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1. Hyperparameters
For all of our experiments, we use a UNet model architec-
ture1 similar to that used by Ho et al. (2020). We changed
the attention layers to use multi-head attention (Vaswani
et al., 2017), and opted to use four attention heads rather
than one (while keeping the same total number of channels).
We employ attention not only at the 16x16 resolution, but
also at the 8x8 resolution. Additionally, we changed the
way the model conditions on t. In particular, instead of com-
puting a conditioning vector v and injecting it into hidden
state h as GroupNorm(h + v), we compute conditioning
vectors w and b and inject them into the hidden state as
GroupNorm(h)(w + 1) + b. We found in preliminary ex-
periments on ImageNet 64 × 64 that these modifications
slightly improved FID.

For ImageNet 64× 64 the architecture we use is described
as follows. The downsampling stack performs four steps of
downsampling, each with three residual blocks (He et al.,
2015). The upsampling stack is setup as a mirror image of
the downsampling stack. From highest to lowest resolution,
the UNet stages use [C, 2C, 3C, 4C] channels, respectively.
In our ImageNet 64 × 64 ablations, we set C = 128, but
we experiment with scaling C in a later section. We esti-
mate that, with C = 128, our model is comprised of 120M
parameters and requires roughly 39 billion FLOPs in the
forward pass.

For our CIFAR-10 experiments, we use a smaller model with
three resblocks per downsampling stage and layer widths
[C, 2C, 2C, 2C] with C = 128. We swept over dropout
values {0.1, 0.2, 0.3} and found that 0.1 worked best for
the linear schedule while 0.3 worked best for our cosine
schedule. We expand upon this in Section 6.

We use Adam (Kingma & Ba, 2014) for all of our experi-
ments. For most experiments, we use a batch size of 128,
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1In initial experiments, we found that a ResNet-style architec-
ture with no downsampling achieved better log-likelihoods but
worse FIDs than the UNet architecture.

λ Stop-gradient NLL FID
0.001 yes 3.62 28.04
0.01 yes 3.62 27.36
0.001 no 3.62 30.89
0.01 no 3.63 34.35

Table 1. Ablating hyper-parameters of the Lhybrid objective on
ImageNet 64× 64. All models were trained for 200K iterations.

a learning rate of 10−4, and an exponential moving aver-
age (EMA) over model parameters with a rate of 0.9999.
For our scaling experiments, we vary the learning rate to
accomodate for different model sizes. For our larger class-
conditional ImageNet 64 × 64 experiments, we scaled up
the batch size to 2048 for faster training on more GPUs.

When using the linear noise schedule from Ho et al. (2020),
we linearly interpolate from β1 = 0.0001/4 to β4000 =
0.02/4 to preserve the shape of ᾱt for the T = 4000 sched-
ule.

When computing FID we produce 50K samples from our
models, except for unconditional ImageNet 64× 64 where
we produce 10K samples. Using only 10K samples biases
the FID to be higher, but requires much less compute for
sampling and helps do large ablations. Since we mainly use
FID for relative comparisons on unconditional ImageNet
64×64, this bias is acceptable. For computing the reference
distribution statistics we follow prior work (Ho et al., 2020;
Brock et al., 2018) and use the full training set for CIFAR-10
and ImageNet, and 50K training samples for LSUN. Note
that unconditional ImageNet 64×64 models are trained and
evaluated using the official ImageNet-64 dataset (van den
Oord et al., 2016), whereas for class conditional ImageNet
64×64 and 256×256 we center crop and area downsample
images (Brock et al., 2018).

In Table 1 we ablate the two major choices in our Lhybrid
objective: the Lvlb weight λ, and the stop-gradient after
µθ when computing Lvlb. We find that the stop-gradient
improves sample quality and reduces sensitivity to λ.

2. Fast Sampling on LSUN 256× 256

To test the effectiveness of our Lhybrid models on a high-
resolution domain, we trained both Lhybrid and Lsimple mod-
els on the LSUN bedroom (Yu et al., 2015) dataset. We




