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Appendix
In appendix, Sec. A provides supplementary information associated with experiments. In Sec. B, update rule derivation of
ECL-ISVR is introduced. The proof of convergence analysis of proposed ECL-ISVR is shown in Sec. C.

A. Supplementary information of experiments
Supplementary information associated with experiments in Sec. 7 is provided.

Source code: To support experimental reproducibility, we provide a part of the latest version of the source code as
supplementary material. Although the constructed software will run on multiple GPUs connected with the network, all
computational experiments were conducted inside a single server with 8 GPUs. For communication between nodes, we
used Gloo in PyTorch as a GPU communication library. In addition, ZeroMQ is also needed to realize dual variable swap
operation, namely send/receive commands associated with dual variables are ought to be done at almost the same timing.
For DNN optimization code construction, PyTorch (v1.6.0) with CUDA (v10.2) was used.

Training data division: In Tables 1 and 2, the number of training data samples held by each node for fashion-MNIST used
in (T1), (T2) and CIFAR-10 used in (T3) is summarized. As explained in Subsec. 7.1, training samples are heterogeneously
divided over N = 8 nodes. Each local node holds a different number of data and they are composed of 8 randomly selected
classes out of a total of 10 classes.

Table 1. Number of training data samples held by each node when using fashion-MNIST in (T1) and (T2), where class index is associated
with 0: T-shirt/top, 1: trouser, 2: pullover, 3: dress, 4: coat, 5: sandal, 6: shirt, 7: sneaker, 8: bag, 9: ankle boot.

Class index 0 1 2 3 4 5 6 7 8 9 Total

Node 1 0 1,100 969 947 798 862 890 911 888 0 7,365
Node 2 887 1092 0 940 879 842 0 860 801 1,007 7,308
Node 3 992 0 933 0 856 953 939 822 876 998 7,369
Node 4 1,092 936 1,068 1,085 835 807 1,048 0 0 974 7,845
Node 5 1,072 1,041 1,082 1,059 0 0 1,073 875 882 1,008 8,092
Node 6 0 903 975 934 826 867 1,049 934 919 0 7,407
Node 7 1,046 928 0 1,035 898 808 0 801 819 972 7,307
Node 8 911 0 973 0 908 861 1,001 797 815 1,041 7,307

Total 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 60,000

Table 2. Number of training data samples held by each node when using CIFAR-10 in (T3), where class index is associated with 0:
airplane, 1: automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck.

Class index 0 1 2 3 4 5 6 7 8 9 Total

Node 1 0 916 807 789 665 718 742 759 740 0 6,136
Node 2 739 910 0 784 733 702 0 717 667 839 6,091
Node 3 826 0 778 0 713 794 782 685 730 831 6,139
Node 4 910 780 890 904 696 672 873 0 0 812 6,537
Node 5 893 867 901 883 0 0 894 729 735 840 6,742
Node 6 0 753 813 778 688 722 874 778 766 0 6,172
Node 7 871 774 0 862 748 674 0 668 683 810 6,090
Node 8 761 0 811 0 757 718 835 664 679 868 6,093

Total 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 50,000
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Processing time: The breakdown of processing time Ttotal, which is composed of (i) local node computation time Tlocal
for training and test data sets and (ii) communication time Tcom, is shown. Note that we used Gloo in PyTorch as a GPU
communication library because NCCL6 cannot be applicable because ”Send” and ”Recv” commands are needed for our
asynchronous decentralized communication shown in Fig. 1.

The table below summarizes Tlocal for training/test data sets and Tcom of ECL-ISVR (PDMM-ISVR) separately measured for
each round.

Table 3. Node-averaged processing time for each round when using (T1) fashion MNIST with convex logistic regression model trained
with a part of optimization algorithms on (N1) multiplex ring network

Tlocal, train [min] Tlocal, test [min] Tcom [min] Ttotal [min]

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.52 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 234.31
ECL (ADMM-SGD) 57.80 81.15 85.49 224.44
GT-SVR 82.34 72.56 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.17 44.73 160.02
D2 47.30 90.21 48.32 185.83

Table 4. Node-averaged processing time for each round when using (T1) fashion MNIST with convex logistic regression model trained
with a part of optimization algorithms on (N2) random network

Tlocal, train [min] Tlocal, test [min] Tcom [min] Ttotal [min]

ECL-ISVR (PDMM-ISVR) 1.49 6.70 0.20 8.39
ECL-ISVR (ADMM-ISVR) 1.53 6.98 0.21 8.72
ECL (PDMM-SGD) 1.78 7.15 0.38 9.31
ECL (ADMM-SGD) 1.74 6.87 0.37 8.98
GT-SVR 2.81 7.20 0.21 10.22
FedProx 1.38 6.96 0.21 8.55
DSGD 1.27 6.82 0.21 8.30
D2 1.40 6.62 0.20 8.22

6
https://pytorch.org/docs/stable/distributed.html

https://pytorch.org/docs/stable/distributed.html
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Table 5. Node-averaged processing time for each round when using (T2) fashion MNIST with non-convex ResNet32 model trained with a
part of optimization algorithms on (N1) multiplex ring network

Tlocal, train [min] Tlocal, test [min] Tcom [min] Ttotal [min]

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.52 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 234.31
ECL (ADMM-SGD) 57.80 81.15 85.50 224.45
GT-SVR 82.34 72.56 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.17 44.73 160.02
D2 47.30 90.21 48.32 185.83

Table 6. Node-averaged processing time for each round when using (T2) fashion MNIST with non-convex ResNet32 model trained with a
part of optimization algorithms on (N2) random network

Tlocal, train [min] Tlocal, test [min] Tcom [min] Ttotal [min]

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.51 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 234.31
ECL (ADMM-SGD) 57.80 81.15 85.50 224.45
GT-SVR 82.33 72.57 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.17 44.73 160.02
D2 47.30 90.21 48.32 185.83

Table 7. Node-averaged processing time for each round when using (T3) CIFAR-10 with non-convex ResNet32 model trained with a part
of optimization algorithms on (N1) multiplex ring network

Tlocal, train [min] Tlocal, test [min] Tcom [min] Ttotal [min]

ECL-ISVR (PDMM-ISVR) 91.05 129.65 113.22 333.92
ECL-ISVR (ADMM-ISVR) 96.81 137.84 124.46 359.11
ECL (PDMM-SGD) 112.19 142.86 274.38 529.43
ECL (ADMM-SGD) 127.34 147.13 282.52 556.99
GT-SVR 129.64 113.48 156.78 399.80
FedProx 65.80 138.45 125.01 329.26
DSGD 62.40 141.22 127.43 331.05
D2 80.33 141.31 121.50 343.14

Table 8. Node-averaged processing time for each round when using (T3) CIFAR-10 with non-convex ResNet32 model trained with a part
of optimization algorithms on (N2) random network

Tlocal, train [min] Tlocal, test [min] Tcom [min] Ttotal [min]

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.52 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 234.31
ECL (ADMM-SGD) 57.80 81.15 85.49 224.44
GT-SVR 32.34 72.56 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.27 44.73 160.02
D2 47.30 90.21 48.32 185.83
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Performance differences among nodes: Performance differences in the trained models optimized with ECL-ISVR
(PDMM-ISVR/ADMM-ISVR) are summarized in Tables 9–14. As a result, performance differences among nodes are
sufficiently small, i.e., almost equivalent models are obtained on N = 8 nodes.

Table 9. Performance differences among N = 8 nodes when using (T1) fashion MNIST with convex logistic regression model trained
with the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N1) multiplex ring network

Node index 1 2 3 4 5 6 7 8 Average [%]

Reference (1 node) 81.98 – – – – – – – 81.98
ECL-ISVR (PDMM-ISVR) 80.87 80.83 80.86 80.82 80.82 80.82 80.86 80.83 80.84
ECL-ISVR (ADMM-ISVR) 80.83 80.90 80.90 80.89 81.00 80.89 80.88 80.88 80.90
ECL (PDMM-SGD) 80.39 80.37 80.31 80.40 80.34 80.44 80.36 80.39 80.38
ECL (ADMM-SGD) 80.51 80.48 80.46 80.48 80.52 80.54 80.54 80.49 80.50
GT-SVR 81.51 81.34 81.46 81.50 81.49 81.50 81.48 81.53 81.48
FedProx 74.39 74.27 74.34 74.31 74.34 74.35 74.31 74.37 74.34
DSGD 65.44 65.37 65.42 65.42 65.41 65.44 65.36 65.40 65.41
D2 70.33 70.50 70.35 70.35 70.36 70.37 70.18 70.28 70.34

Table 10. Performance differences among N = 8 nodes when using (T1) fashion MNIST with convex logistic regression model trained
with the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N2) ramdom network

Node index 1 2 3 4 5 6 7 8 Average [%]

Reference (1 node) 81.66 – – – – – – – 81.66
ECL-ISVR (PDMM-ISVR) 79.71 79.59 79.75 79.50 79.72 79.67 79.57 79.61 79.64
ECL-ISVR (ADMM-ISVR) 80.57 80.58 80.52 80.49 80.51 80.53 80.56 80.56 80.54
ECL (PDMM-SGD) 78.38 78.38 78.38 78.32 78.37 78.26 78.39 78.35 78.35
ECL (ADMM-SGD) 78.40 78.29 78.47 78.44 78.43 78.08 78.29 78.52 78.37
GT-SVR 81.03 79.99 80.73 80.94 80.54 80.52 80.17 80.96 80.61
FedProx 72.00 71.86 71.85 71.95 71.88 71.74 71.87 71.98 71.89
DSGD 65.47 65.34 65.61 65.35 65.56 65.60 65.34 65.35 65.45
D2 67.42 67.58 66.69 67.50 67.27 67.17 67.58 67.39 67.33
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Table 11. Performance differences among N = 8 nodes when using (T2) fashion MNIST with non-convex ResNet32 model trained with
the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N1) multiplex ring network

Node index 1 2 3 4 5 6 7 8 Average [%]

Reference (1 node) 91.40 – – – – – – – 91.40
ECL-ISVR (PDMM-ISVR) 91.01 90.83 91.29 90.98 89.87 90.66 91.38 91.16 91.01
ECL-ISVR (ADMM-ISVR) 91.21 91.25 91.17 91.09 90.14 91.01 90.87 91.34 91.08
ECL (PDMM-SGD) 91.39 91.44 91.10 90.93 91.18 91.46 90.77 91.29 91.20
ECL (ADMM-SGD) 91.11 91.15 90.82 91.08 91.21 91.41 91.30 91.25 91.17
GT-SVR 89.42 90.83 89.94 91.00 89.51 90.06 90.79 90.99 90.32
FedProx 89.88 90.05 89.35 89.50 89.53 88.49 89.89 90.03 89.59
DSGD 86.64 86.25 86.67 86.89 86.64 85.71 85.75 86.39 86.50
D2 87.35 87.53 88.17 87.52 87.79 87.83 87.76 87.35 87.66

Table 12. Performance differences among N = 8 nodes when using (T2) fashion MNIST with non-convex ResNet32 model trained with
the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N2) multiplex random network

Node index 1 2 3 4 5 6 7 8 Average [%]

Reference (1 node) 90.71 – – – – – – – 90.71
ECL-ISVR (PDMM-ISVR) 90.79 91.09 90.22 90.39 90.92 90.45 91.00 90.20 90.63
ECL-ISVR (ADMM-ISVR) 91.00 90.64 90.63 90.41 90.78 90.72 90.78 88.78 90.47
ECL (PDMM-SGD) 90.89 90.50 90.18 90.05 90.84 89.79 90.46 89.19 90.24
ECL (ADMM-SGD) 91.54 91.23 90.21 91.23 91.34 91.06 91.20 90.42 91.03
GT-SVR 88.80 85.67 90.38 89.03 88.35 87.59 86.07 89.80 88.21
FedProx 86.17 85.90 87.94 85.90 88.09 86.94 86.71 87.45 86.89
DSGD 85.24 84.53 83.92 84.62 83.92 84.91 83.88 84.73 84.47
D2 85.95 85.10 85.67 85.24 85.91 85.70 85.62 84.99 85.52

Table 13. Performance differences among N = 8 nodes when using (T3) CIFAR-10 with non-convex ResNet32 model trained with the
proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N1) multiplex ring network

Node index 1 2 3 4 5 6 7 8 Average [%]

Reference (1 node) 73.69 – – – – – – – 73.69
ECL-ISVR (PDMM-ISVR) 73.90 74.02 72.59 71.62 73.49 74.40 73.90 73.60 73.44
ECL-ISVR (ADMM-ISVR) 73.36 73.73 72.62 72.10 73.59 73.03 71.79 72.96 72.90
ECL (PDMM-SGD) 71.53 73.21 73.58 73.95 73.88 72.84 72.50 72.60 73.01
ECL (ADMM-SGD) 74.20 74.13 73.65 74.01 74.05 73.92 74.46 73.83 74.03
GT-SVR 73.07 72.56 70.97 72.98 73.10 69.68 71.60 63.78 70.97
FedProx 67.52 68.34 67.07 68.73 67.55 68.88 61.16 68.09 67.17
DSGD 53.87 53.56 53.21 55.24 53.27 55.06 52.22 51.99 53.55
D2 60.53 62.11 61.29 61.62 61.47 61.93 61.80 61.32 61.51

Table 14. Performance differences among N = 8 nodes when using (T3) CIFAR-10 with non-convex ResNet32 model trained with the
proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N2) random network

Node index 1 2 3 4 5 6 7 8 Average [%]

Reference (1 node) 72.93 – – – – – – – 72.93
ECL-ISVR (PDMM-ISVR) 73.61 72.97 69.77 72.82 72.87 72.72 72.66 73.64 72.63
ECL-ISVR (ADMM-ISVR) 74.29 70.68 71.25 71.93 72.45 69.65 72.01 71.85 71.76
ECL (PDMM-SGD) 73.28 73.40 72.85 72.19 66.40 71.78 72.26 72.40 71.82
ECL (ADMM-SGD) 65.01 63.19 64.85 60.37 65.23 62.76 64.87 64.13 63.80
GT-SVR 69.40 70.06 64.71 68.79 69.26 64.89 68.86 64.41 67.55
FedProx 62.67 60.24 62.09 58.51 61.28 63.28 60.36 61.29 61.21
DSGD 50.67 44.78 47.41 48.35 50.24 46.98 47.57 49.84 48.23
D2 53.91 49.99 53.16 54.23 50.87 51.29 51.87 48.51 51.73
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B. Derivation of ECL-ISVR’s update rule
We now provide the proposed ECL-ISVR’s update rule in Alg. 2 by reformulating the problem (5). For a stationary point,
the subdifferential of the cost in (5) must include zero:

0 ∈ AJ∇q?(JTATλ)︸ ︷︷ ︸
T1(λ)

+ ∂ιker(I−P)(λ)︸ ︷︷ ︸
T2(λ)

, (26)

where the differential operator ∇ is used in T1 while subdifferential operator ∂ is applied in T2 since the indicator function
ιker(I−P)(λ) includes discontinuous points, and the operator ∈ reflects that the subdifferential of the indicator function
can be multi-valued at discontinuous points. The operator splitting is an effective method for finding a stationary point for
problems of the form of (26).

Before introducing operator splitting algorithms, we define several operators, as summarized in literatures (Bauschke et al.,
2011; Ryu & Boyd, 2016). The resolvent operator RTi

and the Cayley operator CTi
are defined as

RTi
= (Id + ηTi)

−1, (27)

CTi
= (Id + ηTi)

−1(Id− ηTi)
= 2(Id + ηTi)

−1 − (Id + ηTi)
−1(Id + ηTi)

= 2(Id + ηTi)
−1 − Id

= 2RTi
− Id, (28)

where Id is the identity operator, −1 is the inverse operator, and η (>0) denotes the step-size.

In the proposed ECL-ISVR, Peaceman-Rachford Splitting (PRS) (Peaceman & Rachford, 1955) and Douglas-Rachford
Splitting (DRS) (Douglas & Rachford, 1956) to obtain methods associated with PDMM (Zhang & Heusdens, 2017; Sherson
et al., 2018) and ADMM (Gabay & Mercier, 1976). We first derive the PRS. A reformulation of (26) results in

0 ∈ (Id + ηT2)(λ)− (Id− ηT1)(λ). (29)

Let an auxiliary variable z be associated with the lifted dual variable λ through the relation λ ∈ RT1(z). Then, (29) can be
written as

0 ∈ (Id + ηT2)RT1
(z)− CT1

(z),

0 ∈ RT1
(z)−RT2

CT1
(z),

0 ∈ 1
2 (CT1 + Id)(z)− 1

2 (CT2 + Id)CT1(z), (30)

which implies that the stationary point condition can be written as

z ∈ CT2CT1(z), λ ∈ RT1(z), (PRS). (31)

This indicates that the lifted dual variables are recursively updated through two different Cayley operators CT1
and CT2

. An
alternative operator splitting, DRS can also be used as a basis for solving (26). By applying the averaged operator to (31),
DRS is obtained:

z ∈ 1
2CT2

CT1
(z) + 1

2z, λ ∈ RT1
(z), (DRS). (32)

By introducing another auxiliary variable, y for λ, the update rules for PRS (31) and DRS (32) can be decomposed into

λ ∈ RT1(z) = (Id + ηT1)−1(z), (33)
y ∈ CT1(z) = (2RT1 − Id)(z) = 2λ− z, (34)

ς ∈ RT2
(y) = (Id + ηT2)−1(y), (35)

z ∈ 1
2CT2

(y) + 1
2z = 1

2 (2RT2
− Id)(y) + 1

2z = 1
2 (2ς − y) + 1

2z. (36)

First, update rule associated with (33) and (34) is derived. Since T1(λ) = AJ∇f?(JTATλ), the update procedure using the
resolvent operator is reformulated by
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λ ∈ (Id + ηT1)−1(z),

z ∈ (Id + ηT1)(λ),

0 ∈ ηAJ∇f?(JTATλ) + λ− z. (37)

From the basic property of convex function (Rockafellar, 1970), primal and dual variables are associated with w ∈
∇q?(JTATλ), and the subdifferential of convex conjugate function satisfies∇q? = (∇q)−1. Then, we obtain

w ∈ ∇q?(JTATλ), (38)

∇q(w) ∈ JTATλ. (39)

Combining (37) and (38) gives

0 ∈ ηAJw + λ− z,
λ ∈ z − ηAJw. (40)

By placing λ̃ = 1
ηλ, ỹ = 1

ηy, z̃ = 1
ηz, (40) is reformed by

λ̃ ∈ z̃ −AJw. (41)

Combining (39) and (41) gives

0 ∈ ∇q(w)− JTAT(z − ηAJw),

0 ∈ ∇q(w) + ηJTAT(AJw − z̃). (42)

If the minimum exists, the integral of (42) gives

wk+1 = arg minw
(
q(w) + η

2‖AJw − z̃k‖2
)
. (43)

Following (41), the λ̃-update rule is given by

λ̃k+1 = z̃k −AJwk+1. (44)

The combination of (34) and (44) gives

ỹk+1 = 2λ̃k+1 − z̃k = z̃k − 2AJwk+1. (45)

Next, update rule associated with (35) and (36) is derived. Note that derivation detail is shown in (Sherson et al., 2018),
although the step-size is doubled. For a normal cone operator T2(ς) = ∂ιker(I−P)(ς), the update procedure (35) is
reformulated as

0 ∈ ηT2(ς) + ς − y,
0 ∈ ∂ιker(I−P)(ς) + 1

η (ς − y). (46)

The integral of (46) gives

ςk+1 = arg min
ς

(
ιker(I−P)(ς) + 1

2η‖ς − y
k+1‖2

)
= arg minς=Pς

(
‖ς − yk+1‖2

)
. (47)

As remarked in Lemma IV.2 in (Sherson et al., 2018), the solution of (47) is given by the projectiuon onto the set of feasible
ς , i.e.,

ςk+1 = Πker(I−P)(y
k+1). (48)

Then, update procedure using Cayley operator (36) can be computed as

zk+1 =

{
(2Πker(I−P) − Id)(yk+1) = Pyk+1, (PRS)
1
2 (2Πker(I−P) − Id)(yk+1) + 1

2z
k = 1

2Pyk+1 + 1
2z

k, (DRS)

z̃k+1 =

{
Pỹk+1, (PRS)
1
2Pỹk+1 + 1

2 z̃
k, (DRS)

(49)

By decomposing (43), (45), and (49) into each node/edge procedures with parameter selection (22), ECL-ISVR’s update
rule in Alg. 2 is obtained.
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C. Convergence analysis of ECL-ISVR
Convergence analysis of ECL-ISVR is summarized in Theorem 1, where its proof for strongly convex and general convex
functions is shown in Subsec. C.1, and for non-convex functions is shown in Subsec. C.2. Note that some technical lemmas
summarized in Subsec. C.3 are applied to derive lemmas in Subsec. C.1 and C.2.

C.1. Proof for convex function

Proof summary: Through this subsection, the function {fi} satisfies (D1) β-Lipschitz smooth with α-convex (α ≥ 0).
Update rule follows Alg. 2. Note that difference between PDMM-ISVR and ADMM-ISVR is not considered in our
convergence analysis because they just differs in gradient expectation update computation, as in (11) and (13).

First, we define several new variables used in convergence analysis. In Lemma 1, the update variance of control variate,
including communication lag, is bounded. In Lemma 2, the update variance of control variate is bounded. Lemma 3, local
node drift is bounded. In Lemma 4, progress in one round can be bounded. By applying Lemma 12 to Lemma 4, the final
convergence rate for convex functions is obtained. For general convex functions, Lemma 9 is applied to Lemma 4 to obtain
the convergence rate.

Preliminaries: Some variables used throughout this subsection is introduced. In ECL-ISVR, control variates are obtained
by (25) and (24). From (11) and (13), the expectations of these calculated control variates on round r are given by

E[cri ] = E[ 1
K

∑
k∈K gi(w

r,k−1
i )] = 1

K

∑
k∈K∇fi(w

r,k−1
i ),

E[cri|j ] = E[ 1
K

∑
k∈K gj(w

r,k−1
i )] = 1

K

∑
k∈K∇fj(w

r,k−1
i ),

E[c̄ri ] =
∑
j∈Ei

∑
k∈K

1
EiK
∇fj(wr,k−1

i ),

where node index is summarized by {1, . . . , N} ∈ N , edge index connected to the i-th node is summarized by
{Ei(1), . . . , Ei(Ei)} ∈ Ei, and inner loop index set on each round is summarized by {1, . . . ,K} ∈ K. We define γri|j
and γri as,

γri|j = ‖∇fi(w∗i )− E[cri|j ]‖
2,

γri = ‖∇fi(w∗i )− E[cri ]‖2,

where {w∗i } denotes stationary point of {wi}, and then define the average of γi|j over cross nodes/edges Γ as

Γr = 1
N

∑
i∈N

1
Ei

∑
j∈Ei γ

r
i|j .

The client drift to model how much clients move from the starting point is defined by

Θr = 1
NK

∑
i∈N

∑
k∈K E‖wr,k

i −w
r,0
i ‖2.

For simple notation, the minimum number of edges associated with a node is defined by

Emin = min(Ei) (i ∈ N ).

We often use the step size scaled by inner loop iteration K, noted by

µ̃ = µK ≥ 0.

For each round after K times inner loop iterations, variables are updated as

wr+1,0
i = wr,K

i ,

cr+1,0
i = cr,Ki ,

cr+1,0
i|j = cr,Ki|j ,

c̄r+1,0
i = c̄r,Ki .

Update variance of control variate under asynchronous communication: We will bound variance of control variate by
the gradient of stationary point for each round in asynchronous decentralized communication, where its communication
schedule is shown in Fig. 1 and explained in Sec. 2.
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Lemma 1. For local node update using Alg. 2 with asynchronous communication, {γri , γri|j ,Γ
r} on round r are bounded by

γri ≤ 2βE[fi(w
r,0
i )]− fi(w∗i ),

γri|j ≤
1
2γ

r−1
i|j + βE[fi(w

r,0
i )]− fi(w∗i ),

Γr ≤ 1
2Γr−1 + β

NEmin

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )).

Proof. First, γri is bounded by

γri = ‖∇fi(w∗i )− E[cri ]‖2 = ‖∇fi(w∗i )− 1
K

∑
k∈K∇fi(w

r,k−1
i )‖2 ≤ 2β(E[fi(w

r,0
i )]− fi(w∗i )), (50)

where Lemma 13 is applied in inequality.

Since communication for each edge is conducted once per K times inner loop iterations at random timing on each round,
the expectation of cri|j under this asynchronous communication is represented in a recursive update manner as

E[cri|j ] = 1
K

∑
k∈K{

k−1
K E[cr−1

i|j ] + K−k+1
K E[∇fj(wr,k−1

i )]}, (51)

where this indicates that expectation computation is conducted by varying communication timing k ∈ K, where ci|j is not
updated for (k − 1) times, and then, the dual variable yi|j is transmitted from the node j; and ci|j is updated, and used for
remaining K − (k − 1) times. By using (51), γri|j is bounded by

γri|j = ‖∇fi(w∗i )− E[cri|j ]‖
2

= ‖∇fi(w∗i )− 1
K

∑
k∈K{

k−1
K E[cr−1

i|j ] + K−k+1
K E[∇fj(wr,k−1

i )]}‖2

(a)

≤ 1
K

∑
k∈K{

k−1
K ‖∇fi(w

∗
i )− E[cr−1

i|j ]‖2 + K−k+1
K ‖∇fi(w∗i )− E[∇fj(wr,k−1

i )]‖2}

= 1
K

∑
k∈K{

k−1
K γr−1

i|j + K−k+1
K ‖∇fi(w∗i )− E[∇fi(wr,k−1

i )]‖2}
(b)

≤ ψγr−1
i|j + 2(1− ψ)β(E[fi(w

r,0
i )]− fi(w∗i )), (52)

where Jensen’s inequality is used to obtain inequality (a) shown in the third line of (52), Lemma 13 is used for (b), and ψ is
given by

ψ =

{
K−1
2K (K is even number)

1
2 (K is odd number)

.

For simple notation, we assume that K is odd number from here, then ψ = 1
2 .

Γr is bounded by

Γr = 1
N

∑
i∈N

1
Ei

∑
j∈Ei γ

r
i|j

(a)

≤ 1
N

∑
i∈N

1
Ei

∑
j∈Ei{

1
2γ

r−1
i|j + β(E[fi(w

r,0
i )]− fi(w∗i ))}

(b)

≤ 1
2Γr−1 + β

NEmin

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )), (53)

where (52) is used for (a), Lemma 13 and 1
Ei
≤ 1

Emin
is used for (b).

Variance of one round: We will bound one round update variance of primal model variable.

Lemma 2. We can bound the variance of one round local node update in any round r and any step-size µ̃ = µK ≥ 0:

1
N

∑
i∈N E‖wr+1,0

i −wr,0
i ‖2 ≤ 4β2µ̃2Θr+4µ̃2Γr+ 16βµ̃2

N

∑
i∈N (E[fi(w

r,0
i )]−fi(w∗i ))+ 12µ̃2σ2

NK . (54)
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Proof. Local node update using (23) for one round is bounded by

1
N

∑
i∈N E‖∆wr

i ‖2

= 1
N

∑
i∈N E‖wr+1,0

i −wr,0
i ‖2

= 1
N

∑
i∈N E‖ − 1

K

∑
k∈K µ̃(gi(w

r,k−1
i ) + c̄r,ki − c

r,k
i )‖2

(a)

≤ 1
NK

∑
i∈N

∑
k∈K E‖µ̃(gi(w

r,k−1
i ) + c̄r,ki − c

r,k
i )‖2

(b)

≤ 1
NK

∑
i∈N

∑
k∈K[4µ̃2E‖gi(wr,k−1

i )−∇fi(wr,0
i )‖2 + 4µ̃2E‖c̄r,ki ‖2 + 4µ̃2E‖∇fi(w∗i )− cr,ki ‖2

+ 4µ̃2E‖∇fi(wr,0
i )−∇fi(w∗i )‖2]

(c)

≤ 1
NK

∑
i∈N

∑
k∈K[4µ̃2E‖∇fi(wr,k−1

i )−∇fi(wr,0
i )‖2 + 4µ̃2‖E[c̄ri ]‖2 + 4µ̃2‖∇fi(w∗i )− E[cri ]‖2

+ 8βµ̃2(E[fi(w
r,0
i )]− fi(w∗i )) + 12µ̃2σ2]

≤ 4β2µ̃2

NK

∑
i∈N

∑
k∈K E‖wr,k−1

i −wr,0
i ‖2 + 4µ̃2

N

∑
i∈N ‖∇fi(w∗i )− E[c̄ri ]‖2

+ 4µ̃2

N

∑
i∈N ‖∇fi(w∗i )− E[cri ]‖2 + 8βµ̃2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 12µ̃2σ2

NK

(d)

≤ 4β2µ̃2Θr + 4µ̃2

N

∑
i∈N

1
Ei

∑
j∈Ei γ

r
i|j + 4µ̃2

N

∑
i∈N γ

r
i + 8βµ̃2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 12µ̃2σ2

NK

≤ 4β2µ̃2Θr + 4µ̃2Γr + 16βµ̃2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 12µ̃2σ2

NK , (55)

where Jensen’s inequality is used for (a), Lemma 10 is used for (b), Lemma 11, Lemma 13, and (D1) β-Lipschitz smoothness
are used for (c), Jensen’s inequality and is used for (d).

Bounding local node drift: We will bound local node drift Θr.

Lemma 3. We can bound the local node drift Θr in any round r and any step-size µ̃ = µK ≥ 0:

Θr ≤ 9µ̃2Γr + 36βµ̃2

N

∑
i∈N (E[fi(w

r,k
i )]− fi(w∗i )) + 21µ̃2σ2

K .

Proof. A recursive bound of local node drift is given by

1
N

∑
i∈N E‖wr,k

i −w
r,0
i ‖2

= 1
N

∑
i∈N E‖wr,k−1

i − µ(gi(w
r,k−1
i ) + c̄r,ki − c

r,k
i )−wr,0

i ‖2

(a)

≤ 1
N

∑
i∈N E‖wr,k−1

i − µ(∇fi(wr,k−1
i ) + c̄r,ki − c

r,k
i )−wr,0

i ‖2 + µ2σ2

(b)

≤ (1 + 1
K−1 ) 1

N

∑
i∈N E‖wr,k−1

i −wr,0
i ‖2 +Kµ2 1

N

∑
i∈N E‖c̄r,ki − c

r,k
i +∇fi(wr,0

i )‖2︸ ︷︷ ︸
T4

+µ2σ2, (56)

where Lemma 11 is used for (a), and Lemma 10 is used for (b). T4 is bounded by

1
N

∑
i∈N E‖c̄r,ki − c

r,k
i +∇fi(wr,0

i )‖2

= 1
N

∑
i∈N E‖c̄r,ki + (∇fi(w∗i )− cr,ki ) + (∇fi(wr,0

i )−∇fi(w∗i ))‖2

(a)

≤ 3
N

∑
i∈N E‖c̄r,ki ‖2 + 3

N

∑
i∈N E‖cr,ki −∇fi(w∗i )‖2 + 3

N

∑
i∈N E‖∇fi(w∗i )−∇fi(wr,0

i )‖2

≤ 3
N

∑
i∈N E‖c̄r,ki −∇fi(w∗i )‖2 + 3

N

∑
i∈N E‖cr,ki −∇fi(w∗i )‖2 + 3

N

∑
i∈N E‖∇fi(w∗i )−∇fi(wr,0

i )‖2

(b)

≤ 3
N

∑
i∈N E‖c̄r,ki −∇fi(w∗i )‖2 + 3

N

∑
i∈N E‖cr,ki −∇fi(w∗i )‖2 + 6β

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )), (57)
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where Lemma 10 is used for (a) and Lemma 13 is used for (b). By substituting (57) into (56), we obtain

1
N

∑
i∈N E‖wr,k

i −w
r,0
i ‖2

≤ (1 + 1
K−1 ) 1

N

∑
i∈N E‖wr,k−1

i −wr,0
i ‖2 + µ2σ2

+ 3Kµ2

N

∑
i∈N E‖c̄r,ki −∇fi(w∗i )‖2 + 3Kµ2

N

∑
i∈N E‖cr,ki −∇fi(w∗i )‖2 + 6Kβµ2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i ))

(a)

≤ (1 + 1
K−1 ) 1

N

∑
i∈N E‖wr,k−1

i −wr,0
i ‖2 + 7µ2σ2

+ 3Kµ2

N

∑
i∈N ‖E[c̄ri ]−∇fi(w∗i )‖2 + 3Kµ2

N

∑
i∈N ‖E[cri ]−∇fi(w∗i )‖2 + 6Kβµ2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i ))

(b)

≤ (1 + 1
K−1 ) 1

N

∑
i∈N E‖wr,k−1

i −wr,0
i ‖2 + 7µ2σ2 + 6Kβµ2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i ))

+ 3Kµ2

N

∑
i∈N

1
Ei

∑
j∈Ei γ

r
i|j + 3Kµ2

N

∑
i∈N γ

r
i

≤ (1 + 1
K−1 ) 1

N

∑
i∈N E‖wr,k−1

i −wr,0
i ‖2 + 3Kµ2Γr + 12βKµ2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 7µ2σ2, (58)

where the fact that variance of ci is less than σ2/K is used for (a), Jensen’s inequality is used for (b). Unrolling (58), we
obtain following bound:

Θr = 1
N

∑
i∈N E‖wr,k

i −w
r,0
i ‖2

≤ (3Kµ2Γr + 12βKµ2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 7µ2σ2)(

∑k−1
τ=0(1 + 1

K−1 )τ )

(a)

≤ (3Kµ2Γr + 36Kβµ2

N

∑
i∈N (E[fi(w

r,k
i )]− fi(w∗i )) + 7µ2σ2)3K

= 9K2µ2Γr + 36K2βµ2

N

∑
i∈N (E[fi(w

r,k
i )]− fi(w∗i )) + 21Kµ2σ2

= 9µ̃2Γr + 36βµ̃2

N

∑
i∈N (E[fi(w

r,k
i )]− fi(w∗i )) + 21µ̃2σ2

K , (59)

where the fact that
∑k−1
τ=0(1 + 1

K−1 )τ < 3K used for (a) is proofed in Lemma 13 of (Karimireddy et al., 2020).

Progress in one round: We bound all errors in a round.

Lemma 4. Following holds in any round r and any step-size µ̃ = Kµ satisfying µ̃ ∈ [0,min( 1
27β ,

1
3α )),

1
N

∑
i∈N E‖wr+1,0

i −w∗i ‖2 + 9µ̃2Γr

≤ (1− αµ̃
2 ){ 1

N

∑
i∈N E‖wr,0

i −w∗i ‖2 +9µ̃2Γr−1}− (1− 1
Emin

) µ̃N
∑
i∈N (E[fi(w

r,0
i )]−fi(w∗i ))+ µ̃2σ2

K ( 12
N +3).

Proof. The update difference for a round is given by

∆wr
i = − µ̃

K

∑
k∈K(gi(w

r,k−1
i ) + c̄r,ki − c

r,k
i ),

and its expectation satisfies

E[∆wr
i ] = − µ̃

K

∑
k∈K∇fi(w

r,k−1
i ).

The second moment of updated local node variable and its stationary point for a round is bounded by

1
N

∑
i∈N E‖wr+1,0

i −w∗i ‖2

= 1
N

∑
i∈N E‖wr,0

i + ∆wr
i −w∗i ‖2

= 1
N

∑
i∈N E‖wr,0

i −w∗i ‖2 −
2µ̃
NK

∑
i∈N

∑
k∈K E

[〈
∇fi(wr,k−1

i ),wr,0
i −w∗i

〉]
+ 1

N

∑
i∈N E‖∆wr

i ‖2

(a)

≤ 1
N

∑
i∈N E‖wr,0

i −w∗i ‖2 + 2µ̃
NK

∑
i∈N

∑
k∈K E

[〈
∇fi(wr,k−1

i ),w∗i −w
r,0
i

〉]
︸ ︷︷ ︸

T5

+ 4β2µ̃2Θr + 4µ̃2Γr + 16βµ̃2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 12µ̃2σ2

NK , (60)
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where Lemma 2 is used for (a). The term T5 is bounded by

T5 = 2µ̃
NK

∑
i∈N

∑
k∈K E[

〈
∇fi(wr,k−1

i ),w∗i −w
r,0
i

〉
]

(a)

≤ 2µ̃
NK

∑
i∈N

∑
k∈K E[fi(w

∗
i )− fi(wr,0

i ) + β‖wr,k−1
i −wr,0

i ‖2 − α
4 ‖w

r,0
i −w∗i ‖2]

(b)

≤ − 2µ̃
N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i ) + α

4 ‖w
r,0
i −w∗i ‖2) + 2βµ̃Θr, (61)

where Lemma 14 is used for (a) and Lemma 13 is used for (b). By using (61), (60) is bounded by

1
N

∑
i∈N E‖wr+1,0

i −w∗i ‖2

≤ 1
N

∑
i∈N E‖wr,0

i −w∗i ‖2 −
2µ̃
N E[

∑
i∈N {fi(w

r,0
i )− fi(w∗i ) + α

4 ‖w
r,0
i −w∗i ‖2}] + 2βµ̃Θr + 4β2µ̃2Θr + 4µ̃2Γr

+ 16βµ̃2

N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 12µ̃2σ2

NK

≤ (1− αµ̃
2 ) 1

N

∑
i∈N E‖wr,0

i −w∗i ‖2 + (2βµ̃+ 4β2µ̃2)Θr + 2µ̃2Γr−1

+ ((16 + 4
Emin

)βµ̃2 − 2µ̃) 1
N

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + 12µ̃2σ2

KN . (62)

Multiplying 9µ̃2 to the inequality w.r.t. Γr in Lemma 1 is resulted in

9µ̃2Γr ≤ 9(1− αµ̃
2 )µ̃2Γr−1 + 9

2 (αµ̃− 1)µ̃2Γr−1 + 9βµ̃2

NEmin

∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )). (63)

Multiplying 3βµ̃ to Lemma 3 is resulted in

3βµ̃Θr ≤ 27βµ̃3Γr + 108β2µ̃3

N

∑
i∈N (E[fi(w

r,k
i )]− fi(w∗i )) + 63βµ̃3σ2

K

(a)

≤ 27
2 βµ̃

3Γr−1 + β2µ̃3

N (108 + 27
Emin

)
∑
i∈N (E[fi(w

r,k
i )]− fi(w∗i )) + 63βµ̃3σ2

K , (64)

where Lemma 1 is used for (a). Adding three inequalities (62), (63), (64), we get

1
N

∑
i∈N E‖wr+1,0

i −w∗i ‖2 + 9µ̃2Γr

≤ (1− αµ̃
2 ){ 1

N

∑
i∈N E‖wr,0

i −w∗i ‖2 + 9µ̃2Γr−1}+ { 9
2αµ̃+ 27

2 βµ̃−
5
2}µ̃

2Γr−1 + (−βµ̃+ 4β2µ̃2)Θr

+ {−2 + 16βµ̃+ 108β2µ̃2 + 1
Emin

(13βµ̃+ 27β2µ̃2)} µ̃N
∑
i∈N (E[fi(w

r,0
i )]− fi(w∗i )) + µ̃2σ2

K ( 12
N + 63βµ̃). (65)

When we select step-size following µ̃ ∈ (0,min( 1
27β ,

1
3α )), it is guaranteed that { 9

2αµ̃+ 27
2 βµ̃−

5
2} < 0, (−βµ̃+4β2µ̃2) <

0, (−2 + 16βµ̃+ 108β2µ̃2) < −1, (13βµ̃+ 27β2µ̃2) < 1, and ( 12
N + 63βµ̃) < ( 12

N + 3). Hence, (65) is bounded by

1
N

∑
i∈N E‖wr+1,0

i −w∗i ‖2 + 9µ̃2Γr

≤ (1− αµ̃
2 ){ 1

N

∑
i∈N E‖wr,0

i −w∗i ‖2 +9µ̃2Γr−1}− (1− 1
Emin

) µ̃N
∑
i∈N (E[fi(w

r,0
i )]−fi(w∗i ))+ µ̃2σ2

K ( 12
N +3).

(66)

By using Lemma 12 and Lemma 4 for strongly convex functions (α > 0), µ ∈ [0,min( 1
27βK ,

1
3αK )), R ≥ max( 27β

2α ,
3
2 ),

and it is assumed to be Emin≥2, we obtain convergence rate as

E[ 1
N

∑
i∈N (fi(w

R
i )− fi(w∗i ))] ≤ O

(
Emin

Emin−1{αD
2
0 exp(−min( α

27βK ,
1

3K )R) + σ2

αRK (3+ 12
N )}

)
, (67)

where D2
0 = 1

N

∑
i∈N (‖fi(w1,0

i )−fi(w∗i )‖2 + ‖∇fi(w∗i )− E[c1,0
i ]‖2).

Meanwhile for general convex functions, integrating Lemma 9 and Lemma 4 with α = 0, µ ∈ [0, 1
27βK ), R ≥ 1, is resulted

in

E[ 1
N

∑
i∈N (fi(w

R
i )− fi(w∗i ))] ≤ O

(
Emin

Emin−1{
σD0√
RKN

√
3+ 12

N +
27βD2

0

R }
)
. (68)



Asynchronous Decentralized Optimization with Implicit Stochastic Variance Reduction

As shown in this analysis, the convergence speed is regulated by a node with the smallest number of connecting nodes,Emin.
E.g., when a network has a topology with small Emin, such that a line connects N nodes (then Emin = 1), the convergence
rate will be slow. As an effect of our algorithm including variance reduction, stable convergence is expected even if each
node has the statistically biased data subset. Our convergence analysis does not make any specific assumption on the data
distribution bias.

In next subsection, we show the convergence analysis for non-convex functions.
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C.2. Proof for non-convex function

We now analyze the convergence rate of the ECL-ISVR (PDMM-ISVR/ADMM-ISVR) with a potentially non-convex cost
function. First, we will bound the update variance in control variates by taking communication lag into account is bounded
by Lemma 5, and variance of the variable update for each round is bounded in Lemma 6, and the local node drift is bounded
in Lemma 7. Combining three lemmas gives us the progress made in one round in Lemma 8. The final convergence rate is
obtained from this one round progress with Lemma 9.

Preliminaries: Similar to the convergence analysis for convex functions as shown in subsection C.1, some new variables
used throughout this subsection are introduced. In ECL-ISVR (PDMM-ISVR/ADMM-ISVR), control variates are obtained
by (25) and (24). From (11) and (13), expectation of these calculated control variates on round r are given by

E[cri ] = 1
K

∑
k∈K E[gi(w

r,k−1
i )] = 1

K

∑
k∈K∇fi(w

r,k−1
i ),

E[cri|j ] = 1
K

∑
k∈K E[gj(w

r,k−1
i )] = 1

K

∑
k∈K∇fj(w

r,k−1
i ),

E[c̄ri ] =
∑
j∈Ei

∑
k∈K

1
EiK
∇fj(wr,k−1

i ),

where node index is summarized by {1, . . . , N} ∈ N , edge index connected to the i-th node is summarized by
{Ei(1), . . . , Ei(Ei)} ∈ Ei, and inner loop index set on each round is summarized by {1, . . . ,K} ∈ K. To represent
control variate changes for each round update, we define ξri|j and ξri as

ξri|j = ‖∇fi(wr,0
i )− E[cri|j ]‖

2,

ξri = ‖∇fi(wr,0
i )− E[cri ]‖2.

Average of ξri|j over cross nodes/edges is defined by

Ξr = 1
N

∑
i∈N

1
Ei

∑
j∈Ei ξ

r
i|j .

The client drift from the starting point is defined by

Θr = 1
NK

∑
i∈N

∑
k∈K E‖wr,k

i −w
r,0
i ‖2.

For simple notation, the minimum number of edges associated with a node is defined by

Emin = min(Ei) (i ∈ N ).

We often use the step size scaled by inner loop iteration K, noted by

µ̃ = µK ≥ 0.

For each round after K times inner loop iterations, variables are updated as

wr+1,0
i = wr,K

i ,

c̄r+1,0
i = c̄r,Ki ,

cr+1,0
i|j = cr,Ki|j .

cr+1,0
i = cr,Ki ,

(69)

Update variance of control variate under asynchronous communication: We will bound update variance of expected
control variate for each round in asynchronous decentralized communication, where its communication schedule is shown in
Fig. 1 and explained in section 2.
Lemma 5. For local node update using Alg. 2 with asynchronous communication, {ξri , ξri|j ,Ξ

r} are bounded in any round
r and any step-size µ̃ = µK ≥ 0 as

ξri ≤
β2

K

∑
k∈K E‖wr,k−1

i −wr,0
i ‖2,

ξri|j ≤ 1
2ξ
r−1
i|j + β2

2K

∑
k∈K E‖wr,k−1

i −wr,0
i ‖2,

Ξr ≤ 1
2Ξr−1 + β2

2Emin
Θr.
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Proof. ξri is bounded by

ξri = E‖∇fi(wr,0
i )− E[cri ]‖2

= E‖∇fi(wr,0
i )− 1

K

∑
k∈K∇fi(w

r,k−1
i )‖2

(a)

≤ 1
K

∑
k∈K E‖∇fi(wr,0

i )−∇fi(wr,k−1
i )‖2

(b)

≤ β2

K

∑
k∈K E‖wr,k−1

i −wr,0
i ‖2, (70)

where Jensen’s inequality is used for (a) and (D1) β-Lipschitz smoothness is used for (b). Since communication for
each edge is conducted once per K inner iterations at random timing on each round, the expectation of cri|j under this
asynchronous communication is represented in a recursive update manner as

E[cri|j ] = 1
K

∑
k∈K{

k−1
K E[cr−1

i|j ] + K−k+1
K ∇fj(wr,k−1

i )}, (71)

where this indicates that expectation computation is conducted by varying communication timing k ∈ K, where ci|j is not
updated for (k − 1) times, and then the dual variable yi|j is transmitted from the node j and ci|j is updated, and it is used
for remaining K − (k − 1) times. By using (71), ξri|j is bounded by

ξri|j = E‖∇fi(wr,0
i )− E[cri|j ]‖

2

= E‖∇fi(wr,0
i )− 1

K

∑
k∈K{

k−1
K E[cr−1

i|j ] + K−k+1
K ∇fj(wr,k−1

i )}‖2

(a)

≤ 1
K

∑
k∈K{

k−1
K ‖∇fi(w

r,0
i )− E[cr−1

i|j ]‖2 + K−k+1
K E‖∇fi(wr,0

i )−∇fj(wr,k−1
i )‖2}

(b)

≤ ψξr−1
i|j + (1− ψ)β2 1

K

∑
k∈K E‖wr,k−1

i −wr,0
i ‖2, (72)

where Jensen’s inequality is used in (a), and (D1) β-Lipschitz smooth property and ψ in following is used in (b),

ψ =

{
K−1
2K (K is even number)

1
2 (K is odd number)

.

For simple notation, we assume that K is odd number from here, then ψ = 1
2 .

Then, Ξr is bounded by

Ξr = 1
N

∑
i∈N

1
Ei

∑
j∈Ei ξ

r
i|j

≤ 1
N

∑
i∈N

1
Ei

∑
j∈Ei{

1
2ξ
r−1
i|j + β2

2K

∑
k∈K E‖wr,k−1

i −wr,0
i ‖2}

= 1
2Ξr−1 + β2

2Emin
Θr. (73)

Variance of one round We will bound one round update variance of primal model variable.

Lemma 6. We can bound the variance of one round local node update in any round r and any step-size µ̃ = Kµ ≥ 0:

1
N

∑
i∈N E‖wr+1,0

i −wr,0
i ‖2 ≤ 8µ̃2β2Θr + 4µ̃2Ξr + 4µ̃2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 9µ̃2σ2

NK .
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Proof. Local node update using (23) for one round is bounded by

1
N

∑
i∈N E‖∆wr

i ‖2

= 1
N

∑
i∈N E‖wr+1,0

i −wr,0
i ‖2

= 1
N

∑
i∈N E‖ − µ̃

K

∑
k∈K(gi(w

r,k−1
i ) + c̄r,k−1

i − cr,k−1
i )‖2

(a)

≤ 1
N

∑
i∈N E‖ − µ̃

K

∑
k∈K(∇fi(wr,k−1

i ) + E[c̄ri ]− E[cri ])‖2 + 9µ̃2σ2

NK

(b)

≤ µ̃2

NK

∑
i∈N

∑
k∈K E‖∇fi(wr,k−1

i ) + E[c̄r]− E[cri ]‖2 + 9µ̃2σ2

NK

= µ̃2

NK

∑
i∈N

∑
k∈K E‖(∇fi(wr,k−1

i )−∇fi(wr,0
i ))+(E[c̄ri ]−∇fi(w

r,0
i ))+∇fi(wr,0

i )−(E[cri ]−∇fi(w
r,0
i ))‖2 + 9µ̃2σ2

NK

(c)

≤ 4µ̃2

NK

∑
i∈N

∑
k∈K E‖∇fi(wr,k−1

i )−∇fi(wr,0
i )‖2 + 4µ̃2

N

∑
i∈N ‖E[c̄ri ]−∇fi(w

r,0
i )‖2 + 4µ̃2

N

∑
i∈N ‖E[cri ]−∇fi(w

r,0
i )‖2

+ 4µ̃2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 9µ̃2σ2

NK

(d)

≤ 4µ̃2β2Θr + 4µ̃2

N

∑
i∈N

1
Ei

∑
j∈Ei ξ

r
i|j + 4µ̃2

N

∑
i∈N ξ

r
i + 4µ̃2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 9µ̃2σ2

NK

≤ 4µ̃2β2Θr + 4µ̃2Ξr + 4µ̃2

N

∑
i∈N ξ

r
i + 4µ̃2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 9µ̃2σ2

NK

(e)

≤ 8µ̃2β2Θr + 4µ̃2Ξr + 4µ̃2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 9µ̃2σ2

NK , (74)

where Lemma 11 is used for (a), Jensen’s inequality is used for (b), Lemma 10 is used for (c), Jensen’s inequality is used for
(d), and Lemma 5 is used for (e).

Bounding the drift: We will bound local node drift Θr.

Lemma 7. We can bound the local node drift Θr in any round r and any step-size µ̃ = µK satisfying µ̃ ∈ [0, 1
32β ),

Θr ≤ 3µ̃2σ2

K + 12µ̃2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 12µ̃2Ξr + 12µ̃2β2Θr.

Proof. A recursive bound of local node drift is given by

E‖wr,k
i −w

r,0
i ‖2

≤ E‖wr,k−1
i − µ(gi(w

r,k−1
i ) + c̄r,k−1

i − cr,k−1
i )−wr,0

i ‖2

(a)

≤ E‖wr,k−1
i − µ(∇fi(wr,k−1

i ) + c̄r,k−1
i − cr,k−1

i )−wr,0
i ‖2 + µ2σ2

(b)

≤ (1 + 1
K−1 )E‖wr,k−1

i −wr,0
i ‖2 +Kµ2E‖∇fi(wr,k−1

i ) + c̄r,k−1
i − cr,k−1

i ‖2 + µ2σ2

= (1 + 1
K−1 )E‖wr,k−1

i −wr,0
i ‖2 + µ2σ2

+Kµ2E‖(∇fi(wr,k−1
i )−∇fi(wr,0

i ))+(c̄r,k−1
i −∇fi(wr,0

i ))+∇fi(wr,0
i )− (cr,k−1

i −∇fi(wr,0
i ))‖2

(c)

≤ (1 + 1
K−1 + 4Kβ2µ2)E‖wr,k−1

i −wr,0
i ‖2 + µ2σ2 + 4Kµ2E‖∇fi(wr,0

i )‖2

+ 4Kµ2E‖c̄r,k−1
i −∇fi(wr,0

i )‖2 + 4Kµ2E‖cr,k−1
i −∇fi(wr,0

i )‖2, (75)

where Lemma (11) is used for (a), Lemma 10 is used for (b), and Lemma 10 is used for (c) again. Unrolling (75), we obtain
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following bound:

Θr = 1
NK

∑
i∈N

∑
k∈K E‖wr,k

i −w
r,0
i ‖2

≤ ( µ̃
2σ2

K2 + 4µ̃2

NK

∑
i∈N E‖∇fi(wr,0

i )‖2+ 4µ̃2

NK

∑
i∈N

∑
k∈K E‖c̄r,k−1

i −∇fi(wr,0
i )‖2

+ 4µ̃2

NK

∑
i∈N

∑
k∈K E‖cr,k−1

i −∇fi(wr,0
i )‖2) · {

∑k−1
τ=0(1+ 1

K−1 + 4β2µ̃2

K )τ}
(a)

≤ ( µ̃
2σ2

K2 + 4µ̃2

NK

∑
i∈N E‖∇fi(wr,0

i )‖2 + 4µ̃2

NK

∑
i∈N

1
Ei

∑
j∈Ei ξ

r
i|j + 4µ̃2

NK

∑
i∈N ξ

r
i )3K

≤ ( µ̃
2σ2

K2 + 4µ̃2

NK

∑
i∈N E‖∇fi(wr,0

i )‖2 + 4µ̃2

K Ξr + 4µ̃2

K
1
N

∑
i∈N ξ

r
i )3K

(b)

≤ ( µ̃
2σ2

K2 + 4µ̃2

NK

∑
i∈N E‖∇fi(wr,0

i )‖2 + 4µ̃2

K Ξr + 4µ̃2β2

K Θr)3K

= 3µ̃2σ2

K + 12µ̃2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 12µ̃2Ξr + 12µ̃2β2Θr, (76)

where Jensen’s inequality and the fact that
∑k−1
τ=0(1 + 1

K−1 )τ < 3K when µ̃ ∈ [0, 1
32β ), which is applied in Lemma 17 in

(Karimireddy et al., 2020), is used for (a), Lemma 5 is used for (b).

Progress made in each round: We bound all errors in a round.

Lemma 8. Following holds in any round r and any step-size µ̃ = Kµ satisfying µ̃ ∈ [0, 1
32β ),(

1
N

∑
i∈N E[fi(w

r,0
i +∆wr

i )]+12βµ̃2Ξr
)
≤
(

1
N

∑
i∈N fi(w

r,0
i )+12βµ̃2Ξr−1

)
− µ̃

3N

∑
i∈N E‖∇fi(wr,0

i )‖2+ µ̃σ2

4K (1+ 18
N ).

Proof. Staring from the Lipschitz smoothness of {fi} and taking expectation by r − 1 round provides

1
N

∑
i∈N E[fi(w

r,0
i + ∆wr

i )] ≤ 1
N

∑
i∈N fi(w

r,0
i ) + 1

N

∑
i∈N

〈
∇fi(wr,0

i ),E[∆wr
i ]
〉

+ β
2N

∑
i∈N E‖∆wr

i ‖2, (77)

where ∆wr
i is given by

∆wr
i = − 1

K

∑
k∈K µ̃(gi(w

r,k−1
i ) + c̄r,ki − c

r,k
i ),

and its expectation satisfies

E[∆wr
i ] = − µ̃

K

∑
k∈K gi(w

r,k−1
i ).

From (77), update difference is bounded by

1
N

∑
i∈N E[fi(w

r,0
i + ∆wr

i )]− 1
N

∑
i∈N fi(w

r,0
i )

≤ − µ̃
NK

∑
i∈N

∑
k∈K

〈
∇fi(wr,0

i ),E[∇fi(wr,k−1
i )]

〉
+ β

2N

∑
i∈N E‖∆wr

i ‖2

(a)

≤ − µ̃
NK

∑
i∈N

∑
k∈K

〈
∇fi(wr,0

i ),E[∇fi(wr,k−1
i )]

〉
+ 4µ̃2β3Θr + 2µ̃2βΞr

+ 2µ̃2β
N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 9µ̃2βσ2

2NK

(b)

≤ − µ̃
2N

∑
i∈N ‖∇fi(w

r,0
i )‖2 + µ̃

2

∑
i∈N

∑
k∈K ‖

1
NK

∑
i∈N

∑
k∈K(∇fi(wr,k−1

i )−∇fi(wr,0
i ))‖2

+ 4µ̃2β3Θr + 2µ̃2βΞr + 2µ̃2β
N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 9µ̃2βσ2

2NK

(c)

≤ −( µ̃2 − 2µ̃2β) 1
N

∑
i∈N ‖∇fi(w

r,0
i )‖2 + µ̃

2NK

∑
i∈N

∑
k∈K ‖∇fi(w

r,k−1
i )−∇fi(wr,0

i )‖2

+ 4µ̃2β3Θr + µ̃2βΞr−1 + µ̃2β3

Emin
Θr + 9µ̃2βσ2

2NK

(d)

≤ −( µ̃2 − 2µ̃2β) 1
N

∑
i∈N ‖∇fi(w

r,0
i )‖2 + µ̃2βΞr−1 + ( µ̃β

2

2 + 4µ̃2β3 + µ̃2β3

Emin
)Θr + 9µ̃2βσ2

2NK , (78)

where Lemma 6 is used in (a), inequality in (b) follows from observation that−ab = 1
2 ((b−a)2−a2)− 1

2b
2 ≤ 1

2 ((b−a)2−a2)
for any a, b ∈ R, Jensen’s inequality is used in (c), and (D1) β-Lipschitz smoothness is used in (d).
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Multiplying 12βµ̃2 to the Lemma 5 results in

12βµ̃2Ξr ≤ 6βµ̃2Ξr−1 + 6βµ̃2β2

Emin
Θr, (79)

Multiplying 2µ̃β2 to Lemma 7 results in

2µ̃β2Θr ≤ 6µ̃3β2σ2

K + 24µ̃3β2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 24µ̃3β2Ξr + 24µ̃3β4Θr

(a)

≤ 6µ̃3β2σ2

K + 24µ̃3β2

N

∑
i∈N E‖∇fi(wr,0

i )‖2 + 12µ̃3β2Ξr−1 + (24 + 12
Emin

)µ̃3β4Θr, (80)

where Lemma 5 is used in (a). Adding (78), (79), and (80) is resulted in(
1
N

∑
i∈N E[fi(w

r,0
i +∆wr

i )]+12βµ̃2Ξr
)
≤
(

1
N

∑
i∈N fi(w

r,0
i )+12βµ̃2Ξr−1

)
+(−5µ̃2β+12µ̃3β2)Ξr−1+(6µ̃β+ 9

2N ) µ̃
2βσ2

K

+{− 3
2 µ̃β

2+4µ̃2β3+24µ̃3β4+ 1
Emin

(7µ̃2β3+12µ̃3β4)}Θr−( µ̃2−2µ̃2β−24µ̃3β2) 1
N

∑
i∈N E‖∇fi(wr,0

i )‖2. (81)

When selecting the step-size µ̃ = µK ≤ 1
32β , it is guaranteed that (−5µ̃2β+12µ̃3β2) < 0, {− 3µ̃β2

2 +4µ̃2β3+24µ̃3β4+
1

Emin
(7µ̃2β3+12µ̃3β4)} < 0, µ̃3 < ( µ̃2−2µ̃2β−24µ̃3β2) ≤ 9µ̃

24 , and (6µ̃β+ 9
2N ) ≤ ( 1

4 + 9
2N ). Hence, (81) is bounded by(

1
N

∑
i∈N E[fi(w

r,0
i +∆wr

i )]+12βµ̃2Ξr
)
≤
(

1
N

∑
i∈N fi(w

r,0
i )+12βµ̃2Ξr−1

)
− µ̃

3N

∑
i∈N E‖∇fi(wr,0

i )‖2+ µ̃σ2

4K (1+ 18
N ).

(82)

By using Lemma 9 and Lemma 8 for β-Lipschitz smooth non-convex function, µ ∈ [0, 1
32βK ),R ≥ 1, we obtain convergence

rate as

1
N

∑
i∈N E‖∇fi(wr,0

i )‖2 ≤ O
(

3σ
√
Q0

2
√
RKN

√
1+ 18

N + 3βQ0

R }
)
, (83)

where Q0 = 1
N

∑
i∈N (fi(w

1,0
i )−fi(w∗i )).
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C.3. Technical lemmas

We now summarize several technical lemmas needed for the convergence analysis. Since our convergence analysis strategy
follows the approach used in the SCAFFOLD paper (Karimireddy et al., 2020), many of lemmas shown in this subsection
are taken from (Karimireddy et al., 2020). Therefore, detailed proofs are omitted.

C.3.1. TECHNICAL LEMMAS USED IN BOTH CONVEX AND NON-CONVEX FUNCTIONS

The following lemma is useful for unrolling recursions and deriving convergence rate for the general convex function and
non-convex function.

Lemma 9 (Sub-linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any parameters µmax ≥ 0, c1 ≥
0, c2 ≥ 0, R ≥ 0, there exists a constant step-size µ ≤ µmax such that satisfies

ΨR = 1
R+1

∑R+1
r=1

(
dr−1

µ − dr

µ + c1µ+ c2µ
2
)
≤ d0

µmax(R+1) + 2
√
c1d0√
R+1

+ 2
(

d0

R+1

) 2
3

c
1
3
2 .

Proof. See Lemma 2 in (Karimireddy et al., 2020).

Next, a relaxed triangle inequality, which is true for the squared L2 norm, is introduced.

Lemma 10 (Relaxed triangle inequality). Let {v1, . . . ,vτ} be set of τ vectors. Then, following inequality is true for any
a > 0,

1. ‖vi + vj‖2 ≤ (1 + a)‖vi‖2 + (1 + 1
a )‖vi‖2, (a > 0)

2. ‖
∑τ
i=1 vi‖2 ≤ τ

∑τ
i=1 ‖vi‖2.

Proof. The first statement is derived from the following identity for any a > 0,

‖vi + vj‖2 ≤ (1 + a)‖vi‖2 + (1 + 1
a )‖vi‖2 − ‖

√
avi + 1√

a
vj‖2.

For the second inequality, we use the convexity of v → ‖v‖2 and Jensen’s inequality as

‖ 1
τ

∑τ
i=1 vi‖2 ≤

1
τ

∑τ
i=1 ‖vi‖2.

The following lemma is an elementary lemma about expectations of the norm of random vectors.

Lemma 11 (Separating mean and variance). Let {φ1, . . . ,φτ} be set of τ random variables, which are not necessarily
independent. First suppose that the variance of φi from its mean E[φi] = ϕi is bounded by E‖φi − ϕi‖2 ≤ σ2. Then,
following inequality satisfies,

E‖
∑τ
i=1 φi‖2 ≤ ‖

∑τ
i=1ϕi‖2 + τ2σ2.

Instead, let assume that their conditional mean is E[φi|φi−1, . . . ,φ1] = ϕi, i.e., the variable {φi −ϕi} form a martingale
difference sequence, and the variable is bounded by E‖φi −ϕi‖2 ≤ σ2 as before. Then, a tighter bound is obtained,

E‖
∑τ
i=1 φi‖2 ≤ 2‖

∑τ
i=1ϕi‖2 + 2τσ2.

Proof. See Lemma 4 in (Karimireddy et al., 2020).

C.3.2. TECHNICAL LEMMAS USED IN ONLY CONVEX FUNCTIONS

The following lemma is useful for unrolling recursions and deriving convergence rate for the strongly convex case (α > 0).

Lemma 12 (Linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any parameters h ≥ 0, µmax ∈
(0, 1/h], c ≥ 0, R ≥ 1

2hµmax
, there exists a constant step-size µ ≤ µmax and weight ωr = (1 − hµ)1−r such that for

ΩR =
∑R+1
r=1 ω

r

ΨR = 1
ΩR

∑R+1
r=1

(
ωr

µ (1− hµ)dr−1 − ωr

µ d
r + cµωr

)
≤ O

(
hd0 exp(−hµmaxR) + c

hR

)
.
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Proof. See Lemma 1 in (Karimireddy et al., 2020).

Lemma 13 (Upper bound of smooth convex function to the stationary point). Suppose that the function {fi} satisfies (D1)
β-Lipschitz smooth and (D2) α-convex (α ≥ 0). The output of fi and its stationary point {w∗i } imply following:

‖∇fi(wi)−∇fi(w∗i )‖2 ≤ 2β(f(wi)− f(w∗i ))

Proof. See Theorem 2.1.5 in (Nesterov et al., 2018).

Lemma 14 (Perturbed strong convexity). Suppose that function {fi} satisfies (D1) β-Lipschitz smooth and (D2) α-strongly
convex (α > 0). The following inequality holds for any three points {ri,wi,ui}, in the domain of fi:

〈∇fi(ri),wi − ui〉 ≥ fi(wi)− fi(ui) + α
4 ‖ui −wi‖

2 − β‖wi − ri‖2.

Proof. See Lemma 5 in (Karimireddy et al., 2020).


