
WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points

A. Omitted proofs
A.1. Proof of Lemma 1

Theorem 9 ((Hornik, 1991, Theorem 1)). Let σ : R→ R be bounded and nonconstant and P ∈M(Rk) be a finite measure.
Then for any f ∈ L1(P ) and ε > 0, there exists N ∈ N and {(θi, ai, bi) ∈ R× Rk × R}Ni=1 such that

∫
Rk

∣∣∣∣∣
N∑
i=1

θiσ(aᵀi z − bi)− f(z)

∣∣∣∣∣ dP (z) < ε.

To clarify, f : Rk → R in (Hornik, 1991, Theorem 1).

Proof of Lemma 1. Let f : Rk → Rn such that EZ [‖f(Z)‖2] <∞. By (AG), σg is a bounded nonconstant function. For
l = 1, . . . , n, Theorem 9 provides us with Nl ∈ N and {(θ(l)

i , a
(l)
i , b

(l)
i ) ∈ R× Rk × R}Nli=1 such that

hl(z) =

Nl∑
i=1

θ
(l)
i σg((a

(l)
i )ᵀz − b(l)i )

satisfies ∫
Rk
|hl(z)− fl(z)| qZ(z)dz <

ε

2n
, (3)

where fl(z) is the l-th coordinate of f(z) ∈ Rn for l = 1, . . . , n. Let `g = limr→−∞ σg(r). Let

A
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← l-th row, b

(l),r
i =



r
...
r

b
(l)
i

r
...
r
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, e−l =



1
...
1
0
1
...
1


← on l-th coordinates

and

f̃ (l),r(z) = −

(
Nl∑
i=1

θ
(l)
i

)
`ge−l +

Nl∑
i=1

θ
(l)
i σg(A

(l)
i z − b

(l),r
i ).

Then, for each l = 1, . . . , n, we have f̃ (l),r
j =

∑Nl
i=1 θ

(l)
i (σg(−r) − `g) → 0 as r → ∞ if j 6= l, while f̃ (l),r

l = hl(z).
Because σg is bounded, by Lebesgue’s dominated convergence theorem, we obtain

lim
r→∞

∫
Rk

∥∥∥∥∥∥∥
h1(z)

...
hn(z)

− n∑
l=1

f̃ (l),r(z)

∥∥∥∥∥∥∥
1

qZ(z)dz = 0.

Therefore, there exists a large enough rbig > 0 such that

∫
Rk

∥∥∥∥∥∥∥
h1(z)

...
hn(z)

− n∑
l=1

f̃ (l),rbig(z)

∥∥∥∥∥∥∥
1

qZ(z)dz <
ε

2

and we conclude with (3) that ∫
Rk

∥∥∥∥∥f(z)−
n∑
l=1

f̃ (l),rbig(z)

∥∥∥∥∥
1

qZ(z)dz < ε.
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Note that
n∑
l=1

f̃ (l),rbig(z) ∈ span(G).

Therefore, using the bound ‖ · ‖2 ≤ ‖ · ‖1, we get∫
Rk

∥∥∥∥∥f(z)−
n∑
l=1

f̃ (l),rbig(z)

∥∥∥∥∥
2

qZ(z)dz < ε.

A.2. Proof of Lemma 2

Proof of Lemma 2. Because h is bounded and qZ(z) dz is a probability measure, we have EZ [‖h(Z)‖2] <∞. Therefore,
for any ε > 0, there exists θε such that EZ [‖gθε(Z)− h(Z)‖2] < ε. Observe that

EZ
[
gᵀθε(Z)h(Z)

]
=

∫
Rk

∫
Rp
hᵀ(z)φ(z;κ) dθε(κ) qZ(z) dz

=

∫
Rp

∫
Rk
hᵀ(z)φ(z;κ)qZ(z) dz dθε(κ)

=

∫
EZ [hᵀ(Z)φ(Z;κ)] dθε(κ) = 0.

Here the change in the order of integration is valid because φ(z;κ) = σg(κwz + κb) ≤ ‖σg‖∞ and the total mass of θε is
finite, so that ∫

Rk

∫
Rp
‖hᵀ(z)φ(z;κ)‖2 dθε(κ) qZ(z) dz ≤ n‖h‖∞ ‖σg‖∞ θε (Rp) <∞.

To clarify, the ‖ · ‖∞ for ‖σg‖∞ is the standard supremum norm for L∞ spaces while ‖h‖∞ = max1≤i≤n ‖hi‖∞ where
hi(z) is the i-th coordinate of h(z) ∈ Rn. Finally, we have

EZ
[
‖h(Z)‖22

]
= EZ [hᵀ(Z) (h(Z)− gθε(Z))] ≤ ‖h‖∞EZ [‖h(Z)− gθε(Z)‖1]

≤ ‖h‖∞EZ
[√
n ‖h(Z)− gθε(Z)‖2

]
< ε
√
n‖h‖∞.

To clarify, ‖h(Z)− gθε(Z)‖1 denotes the `1 norm on the vector in Rn for each z. Now by letting ε→ 0, we have

0 = EZ
[
‖h(Z)‖22

]
=

∫
‖h(z)‖22 qZ(z) dz.

Since qZ is continuous and positive everywhere, we conclude that h(z) = 0 for all z ∈ Rk.

A.3. Proof of Lemma 5

Theorem 10 ((Sussmann, 1992, Lemma 1)). Let σ = tanh. Assume

C0 +

N∑
j=1

ηjσ(aᵀj x+ bj) = C

for all x ∈ Rn, where ηj 6= 0 and aj 6= 0 for 1 ≤ j ≤ N . If there exists no distinct indices i and j such that
(ai, bi) = ±(aj , bj), then N = 0 (the sum vanishes) and C0 = C.

Proof of Lemma 5. First consider the case where σ = tanh. With probability 1, the condition of Theorem 10 holds, and

F (x)
∆
=

Nd∑
j=1

ηjψj(x)
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with η 6= 0 is not constant. Since σ : R→ R is analytic on R, it has a power series expansion

σ(t) =

∞∑
ν=0

sν t
ν .

Suppose that 0 6= η ∈
⋂
x∈B ker(DΨ(x)ᵀ). Then

Nd∑
j=1

ηj∇ψj(x) ≡ 0

for x ∈ B, and

F (x)
∆
=

Nd∑
j=1

ηjψj(x) =

Nd∑
j=1

ηj

∞∑
ν=0

sν(aᵀj x+ bj)
ν

is constant for x ∈ B. Fix any x0 ∈ B and u ∈ Rn. Let αj = aᵀj u and βj = aᵀj x0 + bj . Then for xu(t)
∆
= x0 + tu,

F (xu(t)) =

Nd∑
j=1

ηj

∞∑
ν=0

sν(tαj + βj)
ν

=

Nd∑
j=1

ηj

∞∑
ν=0

sν

ν∑
m=0

(
ν

m

)
(αjt)

mβν−mj

=

∞∑
m=0

 Nd∑
j=1

∑
ν≥m

ηjsν

(
ν

m

)
αmj β

ν−m
j

 tm

∆
= F0 +

∞∑
m=1

Fmt
m

is constant within t ∈ (−ε, ε) for some ε > 0. (Order of summations can be freely interchanged because power series for σ
are absolutely convergent for any choice of t.) But then Fm must be zero for allm ≥ 1, since 0 = dm

dtm

∑Nd
j=1 ηjψj(xu(0)) =

m!Fm. Therefore, in fact, F (xu(t)) ≡ F0 for all t ∈ R, and F0 = F (x0) does not depend on u. That is, F is a constant
function on Rn. This implies that η = 0, which contradicts the assumption η 6= 0.

We extend the conclusion to the sigmoid function by noting that

1

1 + e−r
=

tanh(r/2) + 1

2
,

i.e., the sigmoid function is obtained by scaling the input of tanh, adding a constant, and scaling the output.

A.4. Proof of Lemma 7

Recall that we defined

δ̃ε(z) =
π−k/2

εk
e−‖z/ε‖

2
2 ,

so that
∫
Rk δ̃

ε(z) dz = 1 for all ε > 0.

Lemma 11. Assume (AL). There exists a constant Cδ depending only on k but not on ε > 0 such that∣∣∣EZ [(δ̃ε(Z)− δ(Z)
)
f(Z)

]∣∣∣ < Cδ ε sup
z∈Rk

(|f(z)|+ ‖∇f(z)‖)

for all differentiable f : Rk → R such that supz∈Rk (|f(z)|+ ‖∇f(z)‖) <∞. Here ‖ · ‖ denotes the operator norm, which
coincides with the vector `2 norm on Rk.
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Proof. Let M = ‖f‖∞, Lf = supz∈Rk ‖∇f(z)‖ and let LZ be the Lipschitz constant of qZ(z). Then for any z ∈ Rk,

|f(z)qZ(z)− f(0)qZ(0)| ≤ |f(z)||qZ(z)− qz(0)|+ |f(z)− f(0)|qZ(0) ≤MLZ‖z‖+ Lf‖z‖qZ(0).

Integrating both sides over z ∈ Rk with respect to δ̃ε(z) dz gives∫
Rk
|f(z)qZ(z)− f(0)qZ(0)| δ̃ε(z) dz ≤

∫
Rk

(MLZ + LfqZ(0))‖z‖δ̃ε(z) dz

=

∫
Rk

(MLZ + LfqZ(0))
π−k/2

εk
‖z‖e−‖z/ε‖

2
2 dz.

Using change of variables, we rewrite and bound the last integral as

(MLZ + LfqZ(0))π−k/2ε

∫
Rk
‖z‖e−‖z‖

2
2 dz ≤ max{LZ , qZ(0)}π−k/2

(∫
Rk
‖z‖e−‖z‖

2
2 dz

)
ε(M + Lf )

≤ 2 max{LZ , qZ(0)}π−k/2
(∫

Rk
‖z‖e−‖z‖

2
2 dz

)
ε sup
z∈Rk

(|f(z)|+ ‖Df(z)‖) ,

which shows that ∣∣∣EZ [(δ̃ε(Z)− δ(Z)
)
f(Z)

]∣∣∣ ≤ ∫
Rk
|f(z)qZ(z)− f(0)qZ(0)|δ̃ε(z) dz

≤ Cδ ε sup
z∈Rk

(|f(z)|+ ‖Df(z)‖)

where

Cδ = 2 max{LZ , qZ(0)}π−k/2
(∫

Rk
‖z‖e−‖z‖

2
2 dz

)
.

Lemma 12. (Abramowitz & Stegun, 1972, p. 302) Denote by F [·] be the Fourier transform operator. Then

F [δ̃ε](ω) = e−π
2ε2‖ω‖2 .

In particular, F [δ̃ε](ω) is bounded, and ∫
Rk
F [δ̃ε](ω) dω <∞,∫

Rk
‖ω‖F [δ̃ε](ω) dω <∞.

We first provide a proof when n = 1, which conveys all important ideas of the proof. Although the general case involves
significantly more complicated notations, it does not essentially differ from the simpler case.

Proof for the case n = 1.

Let ε > 0 be given.

Step 1. Approximate δ(z) with δ̃ε(z) in the sense of Lemma 11.

Step 2. Approximate δ̃ε(z) with an infinite combination of functions in G.

Because both δ̃ε and F [δ̃ε] are real-valued and positive, using the inverse Fourier transform, we can write

δ̃ε(z)− δ̃ε(0) = Re

∫ (
e2πiωᵀz − 1

)
F [δ̃ε](ω) dω =

∫
(cos (2πωᵀz)− 1)F [δ̃ε](ω) dω (4)

for any z ∈ Rk. Note that by Lemma 12, the integral (4) is always well-defined.
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Fix a large R > 0 satisfying ∫
‖z‖>R

qZ(z) dz <
πk/2εk+1

2
.

Following (Telgarsky, 2020, Section 4.2), for ‖z‖ ≤ R, the cosine term in (4) can be rewritten as

cos (2πωᵀz)− 1

=

∫ ωᵀz

0

−2π sin(2πb) db

=

∫ R‖ω‖

0

−2π 1{ωᵀz−b≥0}(z) sin(2πb) db+

∫ 0

−R‖ω‖
2π 1{ωᵀz−b≤0}(z) sin(2πb) db. (5)

Let ug = limr→∞ σg(r) and `g = limr→−∞ σg(r). Then by (AG), we have

1{r≥0}(r) = lim
τ↓0

1

ug − `g

(
σg

( r
τ

)
− `g

)
for r 6= 0. Hence we can approximate the step function terms in (5) using σg:∫ R‖ω‖

0

lim
τ↓0
− 2π

ug − `g

(
σg

(
ωᵀz − b

τ

)
− `g

)
sin(2πb) db+

∫ 0

−R‖ω‖
lim
τ↓0

2π

ug − `g

(
σg

(
−ωᵀz + b

τ

)
− `g

)
sin(2πb) db.

(6)

Plugging (6) into (4), we obtain

δ̃ε(z)− δ̃ε(0)

=

∫ ∫ R‖ω‖

0

lim
τ↓0
− 2π

ug − `g

(
σg

(
ωᵀz − b

τ

)
− `g

)
sin(2πb)F [δ̃ε](ω) db dω

+

∫ ∫ 0

−R‖ω‖
lim
τ↓0

2π

ug − `g

(
σg

(
−ωᵀz + b

τ

)
− `g

)
sin(2πb)F [δ̃ε](ω) db dω

(7)

for ‖z‖ ≤ R.

Observe that because σg is bounded and by Lemma 12, for any τ > 0 and z ∈ Rk,∫ ∫ R‖ω‖

0

∣∣∣∣ 2π

ug − `g

(
σg

(
ωᵀz − b

τ

)
− `g

)
sin(2πb)F [δ̃ε](ω)

∣∣∣∣ db dω ≤ ∫ 2π (‖σg‖∞ + `g)

ug − `g
R‖ω‖F [δ̃ε] dω <∞.

Therefore, by Lebesgue’s dominated convergence theorem, we can freely change the order of integration and limit in (7).
Using this fact, and applying change of variables, we can rewrite δ̃ε(z) as

δ̃ε(z) = δ̃ε(0) + lim
τ↓0

∫ ∫ R‖ω‖

0

− 2π

ug − `g

(
σg

(
ωᵀz − b

τ

)
− `g

)
sin(2πb)F [δ̃ε](ω) db dω

+ lim
τ↓0

∫ ∫ 0

−R‖ω‖

2π

ug − `g

(
σg

(
−ωᵀz + b

τ

)
− `g

)
sin(2πb)F [δ̃ε](ω) db dω

= θε1φ(z;κ1) + lim
τ↓0

∫ ∫ 0

−R‖ω‖
−2πτk+1

ug − `g
σg (ωᵀz + b) sin(−2πτb)F [δ̃ε](τω) db dω

+ lim
τ↓0

∫ ∫ 0

−R‖ω‖

2πτk+1

ug − `g
σg (ωᵀz + b) sin(2πτb)F [δ̃ε](−τω) db dω

= θε1φ(z;κ1) + lim
τ↓0

∫
Rk×R

φ(z;κ)mτ (κ) dκ
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for ‖z‖ ≤ R. We specify the notations that were newly introduced. First, we denoted κ = (ω, b), so that φ(z;κ) =
σg(ω

ᵀz + b) (note that because we have assumed n = 1, the generator parameter has dimension k + 1), and dκ is the
Lebesgue measure on Rk × R. Next, we set κ1 = (0, b1) with some fixed b1 ∈ R satisfying φ(z;κ1) ≡ σg(b1) 6= 0 and

θε1 =
1

σg(b1)

(
δ̃ε(0) +

∫ ∫ R‖ω‖

0

2π`g
ug − `g

sin(2πb)F [δ̃ε](ω) db dω −
∫ ∫ 0

−R‖ω‖

2π`g
ug − `g

sin(2πb)F [δ̃ε](ω) db dω

)
∈ R.

Finally, we define the density function mτ (κ) as

mτ (κ) =
2πτk+1

ug − `g

(
− sin(−2πτb)F [δ̃ε](τω)1{−R‖ω‖≤b≤0}(κ) + sin(2πτb)F [δ̃ε](−τω)1{−R‖ω‖≤b≤0}(κ)

)
=

4πτk+1

ug − `g
e−π

2ε2τ2‖ω‖2 sin(2πτb)1{−R‖ω‖≤b≤0}(κ), (8)

where we used Lemma 12 to obtain the second equality.

Now we bound the error in using the expression (5) in the case ‖z‖ > R. Observe that

cos(2πωᵀz)− 1−
∫ R‖ω‖

0

−2π 1{ωᵀz−b≥0}(z) sin(2πb) db+

∫ 0

−R‖ω‖
2π 1{ωᵀz−b≤0}(z) sin(2πb) db

= (cos(2πωᵀz)− cos(2πR‖ω‖))1{|ωᵀz|>R‖ω‖}(ω),

and thus

δ̃ε(z)− θε1φ(z;κ1)− lim
τ↓0

∫
Rk×R

φ(z;κ)mτ (κ) dκ =

∫
{ω | |ωᵀz|>R‖ω‖}

(cos(2πωᵀz)− cos(2πR‖ω‖))F [δ̃ε](ω) dω (9)

for all z ∈ Rk. The defining equation (8) shows that mτ is bounded and mτ ∈ L1(dκ) with∫
Rk×R

|mτ (κ)| dκ ≤ 4πR

ug − `g

∫
Rk
τk‖τω‖e−π

2ε2‖τω‖2 dω =
4πR

ug − `g

∫
Rk
‖ω‖e−π

2ε2‖ω‖2 dω.

Therefore, the family {
δ̃ε(z)− θε1φ(z;κ1)−

∫
Rk×R

φ(z;κ)f(z)mτ (κ) dκ

}
τ>0

is uniformly bounded. Applying the dominated convergence theorem to the pointwise convergence result (9) with respect to
the probability measure qZ(z) dz, we obtain

lim
τ↓0

EZ
[∣∣∣∣δ̃ε(Z)− θε1φ(Z;κ1)−

∫
Rk×R

φ(Z;κ)mτ (κ) dκ

∣∣∣∣]
= EZ

[∣∣∣∣∣
∫
{ω | |ωᵀZ|>R‖ω‖}

(cos(2πωᵀZ)− cos(2πR‖ω‖))F [δ̃ε](ω) dω

∣∣∣∣∣
]

≤ EZ

[∫
{ω | |ωᵀZ|>R‖ω‖}

2F [δ̃ε](ω) dω

]

≤ EZ
[
1{‖z‖>R}(Z)

∫
Rk

2F [δ̃ε](ω) dω

]
=

(∫
{‖z‖>R}

qZ(z) dz

)(∫
Rk

2F [δ̃ε](ω) dω

)
<
πk/2εk+1

2

2

πk/2εk
= ε.

Step 3. Approximate the integral over Rk × R by an integral over a ball of finite radius.
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We fix some τ = τ(ε) satisfying EZ
[∣∣∣δ̃ε(Z)− θε1φ(Z;κ1)−

∫
Rk×R φ(Z;κ)mτ (κ) dκ

∣∣∣] < 2ε. Because σg is bounded

and mτ ∈ L1(dκ), there exists K > 0 large enough so that∫
‖κ‖>K

|mτ (κ)| dκ < ε

‖σg‖∞
.

Then for any bounded continuous function f : Rk → R we have

EZ

[∣∣∣∣∣δ̃ε(Z)f(Z)− θε1φ(Z;κ1)f(Z)−
∫
‖κ‖≤K

φ(Z;κ)f(Z)mτ (κ) dκ

∣∣∣∣∣
]

≤ EZ
[∣∣∣∣δ̃ε(Z)f(Z)− θε1φ(Z;κ1)f(Z)−

∫
Rk×R

φ(Z;κ)f(Z)mτ (κ) dκ

∣∣∣∣]
+ EZ

[∫
‖κ‖>K

|φ(Z;κ)f(Z)mτ (κ)| dκ

]

≤ 2ε‖f‖∞ + ‖σg‖∞‖f‖∞EZ

[∫
‖κ‖>K

|mτ (κ)| dκ

]
≤ 3ε‖f‖∞.

Step 4. Approximate the integral over a finite ball by a finite linear combination of random functions in G.

Define

mτ,K(κ) =

{
mτ (κ) if ‖κ‖ ≤ K,
0 otherwise.

Denote by p(κ) the strictly positive continuous density function from which we randomly sample the generator parameters.

Note that we have

CK
∆
= sup

κ

∣∣∣∣mτ,K(κ)

p(κ)

∣∣∣∣ <∞
because ‖mτ‖∞ <∞ and 1/p(κ) is bounded over a compact set.

Now, rewrite the integral from Step 3 as∫
‖κ‖≤K

φ (z;κ) mτ (κ) dκ =

∫
φ (z;κ)

mτ,K(κ)

p(κ)
p(κ) dκ.

We will show that if we sample κ2, . . . , κNg (IID) according to p(κ), then for sufficiently large Ng ,

∫
φ (Z;κ)

mτ,K(κ)

p(κ)
p(κ) dκ ≈ 1

Ng − 1

Ng∑
i=2

φ(Z;κi)
mτ,K(κi)

p(κi)

with high probability over κ2, . . . , κNg . (The indexing begins with i = 2 because κ1 is reserved for the constant function.)
When we draw each κi, we are in fact sampling the corresponding function

hi
∆
=
mτ,K(κi)

p(κi)
φ(·;κi) ∈ H

∆
= L2(qZ(z) dz).

Indeed, hi are uniformly bounded with ‖hi‖∞ ≤ ‖σg‖∞CK for all i = 2, . . . , Ng, which implies ‖hi‖H ≤ ‖σg‖∞CK .
That is, mτ,K(κ)

p(κ) φ(·;κ) is a bounded random variable with random realizations inH. Also, we have

Eκ∼p(κ)

[
mτ,K(κ)

p(κ)
φ(·;κ)

]
=

∫
φ(·;κ)

mτ,K(κ)

p(κ)
p(κ) dκ =

∫
‖κ‖≤K

φ(·;κ)mτ (κ) dκ.
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Therefore, applying the McDiarmid-type bound from (Rahimi & Recht, 2007, Lemma 4), we get∥∥∥∥∥∥ 1

Ng − 1

Ng∑
i=2

hi − Eκ∼p(κ)

[
mτ,K(κ)

p(κ)
φ(·;κ)

]∥∥∥∥∥∥
H

=

∥∥∥∥∥∥
Ng∑
i=2

mτ,K(κi)

(Ng − 1)p(κi)
φ(·;κi)−

∫
‖κ‖≤K

φ(·;κ)mτ (κ) dκ

∥∥∥∥∥∥
H

≤ ‖σg‖∞CK√
Ng − 1

(
1 +

√
2 log

1

ζ

)
,

(10)

with probability at least 1− ζ over κ2, . . . , κNg . Fix Ng large enough so that the right hand side of (10) is less than ε, and
let θεi =

mτ,K(κi)
(Ng−1)p(κi)

for i = 2, . . . , Ng . Then, using Jensen’s inequality, we obtain

ε >

∥∥∥∥∥∥
Ng∑
i=2

θεiφ(·;κi)−
∫
‖κ‖≤K

φ(·;κ)mτ (κ) dκ

∥∥∥∥∥∥
H

=

EZ


∣∣∣∣∣∣
Ng∑
i=2

θεiφ(Z;κi)−
∫
‖κ‖≤K

φ(Z;κ)mτ (κ) dκ

∣∣∣∣∣∣
2



1/2

≥ EZ

∣∣∣∣∣∣
Ng∑
i=2

θεiφ(Z;κi)−
∫
‖κ‖≤K

φ(Z;κ)mτ (κ) dκ

∣∣∣∣∣∣


with probability ≥ 1− ζ.

Step 5. Combine Steps 1 through 4.

Let κ1, . . . , κNg be as above, and φi(z) = φ(z;κi). For any continuously differentiable function f : Rk → R such that
supz∈Rk (|f(z)|+ ‖∇f(z)‖) <∞, with probability at least 1− ζ, we have∣∣∣∣∣∣EZ

δ(Z)−
Ng∑
i=1

θεiφi(Z)

 f(Z)

∣∣∣∣∣∣
≤ EZ

[∣∣∣(δ(Z)− δ̃ε(Z)
)
f(Z)

∣∣∣]+ EZ

[∣∣∣∣∣δ̃ε(Z)f(Z)− θε1φ1(Z)f(Z)−
∫
‖κ‖≤K

φ(Z;κ)f(Z)mτ (κ) dκ

∣∣∣∣∣
]

+ EZ

∣∣∣∣∣∣θε1φ1(Z)f(Z) +

∫
‖κ‖≤K

φ(Z;κ)f(Z)mτ (κ) dκ−
Ng∑
i=1

θεiφi(Z)f(Z)

∣∣∣∣∣∣


≤ Cδ ε sup
z∈Rk

(|f(z)|+ ‖∇f(z)‖) + 3ε‖f‖∞ + ‖f‖∞EZ

∣∣∣∣∣∣
∫
‖κ‖≤K

φ(Z;κ)mτ (κ) dκ−
Ng∑
i=2

θεiφi(Z)

∣∣∣∣∣∣


≤ (Cδ + 4) ε sup
z∈Rk

(‖f(z)‖+ ‖∇f(z)‖) ,

where Cδ is the constant (not depending on ε) defined in Lemma 11. This completes the proof for the case n = 1.

Proof for the general case n > 1.

The crux of the general case is that κ cannot be sampled coordinate-wisely, but we must keep only one coordinate active,
while suppressing the others. To achieve this, we simply accept κ’s whose rows are negligibly small except possibly for the
l-th row. We express κ ∈ Rn×k × Rn in the form

κ =

κ
(1)

...
κ(n)

 =


(
ω(1)

)ᵀ
b(1)

...
...(

ω(n)
)ᵀ

b(n)

 ,
where ω(j) ∈ Rk, b(j) ∈ R and κ(j) =

[(
ω(j)

)ᵀ
, b(j)

]
for j = 1, . . . , n.
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Fix 1 ≤ l ≤ n and ε > 0. Define

δ̃(ε,l)(z)
∆
=



0
...
0

δ̃ε(z)
0
...
0


← on l-th coordinate.

Let

Cm
∆
=

4

ug − `g

∫
Rk
e−π

2ε2‖ω‖2 dω,

which is a constant depending only on ε. Take a large R > 0 satisfying∫
‖z‖>R

qZ(z) dz < min

{
πk/2εk+1

2
,

ε

4(n− 1)‖σg‖∞Cm

}
.

From Steps 2 and 3 in the case n = 1, we can find a density function m = mτ of the form

mτ (κ(l)) =
4πτk+1

ug − `g
e−π

2ε2τ2‖ω(l)‖2 sin(2πτb(l))1{−R‖ω(l)‖≤b(l)≤0}(κ
(l))

on Rk × R (with τ = τ(ε) < 1) such that for some ρ(l) ∈ R and K > 0 large enough,

EZ

[∣∣∣∣∣δ̃ε(Z)− ρ(l) −
∫
‖κ(l)‖≤K

σg

(
(ω(l))ᵀZ + b(l)

)
m(κ(l)) dκ(l)

∣∣∣∣∣
]
< 3ε.

Note that we can bound∣∣∣∣∣
∫
‖κ(l)‖≤K

m(κ(l)) dκ(l)

∣∣∣∣∣ =

∣∣∣∣∣
∫
‖ω(l)‖≤K

2τk+1

ug − `g
e−π

2ε2τ2‖ω(l)‖2
∫ 0

−min{R‖ω(l)‖,K−‖ω(l)‖}
2π sin(2πb(l)) db(l) dω(l)

∣∣∣∣∣
=

∣∣∣∣∣
∫
‖ω(l)‖≤K

2τk+1

ug − `g
e−π

2ε2τ2‖ω(l)‖2
(

cos
(

2πmin{R‖ω(l)‖,K − ‖ω(l)‖}
)
− 1
)
dω(l)

∣∣∣∣∣
≤ τ

∫
Rk

4

ug − `g
e−π

2ε2τ2‖ω(l)‖2τk dω(l) = τCm < Cm.

For ξ > 0, consider the set

K(l)
ξ

∆
=
{
κ ∈ Rn×k × Rn

∣∣ ‖κ(l)‖ ≤ K, ‖κ(j)‖ ≤ ξ for j 6= l
}
.

Denote by Bξ the closed ball of radius ξ in Rk+1, centered at 0. Now define

m
(l)
ξ

(
κ(1), · · · , κ(n)

)
∆
= m(κ(l))

1K(l)
ξ

(
κ(1), · · · , κ(n)

)
Vol (Bξ)n−1 .

We will show that for sufficiently small ξ and some constant vector v(ε,l) ∈ Rn,

EZ
[∥∥∥∥δ̃(ε,l)(Z)− v(ε,l) −

∫
Rn×k×Rn

φ(Z;κ)m
(l)
ξ (κ) dκ

∥∥∥∥
2

]
= O(ε).

Note that given z ∈ Rk,

Φ̃
(l)
ξ (z)

∆
=

∫
Rn×k×Rn

φ(z;κ)m
(l)
ξ (κ) dκ =


∫
Rn×k×Rn σg

(
(ω(1))ᵀz + b(l)

)
m

(l)
ξ (κ) dκ

...∫
Rn×k×Rn σg

(
(ω(n))ᵀz + b(l)

)
m

(l)
ξ (κ) dκ

 ∈ Rn.
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For j = 1, . . . , n, we denote the j-th component function of Φ̃
(l)
ξ by

[
Φ̃

(l)
ξ

]
j
. Observe that if we denote dκ(−l) =

dκ(1) · · · dκ(l−1)dκ(l+1) · · · dκ(n), then by our construction of m and K,

[
Φ̃

(l)
ξ

]
l
(Z) =

∫
Rk×R

σg

(
(ω(l))ᵀZ + b(l)

)
m(κ(l))

∫
R(n−1)×k×Rn−1

1K(l)
ξ

(
κ(1), · · · , κ(n)

)
Vol (Bξ)n−1 dκ(−l)

 dκ(l)

=

∫
‖κ(l)‖≤K

σg

(
(ω(l))ᵀZ + b(l)

)
m(κ(l)) dκ(l),

which is 3ε-close to δ̃ε(Z)− ρ(l) within L1(qZ(z) dz), regardless of ξ.

Next we bound the remaining components of Φ̃
(l)
ξ . Since σg(r) is continuous at r = 0 (by (AG)), we can take ξ so that

|σg(r)− σg(0)| < ε

2(n− 1)Cm
(11)

holds for all |r| < (1 +R)ξ. Observe that for j 6= l,

[
Φ̃

(l)
ξ

]
j

(z) =

∫
R(n−1)×k×Rn−1

σg

(
(ω(j))ᵀz + b(j)

) ∏
m 6=l 1Bξ(κ

(m))

Vol (Bξ)n−1

(∫
‖κ(l)‖≤K

m(κ(l)) dκ(l)

)
dκ(−l)

=
1

Vol (Bξ)

∫
‖κ(j)‖≤ξ

σg

(
(ω(j))ᵀz + b(j)

)(∫
‖κ(l)‖≤K

m(κ(l)) dκ(l)

)
dκ(j).

Define

ρ(−l) ∆
=

∫
‖κ(l)‖≤K

σg(0)m(κ(l)) dκ(l) =
1

Vol (Bξ)

∫
‖κ(j)‖≤ξ

σg(0)

(∫
‖κ(l)‖≤K

m(κ(l)) dκ(l)

)
dκ(j).

Then we have∣∣∣∣[Φ̃(l)
ξ

]
j

(z)− ρ(−l)
∣∣∣∣ ≤ 1

Vol (Bξ)

∫
‖κ(j)‖≤ξ

∣∣∣σg ((ω(j))ᵀz + b(j)
)
− σg(0)

∣∣∣ ∣∣∣∣∣
∫
‖κ(l)‖≤K

m(κ(l)) dκ(l)

∣∣∣∣∣ dκ(j)

≤ 1

Vol (Bξ)

∫
‖κ(j)‖≤ξ

Cm

∣∣∣σg ((ω(j))ᵀz + b(j)
)
− σg(0)

∣∣∣ dκ(j).

Note the integrand is nonzero only when ‖κ(j)‖ ≤ ξ, which implies ‖ω(j)‖, |b(j)| ≤ ξ. Therefore, on the event ‖z‖ ≤ R,
we have

∣∣(ω(j))ᵀz + b(j)
∣∣ ≤ ξ(1 + ‖z‖) ≤ ξ(1 +R), so (11) gives∣∣∣∣[Φ̃(l)

ξ

]
j

(z)− ρ(−l)
∣∣∣∣ ≤ Cm ε

2(n− 1)Cm
=

ε

2(n− 1)
.

When ‖z‖ > R, the crude bound ∣∣∣∣[Φ̃(l)
ξ

]
j

(z)− ρ(−l)
∣∣∣∣ ≤ 2‖σg‖∞Cm

is enough, because ProbZ [‖Z‖ ≥ R] < ε
4(n−1)‖σg‖∞Cm . We have established

EZ
[∣∣∣∣[Φ̃(l)

ξ

]
j

(Z)− ρ(−l)
∣∣∣∣] < ε

n− 1

for all j 6= l.
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Now, with

v(ε,l) =



−ρ(−l)

...
−ρ(−l)

ρ(l)

−ρ(−l)

...
−ρ(−l)


← on l-th coordinate,

we have

EZ
[∥∥∥∥δ̃(ε,l)(Z)− v(ε,l) −

∫
Rn×k×Rn

φ(Z;κ)m
(l)
ξ (κ) dκ

∥∥∥∥
2

]
≤ EZ

[∥∥∥∥δ̃(ε,l)(Z)− v(ε,l) −
∫
Rn×k×Rn

φ(Z;κ)m
(l)
ξ (κ) dκ

∥∥∥∥
1

]
= EZ

[∣∣∣δ̃ε(Z)− ρ(l) −
[
Φ̃

(l)
ξ

]
l
(z)
∣∣∣]+

∑
j 6=l

EZ
[∣∣∣∣[Φ̃(l)

ξ

]
j

(Z)− ρ(−l)
∣∣∣∣]

< 3ε+ (n− 1)
ε

n− 1
= 4ε.

The space of vector functions h = ([h]1, . . . , [h]n) : Rk → Rn satisfying EZ
[
|[h]j(Z)|2

]
<∞ for each j = 1, . . . , n can

be identified as the direct sum of L2 spaces

H ∆
=

n⊕
j=1

L2(qZ(z) dz).

This is a Hilbert space equipped with the inner product 〈g, h〉H =
∑n
j=1 EZ [[g]j(Z)[h]j(Z)] = EZ [gᵀ(Z)h(Z)]. Now let

p(κ) > 0 be the density function on Rn×k × Rn from which we sample κ’s, and define

C
(l)
K

∆
= sup

κ

m
(l)
ξ (κ)

p(κ)
,

which is finite because m(l)
ξ is bounded and compactly supported, while p is positive and continuous. For each random κi,

i = n+ 1, . . . , Ng , the corresponding realization

hi :=
m

(l)
ξ (κi)

p(κi)
φ(·;κi) ∈ H

satisfies ‖hi‖H ≤
√
n‖σg‖∞C(l)

K . Hence, as in the n = 1 case,∥∥∥∥∥∥ 1

Ng − n

Ng∑
i=n+1

hi −
∫
Rn×k×Rn

φ(Z;κ)m
(l)
ξ (κ) dκ

∥∥∥∥∥∥
H

≤
√
n‖σg‖∞C(l)

K√
Ng − n

(
1 +

√
2 log

1

ζ

)

with probability ≥ 1 − ζ over κn+1, . . . , κNg . Let θ(ε,l)
i =

m
(l)
ξ (κi)

(Ng−n)p(κi)
for i = n + 1, . . . , Ng. Take κ1 =

(0n×k, b1), . . . , κn = (0n×k, bn), where b1, . . . , bn ∈ Rn, in a way that the constant vectors σg(bi) are linearly inde-
pendent. Then there exist θ(ε,l)

1 , . . . , θ
(ε,l)
n ∈ R such that

n∑
i=1

θ
(ε,l)
i σg(bi) =

n∑
i=1

θ
(ε,l)
i φ(z;κi) = v(ε,l).
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Given f : Rk → Rn, let M = supz∈Rk ‖f(z)‖2. Chaining all the approximation steps, we have∣∣∣∣∣∣EZ
δ(l)(Z)−

Ng∑
i=1

θ
(ε,l)
i φ(Z;κi)

ᵀ

f(Z)

∣∣∣∣∣∣
≤
∣∣∣EZ [(δ(l)(Z)− δ̃(ε,l)(Z)

)ᵀ
f(Z)

]∣∣∣+ EZ

∣∣∣∣∣∣
δ̃(ε,l)(Z)−

Ng∑
i=1

θ
(ε,l)
i φ(Z;κi)

ᵀ

f(Z)

∣∣∣∣∣∣


≤
∣∣∣EZ [(δ(Z)− δ̃ε(Z)

)
[f ]l(Z)

]∣∣∣+M EZ

∥∥∥∥∥∥δ(ε,l)(Z)−
Ng∑
i=1

θ
(ε,l)
i φ(Z;κi)

∥∥∥∥∥∥
2


≤ Cδ ε sup

z∈Rk

(∣∣[f ]l(z)
∣∣+
∥∥∇[f ]l

∥∥)+M EZ
[∥∥∥∥δ̃(ε,l)(Z)− v(ε,l) −

∫
Rn×k×Rn

φ(Z;κ)m
(l)
ξ (κ) dκ

∥∥∥∥
2

]

+M EZ

∥∥∥∥∥∥v(ε,l) +

∫
Rn×k×Rn

φ(Z;κ)m
(l)
ξ (κ) dκ−

Ng∑
i=1

θ
(ε,l)
i φ(Z;κi)

∥∥∥∥∥∥
2


≤

(
(Cδ + 4)ε+

√
n‖σg‖∞C(l)

K√
Ng − n

(
1 +

√
2 log

1

ζ

))
sup
z∈Rk

(‖f(z)‖2 + ‖Df(z)‖)

with probability ≥ 1− ζ. Clearly, with sufficiently large Ng , the last term is O(ε supz∈Rk (‖f(z)‖2 + ‖Df(z)‖)).

B. Experimental details and additional experimental results
B.1. Gaussian mixture sample generation

We now provide details of the experiments for Figure 6. The code is available at https://github.com/sehyunkwon/
Infinite-WGAN. The true and latent distributions are 2-dimensional, i.e., n = 2 and k = 2. The true distribution PX
is a mixture of 8 Gaussians with equal weights, where the means are (

√
2 cos mπ4 ,

√
2 sin mπ

4 ) for m = 0, 1, . . . , 7, and

the covariance matrices are
(

0.12 0
0 0.12

)
. The generator feature functions are of the form φi(x) = σg(κwz + κb) as

described in (AG) for 1 ≤ i ≤ Ng = 5000, where the activation function σg is tanh. Weights κw and κb for generator
feature functions are randomly sampled (IID) from the Gaussian distribution with zero mean and variance 102. As required
in Lemma 7, we create constant hidden units by replacing two sets of (κw, κb) with (02×2, (1, 0)) and (02×2, (0, 1)). The
discriminator feature functions are of form ψj(x) = σ(aᵀj x+ bj) as described in (AD) for 1 ≤ j ≤ Nd = 1000 where the
activation function σ is tanh. We generate aj and bj independently according to the following procedure:

• Pick x-intercept ã and y-intercept b̃ from −4 to 4 uniformly randomly.

• Then, xã + y

b̃
= 1 is the line with those intercepts.

• Pick c uniformly randomly from 1 to 10, then set aj = (c/ã, c/b̃) and bj = −c.

The generator stepsize starts at α = 10−5 and decays by a factor of 0.9 at every epoch. The networks are trained for 25
epochs with (X-sample) batch size 5000. At each iteration, 5000 latent vectors (Z-samples) are sampled IID from the
standard Gaussian distribution for the stochastic gradient ascent step, and another 5000 latent vectors are sampled IID from
the standard Gaussian distribution for the stochastic gradient descent step. The generator parameter θ is randomly initialized
(IID) with the Gaussian distribution with zero mean and variance 5× 10−3. The discriminator parameter γ is randomly
initialized (IID) with the standard normal distribution. We visualize the generated distribution using the kernel density
estimation (KDE) plot.

We also perform additional experiments under distinct settings. The first additional experiment considers the true distribution
PX that is a mixture of 9 Gaussians with equal weights. The means are (m1,m2) for m1 = −1, 0, 1 and m2 = −1, 0, 1,
and the covariance matrices are the same as before. We use the initial stepsize α = 5 × 10−6 for the generator and

https://github.com/sehyunkwon/Infinite-WGAN
https://github.com/sehyunkwon/Infinite-WGAN
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(a) Samples from true distribution PX (b) Samples from generator gθ(Z) (c) Convergence of the loss functions J and L

(d) Samples from true distribution PX (e) Samples from generator gθ(Z) (f) Convergence of the loss functions J and L

Figure 6. Additional experiments with mixtures of Gaussians. The code is available at https://github.com/sehyunkwon/
Infinite-WGAN.

Ng = 10, 000 for generator feature functions. The generator parameter θ is randomly initialized (IID) with the Gaussian
distribution with zero mean and variance 3 × 10−3. Discriminator feature functions are generated in the same manner.
Figure 6(a) shows the true distribution, and Figure 6(b) shows the generated samples. The second additional experiment
considers the true distribution PX , which is a spiral-shaped mixture of 20 Gaussians with equal weights. The means are
(m20 cos 2m

20 π,
m
20 sin 2m

20 π) for m = 0, 1, . . . , 19, and the covariance matrices are the same as before. We use the initial
stepsize α = 10−6 for the generator and Ng = 10, 000 for generator feature functions. The generator parameter θ is
randomly initialized (IID) with the Gaussian distribution with zero mean and variance 3 × 10−3. For the discriminator,
feature function weights are generated by sampling x-intercept ã and y-intercept b̃ from −2 to 2 uniformly randomly.
Figure 6(d) shows the true distribution, and Figure 6(e) shows the generated samples. In both cases, the generators closely
mimic the true distributions and loss functions converge to zero.

B.2. Loss landscape

In this section, we describe the experiments for Figure 5, which visualizes the loss landscape of J(θ) for the cases Ng = 2
and Ng = 10. We also provide additional experiments for Ng = 3, 5, and 100. In the Ng = 2 case, the landscape is highly
non-convex and displays at least three non-global local minima. We observe that in Figures 7 and 8, the landscapes become
better behaved, although still non-convex, as Ng increases.

When Ng > 2, the parameter space is projected down to a 2D plane spanned by two random directions, as recommended
by Li et al. (2018b). The true and latent distributions are 2-dimensional, i.e., n = 2 and k = 2. The true distribution
PX is a mixture of 2 Gaussians with equal weights, where the means are (m1,m2) for m1 = 0 and m2 = ±2, and the

https://github.com/sehyunkwon/Infinite-WGAN
https://github.com/sehyunkwon/Infinite-WGAN
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covariance matrices are
(√

0.52 0

0
√

0.52

)
. The latent distribution is the standard Gaussian distribution. The generator

feature functions are of the form φi(x) = σg(κwz + κb) as described in (AG) for 1 ≤ i ≤ Ng = 2, 3, 5, 10, and 100, where
the activation function σg is tanh. Weights κw are randomly sampled (IID) from an isotropic Gaussian and then multiplied
by a scalar factor, sampled independently from the standard normal distribution. Weights κb are randomly sampled (IID)
from the Gaussian distribution with zero mean and variance 3× 10−1. The discriminator feature functions are of the form
ψj(x) = σ(aᵀj x+ bj) as described in (AD) for 1 ≤ j ≤ Nd = 8, where the activation function σ is tanh.



WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points

(a) Ng = 2 (b) Ng = 3 (c) Ng = 5

(d) Ng = 10 (e) Ng = 100

Figure 7. Loss landscapes of J(θ) for Ng = 2, 3, 5, 10, and 100.

(a) Ng = 2 (b) Ng = 3 (c) Ng = 5

(d) Ng = 10 (e) Ng = 100

Figure 8. Corresponding contour plots of the landscapes of Figure 7.


