-Fr, WMT’16 En-De and En-
Ro unsupervised MT tasks.

Method En-Fr En-De En-Ro

Real data 5M 5M 3.5M
Generated data 30M 30M 29M
Duplicate pairs 4.4M (14.5%) 3.8M(12.7%) 3.9M (13.4%)

5.3. Comparison with Ensembles of Models and
Ensemble Knowledge Distillation

Since CBD utilizes outputs from two UMT agents for
supervised distillation, it is interesting to see how it performs
compared to an ensemble of UMT models and ensemble
knowledge distillation (Freitag et al., 2017). To perform
ensembling, we average the probabilities of the two UMT
agents at each decoding step. For ensemble distillation, we
generate synthetic parallel data from an ensemble of UMT
agents, which is then used to train the supervised model.

From the results on the WMT translation tasks in Table 7, we
observe that ensembles of models improve the performance
only by 0.5-1.0 BLEU, while CBD provides larger gains
(1.0-2.0 BLEU) across all the tasks. These results
demonstrate that CBD is capable of leveraging the potentials
of multiple UMT agents better than how an ensemble of
agents does. This is in contrast to data diversification
(Nguyen et al., 2020), which is shown to mimic and perform
similarly to model ensembling. More importantly, during
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Table 7: BLEU comparison of CBD vs. an ensemble of
UMT agents and ensemble knowledge distillation (Freitag
et al., 2017) on base WMT’14 En-Fr, WMT’16 En-De and
En-Ro translation tasks.

Method En-Fr Fr-En En-De De-En En-Ro Ro-En

NMT Baseline 24.7 24.5 14.5 18.2 16.7 16.3
Ensemble of 2 agents 25.2 24.8 15.3 19.1 17.7 17.1
Ensemble distillation 17.3 20.0 3.5 3.7 1.2 1.1
CBD 26.6 25.7 16.6 20.5 18.1 17.8

Table 8: Comparison with other alternatives on the base
WMT En-Fr, Fr-En, En-De and De-En, with XLM as the
base model.

WMT En-Fr Fr-En En-De De-En

XLM 33.0 31.5 23.9 29.3

Sampling (temp=0.3) 33.5 32.2 24.3 30.2
Top-k sampling 33.18 32.26 24.0 29.9
Top-p sampling Diverge
Target noising 32.8 30.7 24.0 29.6
Multi-agent dual learning 33.5 31.7 24.6 29.9

CBD 35.4 33.0 26.1 31.5

inference, an ensemble of models requires more memory
and computations (twice in this case) to store and execute
multiple models. In contrast, CBD can throw away the
UMT teacher agents after training and needs only one single
model for inference. Meanwhile, ensemble knowledge
distillation (Freitag et al., 2017), which performs well with
supervised agents, performs poorly in unsupervised MT
tasks. The reason could be that the UMT agents may not be
suitable for the method originally intended for supervised
learning. Further inspection in the Appendix suggests
that many samples in the ensemble translations contain
incomprehensible repetitions.

5.4. Comparison with Other Potential Alternatives

In this section, we compare CBD with other alternatives in
the text generation literature that also attempt to increase
diversity. While many of these methods are generic, we
adopt them in the UMT framework and compare their
performance with our CBD technique in the WMT En-Fr,
Fr-en, En-De, and De-en tasks, taking the XLM (Conneau
& Lample, 2019) as the base model.

One major group of alternatives is sampling based methods,
where the model samples translations following multinomial
distributions during iterative back-translation. Specifically,
we compare the CBD with (i) sampling with temperature
0.3 (Edunov et al., 2018; Fan et al., 2018), (ii) top-k

sampling (Radford et al., 2019), and (iii) nucleus or top-
p sampling (Holtzman et al., 2020). Plus, we compare
CBD with target noising, where we add random noises to
the translations of the UMT model during iterative back-
translation. Finally, multi-agent dual learning (Wang et al.,
2019) is also considered as another alternative, where
multiple unsupervised agents are used to train the end
supervised model.

The results are reported in Table 8. We can see that while
the sampling based methods indeed increase the diversity
significantly, they do not improve the performance as much
as CBD does. The reason could be that the extra data
generated by (stochastic) sampling are noisy and their
quality is not as good as deterministic predictions from
the two UMT agents via cross-model back-translation. On
the other hand, target noising does not provide a consistent
improvement while multi-agent dual learning achieves less
impressive gains compared to CBD.

5.5. Translationese Effect

It can be seen that our cross-model back-translation method
is indeed a modified version of back-translation (Sennrich
et al., 2016a). Therefore, it is necessary to test if this method
suffers from the translationese effect (Edunov et al., 2020).
As pointed out in their work, back-translation only shows
performance gains with translationese source sentences but
does not improve when the sentences are natural text.6

Nguyen et al. (2020) show that the translationese effect
only exhibits in a semi-supervised setup, where there are
both parallel and monolingual data. However, while they
show that their supervised back-translation technique is
not impacted by the translationese effect, they left out the
question whether unsupervised counterparts are affected.

Therefore, we test our unsupervised CBD method against
the translationese effect by conducting the same experiment.
More precisely, we compare the BLEU scores of our method
versus the XLM baseline (Conneau & Lample, 2019) in
the WMT’14 English-German test sets in the three setups
devised by Edunov et al. (2020):

• Natural source→ translationese target (X → Y ∗).

• Translationese source→ natural target (X∗ → Y )

• Translationese of translationese of source to
translationese of target (X∗∗ → Y ∗).

Table 9 shows that our method outperforms the baseline
significantly in the natural source→ translationese target
scenario (X → Y ∗), while it may not improve the

6Translationese is human translation of a natural text by a
professional translator. Translationese tends to be simpler, more
grammatically correct, but lacks contextual sentiments and fidelity.
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Table 9: BLEU scores of CBD and the baseline (Conneau
& Lample, 2019) on the translationese effect (Edunov et al.,
2020), in the base WMT’14 English-German setup.

WMT’14 En-De X → Y ∗ X∗ → Y X∗∗ → Y ∗

XLM Baseline 18.63 18.01 25.59
CBD 20.40 18.31 27.72

translationese source scenario (X∗ → Y ) considerably. The
results demonstrate that our method behaves differently than
what the translationese effect indicates. More importantly,
the translations of the natural source sentences are improved,
which indicates the practical usefulness of our method.
Furthermore, in line with the findings in Nguyen et al.
(2020), the experiment shows that the translationese effect
may only exhibit in a semi-supervised setup, but not in
supervised or unsupervised setups.

6. Related Work
The first step towards utilizing the vast monolingual data to
boost MT quality is through semi-supervised training. Back-
translation (Sennrich et al., 2016a; Edunov et al., 2018) is
an effective approach to exploit target-side monolingual
data. Dual learning (He et al., 2016; Wang et al.,
2019), meanwhile, trains backward and forward models
concurrently and intertwines them together. Recently,
Zheng et al. (2020) proposed a variational method to couple
the translation and language models through a shared latent
space. There have also been attempts in solving low-
resource translation problems with limited parallel data (Gu
et al., 2018; Irvine & Callison-Burch, 2014; Guzmán et al.,
2019). Mohiuddin et al. (2021) propose a contextualized
LM based data augmentation for neural machine translation
and show its advantages over traditional back-translation
gaining improved performance in low-resource scenarios. In
the realm of SMT, cross-lingual dictionaries have been used
to reduce parallel data reliance (Irvine & Callison-Burch,
2016; Klementiev et al., 2012).

In recent years, unsupervised word-translation via cross-
lingual word embedding has seen a huge success (Lample
et al., 2018b; Artetxe et al., 2017; 2018a). This opened the
door for UMT methods that employ the three principles
described in §2. Lample et al. (2018a) and Artetxe
et al. (2018c) were among the first of this kind, who use
denoising autodecoder for language modeling and iterative
back-translation. Lample et al. (2018a) use MUSE word
translation (Lample et al., 2018b) as the initialization to
bootstrap the model, while Artetxe et al. (2018c) use the
VecMap cross-lingual word embeddings (Artetxe et al.,
2017). Lample et al. (2018c) later suggested the use of
BPE (Sennrich et al., 2016b) and fastText (Bojanowski

et al., 2017) to initialize the model and the parameters
sharing. Pretrained language models (Devlin et al., 2019)
are then used to initialize the entire network (Conneau &
Lample, 2019). Song et al. (2019) proposed to pretrain
an encoder-decoder model while Artetxe et al. (2018b)
suggested a combination of PBSMT and NMT with subword
information.7 Plus, pretraining BART (Lewis et al., 2020)
on multi-lingual corpora improves the initialization process
(Liu et al., 2020).

Our proposed CBD works outside the three-principle UMT
framework and is considered as an add-on to any underlying
UMT system. There exist some relevant approaches to
CBD. First, it is similar to Nguyen et al. (2020), which
generates a diverse set of data from multiple supervised
MT agents. Despite being effective in supervised and semi-
supervised settings, a direct implementation of it in UMT
underperforms due to lack of supervised signals (§5.1). In
order to successfully exploit unsupervised agents, CBD
requires cross-model back-translation which is the key to its
effectiveness.

Second, CBD can be viewed as an augmentation technique
(Fadaee et al., 2017; Wang et al., 2018). Although the
denoising autoencoding built in a typical UMT system also
performs augmentation, the noising process is rather naive,
while CBD augments data by well-trained agents. Sampling
based methods are also considered data diversification
strategies, where the model samples translation tokens not
by greedy selection (taking arg max of probabilities), but
by a predefined multinomial distribution. Simple sampling
with temperature is often used in many text generation tasks
(Edunov et al., 2018; Fan et al., 2018). More advanced top-k
sampling (Radford et al., 2019) is used in GPT-2, where a
subset of the vocabulary is selected and re-scaled to compute
probabilities. Meanwhile, top-p sampling (Holtzman et al.,
2020) is used to tackle text degeneration. Our CBD method
draws a clear distinction from these methods in that the
presumed extra synthetic data is generated not by a random
stochastic process, but by well-trained models through the
cross-translation procedure.

Third, CBD is related to ensembling (Perrone & Cooper,
1992) and ensemble knowledge distillation (Kim & Rush,
2016; Freitag et al., 2017). Ensembling (Perrone & Cooper,
1992) refers to a type of inference strategies, where multiple
differently trained models are used to predict the output
probabilities given an input, which are then averaged out to
acquire the final output. Ensemble knowledge distillation
(Kim & Rush, 2016; Freitag et al., 2017), meanwhile, use
multiple models to perform ensemble inference to generate
one-way synthetic targets from the original source data,
which are then used to distill the final model. The major

7Since Artetxe et al. (2018b) did not provide the code, we were
unable to apply CBD to their work.
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difference between our method and the aforementioned
ensembling methods is that they seek to produce the most
accurate translations with less variance, while ours seeks to
produce as much diverse data as possible. Along with the
fact that these distillation schemes are currently applied to
supervised settings only, the results in Table 7 indicate that
they may not be suitable for unsupervised MT. Similar to
our method, multi-agent dual learning (Wang et al., 2019)
also uses multiple models in both forward and backward
directions, but the data is generated in an ensembling style
and its objective to minimize the reconstruction losses
instead of to generate diverse synthetic data.

7. Conclusion
We have proposed cross-model back-translated distillation
(CBD) - a method that works outside the three existing
principles for unsupervised MT and is applicable to any
UMT methods. CBD establishes the state of the art in the
unsupervised WMT’14 English-French, WMT’16 English-
German and English-Romanian translation tasks. It also
outperforms the baselines in the IWSLT’14 German-English
and IWSLT’13 English-French tasks by up to 3.0 BLEU.
Our analysis shows that CBD embraces data diversity and
extracts more model-specific intrinsic information than what
an ensemble of models would do.

Acknowledgements
We deeply appreciate the efforts of our anonymous
reviewers and meta-reviewer in examining and giving
us feedback on our paper. We also thank Prathyusha
Jwalapuram for proofreading the paper. Xuan-Phi Nguyen
is supported by the A*STAR Computing and Information
Science (ACIS) scholarship, provided by the Agency for
Science, Technology and Research Singapore (A*STAR).
Shafiq Joty would like to thank the funding support from
NRF (NRF2016IDM-TRANS001-062), Singapore.

References
Artetxe, M., Labaka, G., and Agirre, E. Learning

bilingual word embeddings with (almost) no bilingual
data. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 451–462, 2017.

Artetxe, M., Labaka, G., and Agirre, E. A robust self-
learning method for fully unsupervised cross-lingual
mappings of word embeddings. In ACL, 2018a.
URL https://www.aclweb.org/anthology/
P18-1073/.

Artetxe, M., Labaka, G., and Agirre, E. Unsupervised
statistical machine translation. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language
Processing, pp. 3632–3642, Brussels, Belgium, October-
November 2018b. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1399. URL https:
//www.aclweb.org/anthology/D18-1399.

Artetxe, M., Labaka, G., Agirre, E., and Cho,
K. Unsupervised neural machine translation. In
International Conference on Learning Representations,
2018c. URL https://openreview.net/forum?
id=Sy2ogebAW.

Artetxe, M., Labaka, G., and Agirre, E. An effective
approach to unsupervised machine translation. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 194–203,
Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1019. URL https:
//www.aclweb.org/anthology/P19-1019.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov,
T. Enriching word vectors with subword information.
Transactions of the Association for Computational
Linguistics, 5:135–146, 2017. ISSN 2307-387X.

Conneau, A. and Lample, G. Cross-lingual language model
pretraining. In Wallach, H., Larochelle, H., Beygelzimer,
A., dÁlché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32,
pp. 7059–7069. Curran Associates, Inc., 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.
18653/v1/N19-1423. URL https://www.aclweb.
org/anthology/N19-1423.

Edunov, S., Ott, M., Auli, M., and Grangier, D.
Understanding back-translation at scale. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 489–500, Brussels, Belgium,
October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1045. URL https:
//www.aclweb.org/anthology/D18-1045.

Edunov, S., Ott, M., Ranzato, M., and Auli, M. On the
evaluation of machine translation systems trained with
back-translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 2836–2846, Online, July 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.

https://www.aclweb.org/anthology/P18-1073/
https://www.aclweb.org/anthology/P18-1073/
https://www.aclweb.org/anthology/D18-1399
https://www.aclweb.org/anthology/D18-1399
https://openreview.net/forum?id=Sy2ogebAW
https://openreview.net/forum?id=Sy2ogebAW
https://www.aclweb.org/anthology/P19-1019
https://www.aclweb.org/anthology/P19-1019
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/D18-1045
https://www.aclweb.org/anthology/D18-1045


Cross-model Back-translated Distillation for Unsupervised Machine Translation

acl-main.253. URL https://www.aclweb.org/
anthology/2020.acl-main.253.

Fadaee, M., Bisazza, A., and Monz, C. Data augmentation
for low-resource neural machine translation. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pp. 567–573, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.
18653/v1/P17-2090. URL https://www.aclweb.
org/anthology/P17-2090.

Fan, A., Lewis, M., and Dauphin, Y. Hierarchical neural
story generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 889–898, Melbourne,
Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-1082. URL https:
//www.aclweb.org/anthology/P18-1082.

Freitag, M., Al-Onaizan, Y., and Sankaran, B. Ensemble
distillation for neural machine translation. arXiv preprint
arXiv:1702.01802, 2017.

Gu, J., Hassan, H., Devlin, J., and Li, V. O. Universal neural
machine translation for extremely low resource languages.
arXiv preprint arXiv:1802.05368, 2018.

Guzmán, F., Chen, P.-J., Ott, M., Pino, J., Lample, G.,
Koehn, P., Chaudhary, V., and Ranzato, M. The FLORES
evaluation datasets for low-resource machine translation:
Nepali–English and Sinhala–English. In Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 6098–6111, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.
18653/v1/D19-1632. URL https://www.aclweb.
org/anthology/D19-1632.

Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J.,
Federmann, C., Huang, X., Junczys-Dowmunt, M., Lewis,
W., Li, M., Liu, S., Liu, T., Luo, R., Menezes, A., Qin,
T., Seide, F., Tan, X., Tian, F., Wu, L., Wu, S., Xia, Y.,
Zhang, D., Zhang, Z., and Zhou, M. Achieving human
parity on automatic chinese to english news translation.
CoRR, abs/1803.05567, 2018. URL http://arxiv.
org/abs/1803.05567.

He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.-Y., and
Ma, W.-Y. Dual learning for machine translation. In
Advances in neural information processing systems, pp.
820–828, 2016.

Heafield, K. Kenlm: Faster and smaller language model
queries. In Proceedings of the sixth workshop on
statistical machine translation, pp. 187–197. Association
for Computational Linguistics, 2011.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi,
Y. The curious case of neural text degeneration. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rygGQyrFvH.

Irvine, A. and Callison-Burch, C. Hallucinating phrase
translations for low resource mt. In Proceedings of
the Eighteenth Conference on Computational Natural
Language Learning, pp. 160–170, 2014.

Irvine, A. and Callison-Burch, C. End-to-end statistical
machine translation with zero or small parallel texts.
Natural Language Engineering, 22(4):517–548, 2016.

Kim, Y. and Rush, A. M. Sequence-level knowledge
distillation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp.
1317–1327, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/
D16-1139. URL https://www.aclweb.org/
anthology/D16-1139.

Klementiev, A., Irvine, A., Callison-Burch, C., and
Yarowsky, D. Toward statistical machine translation
without parallel corpora. In Proceedings of the 13th
Conference of the European Chapter of the Association
for Computational Linguistics, pp. 130–140. Association
for Computational Linguistics, 2012.

Koehn, P., Och, F. J., and Marcu, D. Statistical
phrase-based translation. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology - Volume 1, NAACL ’03, pp.
48–54, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics. doi: 10.3115/1073445.
1073462. URL https://doi.org/10.3115/
1073445.1073462.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C.,
Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran,
C., Zens, R., et al. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the
45th annual meeting of the association for computational
linguistics companion volume proceedings of the demo
and poster sessions, pp. 177–180, 2007.

Lample, G., Conneau, A., Denoyer, L., and Ranzato, M.
Unsupervised machine translation using monolingual
corpora only. In International Conference on
Learning Representations, 2018a. URL https://
openreview.net/forum?id=rkYTTf-AZ.

Lample, G., Conneau, A., Ranzato, M., Denoyer, L., and
Jégou, H. Word translation without parallel data. In
International Conference on Learning Representations,

https://www.aclweb.org/anthology/2020.acl-main.253
https://www.aclweb.org/anthology/2020.acl-main.253
https://www.aclweb.org/anthology/P17-2090
https://www.aclweb.org/anthology/P17-2090
https://www.aclweb.org/anthology/P18-1082
https://www.aclweb.org/anthology/P18-1082
https://www.aclweb.org/anthology/D19-1632
https://www.aclweb.org/anthology/D19-1632
http://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1803.05567
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://www.aclweb.org/anthology/D16-1139
https://www.aclweb.org/anthology/D16-1139
https://doi.org/10.3115/1073445.1073462
https://doi.org/10.3115/1073445.1073462
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ


Cross-model Back-translated Distillation for Unsupervised Machine Translation

2018b. URL https://openreview.net/forum?
id=H196sainb.

Lample, G., Ott, M., Conneau, A., Denoyer, L., and Ranzato,
M. Phrase-based & neural unsupervised machine
translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
pp. 5039–5049, Brussels, Belgium, October-November
2018c. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1549. URL https://www.
aclweb.org/anthology/D18-1549.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M.,
Mohamed, A., Levy, O., Stoyanov, V., and Zettlemoyer,
L. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 7871–7880, Online, July 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.703. URL https://www.aclweb.org/
anthology/2020.acl-main.703.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad,
M., Lewis, M., and Zettlemoyer, L. Multilingual
denoising pre-training for neural machine translation.
arXiv preprint arXiv:2001.08210, 2020.

Luong, T., Pham, H., and Manning, C. D. Effective
approaches to attention-based neural machine translation.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp.
1412–1421. ACL, 2015.

Mohiuddin, T., Bari, M. S., and Joty, S. Augvic: Exploiting
bitext vicinity for low-resource nmt. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP
2021, Online, 2021. Association for Computational
Linguistics.

Nguyen, X.-P., Joty, S., Kui, W., and Aw, A. T.
Data diversification: A simple strategy for neural
machine translation. In Advances in Neural Information
Processing Systems 34. Curran Associates, Inc., 2020.

Perrone, M. P. and Cooper, L. N. When networks disagree:
Ensemble methods for hybrid neural networks. Technical
report, BROWN UNIV PROVIDENCE RI INST FOR
BRAIN AND NEURAL SYSTEMS, 1992.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 1(8):9, 2019.

Ravi, S. and Knight, K. Deciphering foreign language.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pp. 12–21, 2011.

Sennrich, R., Haddow, B., and Birch, A. Improving
neural machine translation models with monolingual
data. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 86–96, Berlin, Germany, August 2016a.
Association for Computational Linguistics. doi: 10.
18653/v1/P16-1009. URL https://www.aclweb.
org/anthology/P16-1009.

Sennrich, R., Haddow, B., and Birch, A. Neural
machine translation of rare words with subword units.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pp. 1715–1725. Association for
Computational Linguistics, 2016b. doi: 10.18653/
v1/P16-1162. URL http://www.aclweb.org/
anthology/P16-1162.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. Mass:
Masked sequence to sequence pre-training for language
generation. arXiv preprint arXiv:1905.02450, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Wang, X., Pham, H., Dai, Z., and Neubig, G. SwitchOut: an
efficient data augmentation algorithm for neural machine
translation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp.
856–861, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics. doi: 10.
18653/v1/D18-1100. URL https://www.aclweb.
org/anthology/D18-1100.

Wang, Y., Xia, Y., He, T., Tian, F., Qin, T., Zhai,
C., and Liu, T.-Y. Multi-agent dual learning. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HyGhN2A5tm.

Wu, F., Fan, A., Baevski, A., Dauphin, Y., and Auli, M. Pay
less attention with lightweight and dynamic convolutions.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=SkVhlh09tX.

Zheng, Z., Zhou, H., Huang, S., Li, L., Dai, X.-Y., and
Chen, J. Mirror-generative neural machine translation. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=HkxQRTNYPH.

https://openreview.net/forum?id=H196sainb
https://openreview.net/forum?id=H196sainb
https://www.aclweb.org/anthology/D18-1549
https://www.aclweb.org/anthology/D18-1549
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/P16-1009
https://www.aclweb.org/anthology/P16-1009
http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/D18-1100
https://www.aclweb.org/anthology/D18-1100
https://openreview.net/forum?id=HyGhN2A5tm
https://openreview.net/forum?id=HyGhN2A5tm
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=HkxQRTNYPH
https://openreview.net/forum?id=HkxQRTNYPH

