WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points

A. Omitted proofs

A.1. Proof of Lemma 1

Theorem 9 ((Hornik, 1991, Theorem 1)). Let o: R — R be bounded and nonconstant and P € M(R¥) be a finite measure.
Then for any f € L*(P) and ¢ > 0, there exists N € N and {(0;,a;,b;) € R x R* x R}, such that

N
. Z&U(a{z —bi) = f(2)| dP(z) <e¢

To clarify, f: R* — R in (Hornik, 1991, Theorem 1).

Proof of Lemma 1. Let f: R¥ — R"™ such that Ez [|| f(Z)]|2] < oo. By (AG), o is a bounded nonconstant function. For
l=1,...,n, Theorem 9 provides us with N; € N and {(Gl(l , El), bgl)) € R x R¥ x R}, such that

Z 000y ((a®)7z — b

satisfies
€
[ e = 52 az(ariz < o ®
RE n
where f;(z) is the I-th coordinate of f(z) € R™ for{ =1,...,n. Let {; = lim,_,_, o4(r). Let
[0 7 [ 7] [17]
0 T 1
A§l) = (al(l))T < l-th row, bEZ)’T = bgl) , e_; = |0| <« on I-th coordinates
0 T 1
L 0 L7 1]

and

N
f(l)vT(Z) — (Z 9(”) lye Z+ZQ() A(l) bgl)ﬂ")'

i=1 i=1
Then, for each ! = 1,...,n, we have f;l)’r = vall Hl(l)( g(—7) —¥y) = 0asr — ooif j # [, while fl(l)’r = hi(2).

Because o is bounded, by Lebesgue’s dominated convergence theorem, we obtain

hl(z) no
lim : — Z fOr| qz(z)dz=0.

rT—00 Rk —
hn ( Z) =1 L
Therefore, there exists a large enough 7,5, > 0 such that

hl (Z)

/Rk | O )| gz < |

hn(2) =1 L

and we conclude with (3) that

o

1
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Note that

Zf” mis(z) € span(G).

Therefore, using the bound || - |2 < || -

1, we get

E l) rb,g Z

qz(z)dz < e.
2

A.2. Proof of Lemma 2

Proof of Lemma 2. Because h is bounded and ¢z (z) dz is a probability measure, we have Ey [||h(Z)]|2] < oo. Therefore,
for any € > 0, there exists . such that E [||gs. (Z) — h(Z)]||5] < €. Observe that

Ey [9].(Z /Rk/mm &(2: k) 0. (k) qz () dz

/ / hT(2)¢(z; k)qz(z) dz db (k)
RP JRF
/EZ (W (2)p(Z; k)] dO:(k) = 0.

Here the change in the order of integration is valid because ¢(z; k) = 0g(Kw?z + Kp) < ||0gllco and the total mass of 6, is
finite, so that

L i@t ml, o0 a2() dz < il el 0. (R7) < o0

To clarify, the || - || for ||og||oo is the standard supremum norm for L spaces while |||l = maxi<i<p ||hilcc Where
h;(z) is the i-th coordinate of h(z) € R™. Finally, we have

z [IM2)|3] = Ez [W7(2) (W(Z) = g0.(2))] < |[hllEz [IIR(Z) = go.(2)];]
< IhlloEz [V lIA(Z) = go.(Z)ll5] < ev/nllh] -

To clarify, ||h(Z) — go.(Z)||, denotes the ¢! norm on the vector in R™ for each z. Now by letting ¢ — 0, we have

0=Ez [IN2)IE] = [ I3 a(:

Since g is continuous and positive everywhere, we conclude that h(z) = 0 for all z € R*. O

A.3. Proof of Lemma 5

Theorem 10 ((Sussmann, 1992, Lemma 1)). Let 0 = tanh. Assume

N
Co+ Y njo(alz+b;)=C

Jj=1

forall x € R", where n; # 0 and a; # 0 for1 < j < N. If there exists no distinct indices ¢ and j such that
(@i, b;) = £(aj,b;), then N = 0 (the sum vanishes) and Cy = C

Proof of Lemma 5. First consider the case where 0 = tanh. With probability 1, the condition of Theorem 10 holds, and

A Ja
= ()
j=1
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with 17 # 0 is not constant. Since o: R — R is analytic on R, it has a power series expansion

o0
o(t)=> st
v=0

Suppose that 0 # n € [, g ker(DW¥(z)T). Then

Na
> V() =0
j=1
for z € B, and
Ng Ng oo
F(x) = anwj(x) = an Zsy(a]av +b;)”
Jj=1 7j=1 v=0

is constant for x € B. Fix any zo € Band u € R". Let o; = a}u and 3; = a]T-:EO + b;. Then for z,,(t) 2 To + tu,

Ng oo
Flza(t)) =) 15 ) sultaj + 5;)"
j=1 =0

Ng 00 v
Sy s Y (1)
j=1  v=0 =0

Na

S S (1o |

m=0 \j=1lv>m

o0
SR+ Y Fut™

m=1

is constant within ¢ € (—¢, €) for some & > 0. (Order of summations can be freely interchanged because power series for o

are absolutely convergent for any choice of ¢.) But then F},, must be zero for all m > 1, since 0 = % Z;V:dl N (2.(0)) =
m! F,,. Therefore, in fact, F'(x,(t)) = Fy forall t € R, and Fy = F(z() does not depend on u. That is, F’ is a constant
function on R”™. This implies that 7 = 0, which contradicts the assumption 7 # 0.

We extend the conclusion to the sigmoid function by noting that

1 tanh(r/2)+1
l+er 2 ’
i.e., the sigmoid function is obtained by scaling the input of tanh, adding a constant, and scaling the output. O
A 4. Proof of Lemma 7
Recall that we defined
5 T el
0%(z) = e 2,

so that [, 0°(2) dz = 1 for all £ > 0.
Lemma 11. Assume (AL). There exists a constant Cs depending only on k but not on € > 0 such that

B2 [(5#(2) - 6(2)) £(2)]| < Cs e swp (17(2)] + V5]

zERF

for all differentiable f: R¥ — R such that sup ,cgx (|f(2)| + |V £(2)||) < oo. Here || - || denotes the operator norm, which
coincides with the vector (> norm on R¥.
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Proof. Let M = || f|lcos Ly = sup,cg» |[Vf(2)| and let L be the Lipschitz constant of gz (z). Then for any z € R¥,
1F(2)qz(2) = F(0)gz(0)] < [f(2)llgz(2) = ¢=(0)] + [f(2) = f(0)]gz(0) < MLz|[z|| + L|[2llqz(0).

Integrating both sides over z € R with respect to 6°(z) dz gives

/Rk |f(2)qz(2) — f(0)qz(0)] 6°(2) dz S/ (MLz + Lyqz(0))||2]|6°(2) dz

Rk

k)2 )
:/Rk(MLz-i-quZ(O)) e l|2]le /13 g5,

Using change of variables, we rewrite and bound the last integral as
(MLz 4 Ligz(0))m*/% /]Rk ||zHe_“ZH§ dz < max{Lz,qz(0)}n*/? (/Rk ||z||e_”z”g dz) e(M+ Ly)
< 2max{LzazO) 2 ([ ¥ a ) < sup (176)] + 1DFCID.
z€
which shows that

B2 [(5(2)-62)) £2)]| < [ 17(az) - 10205 () dz

Rk

<Cse sup (If )+ I1Df()I)

where

Cs = 2max{Lyz, qz(0)}r /2 </ | 2]]e~ 112 dz> .
Rk

Lemma 12. (Abramowitz & Stegun, 1972, p. 302) Denote by F|-| be the Fourier transform operator. Then
5 %

FI5)(w) =

In particular, F[6¢](w) is bounded, and
F[6°)(w) dw < o0,
Rk

[ el 7l do < oo
Rk}

We first provide a proof when n = 1, which conveys all important ideas of the proof. Although the general case involves
significantly more complicated notations, it does not essentially differ from the simpler case.

Proof for the case n = 1.

Let € > 0 be given.

Step 1. Approximate d(z) with 6°(z) in the sense of Lemma 11.

Step 2. Approximate 0°(z) with an infinite combination of functions in G.

Because both 6° and F [55] are real-valued and positive, using the inverse Fourier transform, we can write
5 () — 5(0) = Re / (77 1) FIF¥](w) o = / (cos (2mwT =) — 1) FI5)(w) dw n

for any z € R¥. Note that by Lemma 12, the integral (4) is always well-defined.
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k/2 k+1
/ qz(z)dz < e
I2I> R 2

Following (Telgarsky, 2020, Section 4.2), for ||z|| < R, the cosine term in (4) can be rewritten as

Fix alarge R > 0 satisfying

cos (2mwTz) — 1

wTz

—2m sin(27b) db

0

=27 Lyyr.—p>03 (2) sin(2mb) db+/ 27 1yyr2—b<0}(2) sin(27b) db. (5)
—R||w]|

/OR
/0 lleoll

Let ug = lim, o 04(r) and {4 = lim, . _ o4(r). Then by (AG), we have

)=y (o () 1)

for  # 0. Hence we can approximate the step function terms in (5) using o:

Rfjw|l 92 T, 0 2 —wT
/ lim — —— (aq (w & b) - Kg) sin(27b) db —|—/ lim — =" (gq (W) _ gq) sin(27b) db.
0 710 Ug — ég ; T ; —R|w|| 710 Ug — gg : T '

(6)
Plugging (6) into (4), we obtain
6°(2) —8°(0)
Rl 27 wlz—b N
// lim — (ag < ) - Kg) sin(27b) F[0°)(w) db dw
710 ug €g T o

//Rm 1;?01 Uy — £ (0 <_wTTZ . b) - Eg) sin(27b) F[6°](w) dbdw

Observe that because o is bounded and by Lemma 12, forany 7 > 0 and z € R,

//mm 2 ( (w”‘b> _gg> sin(27rb)]—'[58](w)‘ dbdw < /WRIIWIIIW dw < oo.

-4, T — 4y
Therefore, by Lebesgue’s dominated convergence theorem, we can freely change the order of integration and limit in (7).
Using this fact, and applying change of variables, we can rewrite §°(z) as

5 () = 5(0) + lim / / el o <gg (‘”Ti_b>_£g> sin(2b) F[5°](w) db dw

7J0

2w —wTz+b ~
+lim// <O’ ( )—Z)sin%rb Fl6%](w) dbdw
i [ [ (o0 (P57 ) s 75 )

2 +1 -
= 019(2; k1 +11m// mrt 04 (wTz + b) sin(—277b) F[6°)(Tw) db dw
R|lw]l

710 ug — €

for ||z|| < R.

+ lim // 27TT 0y (WT2 + b) sin(277b) F[6°](—7w) db dw
e s

= 07¢(z; k1) + lim ¢(z; k)me (k) dr
740 JRE xR
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for ||z|] < R. We specify the notations that were newly introduced. First, we denoted x = (w, b), so that ¢(z; k) =
og (wTz + b) (note that because we have assumed n = 1, the generator parameter has dimension k + 1), and dk is the
Lebesgue measure on R* x R. Next, we set 1 = (0, by) with some fixed b; € R satisfying ¢(z; k1) = 04(b1) # 0 and

1 . Rllwll o7¢ - 0 2l
05 = ¢ 9 gin(27b) F[o6° dbdw — g
: Ug(b1)< O+ [ [ e FR @ a2

Finally, we define the density function m, (k) as

g

sin(27b) F[6°] (w) db dw) €R.

27T7.k+1 . < 1 5
e () = 2 (_ sin(—277b) ]_-[55](7_w) 1{7R|\w|\§bS0}(H) + sin(277b) f[&](‘ﬂ«d) 1{*R\|M\|Sb§0}("£))
g g
Akl 26272\ w||? o
= 2wt [lwll Sln(27‘d‘7’b) 1{7R‘|w“§b§0}(l€)a (8)
'LLg - Eg

where we used Lemma 12 to obtain the second equality.

Now we bound the error in using the expression (5) in the case ||z|| > R. Observe that

Rl 0
cos(2mwTz) — 1 — / =27 Lyr.—p>0) (2) sin(27b) db +/ 21 1 2—p<o) (2) sin(27b) db
0 —Rllwll
= (cos(2mwTz) — cos(2mR[|w||)) 1{jwr 2> Rjw|} (@),
and thus
6°(2) — 05¢(2; K1) — lim d(z; 8)me (k) dr = / (cos(2mwTz) — cos(2nR||w|)) F[6°](w) dw (9)
0 JrE xR {wllwTz|>R]jw|}

for all z € R¥. The defining equation (8) shows that m., is bounded and m., € L' (dk) with

4R 4R
/ I (k)] e < —F / Flrfle ™Il gy — AT / wlle=™ <10 g,
REXR ug — Ly Jgr ug — Ly Jpr

Therefore, the family

{5 - totem = [ oteim fomn () )

>0

is uniformly bounded. Applying the dominated convergence theorem to the pointwise convergence result (9) with respect to
the probability measure gz (z) dz, we obtain

/ (cos(2rwT Z) — cos(2n R||w|))) F[6°](w) dw
{wllwTZ|>R[lw|}

lim EZ |:
7J0

5(2) - 6i0(Zim) ~ [ o(Ziwme () dn

R* xR

|

<Ey / 2[5 () dw]
{w|wTZ|>R|wl|}

<Ez _1{H2H>R}(Z> /]R]C 2]'-[85]((,0) dw]

J @a) ([ 27 w) o) riet 2
= z)az € Wdw | <« —4MM —— — ¢,
{llz[I>R} 1 RF 2 k/2¢k

Step 3. Approximate the integral over R* x R by an integral over a ball of finite radius.
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6(Z) — 05(Z; k) — Jgr g @(Z; K)my (k) d/@H < 2e. Because o, is bounded
and m, € L'(dk), there exists K > 0 large enough so that

/ Imy (k)| di < —=—.
| > K lloglloe

Then for any bounded continuous function f : R¥ — R we have

We fix some 7 = 7(¢) satisfying Ez {

5(2)1(2Z) — 06(Z:m) F(Z) — / oZ: 1) [(Z)m () dr

=l <K

|

5(2)(2) — 056(Z: k1) 1 (Z) — / O(Z; 5) F(Z)m () dis

<Ez [
Rk xR

|

+Ez

/ |(Z; k) f(Z)mr (k)] dn]
llell>K

/ |m7<n>|dm] < 3] floo-
[[=]|>K

Step 4. Approximate the integral over a finite ball by a finite linear combination of random functions in G.

e s (k) = {mfw i 1] < K,

< 2| flloc + llogllocll fllocEz

Define

0 otherwise.

Denote by p(x) the strictly positive continuous density function from which we randomly sample the generator parameters.

Note that we have

A ’mnK(K) < 0

Cg =su
K Kp p(k)

because ||m,||oc < 0o and 1/p(k) is bounded over a compact set.

Now, rewrite the integral from Step 3 as

ZyR) My (R) AR = ZiR m R) 4K
[ @G metsydn= [0 T pte

We will show that if we sample £y, . . ., £, (IID) according to p(x), then for sufficiently large IV,

/(b m-r K( )p(:‘i) dr ~ 1 gg:(;s(z.ﬂ,)mfr,l((’ii)
(x) Ng—1 =2 o p(ki)

with high probability over a2, ..., £n,. (The indexing begins with ¢ = 2 because k1 is reserved for the constant function.)
When we draw each «;, we are in fact sampling the corresponding function

A My K(ﬂz) A 19
hi = ———=¢(;ki) € H=L"(qz(2)dz).
2 o) (02(2) d2)
Indeed, h; are uniformly bounded with ||h;||sc < |logllecCk foralli = 2,..., Ny, which implies ||h;| < ||ogllocCxk-

That is, m;{; §H) ¢(+; k) is a bounded random variable with random realizations in H. Also, we have

Epnp(x) [m;éi ] /¢ mTK >p(f<)dff=/|K||<K¢(-;H)mr(f<)df<-
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Therefore, applying the McDiarmid-type bound from (Rahimi & Recht, 2007, Lemma 4), we get

R (<) L (r:)
mr k(K mr Kk (Kq
hi = Epnpn) | —~—0(5 K = P Ky —/ k)M, (k) dk
Ny —1 ; 7 { p(K) # )} " ; (Ng — 1)23(/%)(;5( ) x|l <K Bl ) e () w (10)
logllocCrc ( / 1)
< ————(14+,4/2log- |,
=TUN, 1 g ¢
with probability at least 1 — ¢ over ko, ..., Ky, . Fix N, large enough so that the right hand side of (10) is less than ¢, and
let 05 = (1\27—11(% fori = 2,..., Ny. Then, using Jensen’s inequality, we obtain
1/2
Ng Ng 2 /
€ > Zﬁfqﬁ(, Ki) — / o(s6)mr(k)dr|| = | Eyz Zﬁfqﬁ(Z;m) —/ o(Z;k)m,(k)dr
i=2 xll<K =2 llsll<K
H
Ng
> 050(Z; ki) —/ &(Z; K)o (1) dis
i=92 IsI<K
with probability > 1 — (.
Step 5. Combine Steps 1 through 4.
Let k1,..., kN, be as above, and ¢;(2) = ¢(2; k;). For any continuously differentiable function f : R* — R such that

SUp, cpk (|f( )| +[[Vf(2)|)) < oo, with probability at least 1 — (, we have
Ng
Ez 5(2)_Zef¢i(z) f(Z)
i=1

<. [|(82) - 5(2) 1(2)|]| +E2

5(2)1(2) - 6561(2)£(Z) — / O(7; 1) F(Z) my () ds

=<K

|

NQ
LEy |[6500(2)£(2) + / L) I(Z) o) = 0702

llsll<K

zERF

< Cse sup () + [IVF(2)) + 3ell flloo + 1/l Ez ‘/ (Z; k) mer (K dﬂ*ZG%Z
=<K
<(Cs+4)e S:@(Hf( A+ IV,

where Cj is the constant (not depending on ¢€) defined in Lemma 11. This completes the proof for the case n = 1.

Proof for the general case n > 1.

The crux of the general case is that x cannot be sampled coordinate-wisely, but we must keep only one coordinate active,

while suppressing the others. To achieve this, we simply accept x’s whose rows are negligibly small except possibly for the
I-th row. We express x € R™** x R™ in the form

() (@O)T 50
() (W7 b

where () € R¥,b0) € Rand k) = [(w)T, 6] for j =1,....n
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Fix 1 <1 <mnand e > 0. Define

60 (2) = 0¢(z)| < onI-th coordinate.
0

Let

4
Ug —ég Rk

1>

2.2 2
el

Cn

dw,

which is a constant depending only on ¢. Take a large R > 0 satisfying
/ ( ) 71_lc/Qé_k-|-1 c
qz(2)dz < min { , }
I=lI>R 2 A= 1logllecCrm

From Steps 2 and 3 in the case n = 1, we can find a density function m = m. of the form

4 k+1
T =m0 gin (27 rb ) L mjemj<ow <oy (5)

]<3€.

k+1 0
/ 27—7677‘—2527—2”“)(” I / 2 sin(2wbM) db® dw®
lo® <K Ug — g —min{R[lw®[|,K—[lw®]}

2 k+1
/ ﬁeiﬁ%%z”“’mw (cos (271' min{R||w®|, K — Hw(l)H}) - 1) dw®
lw®]<K Y9 = £g

My =
e (55 ug =4y

on R¥ x R (with 7 = 7(£) < 1) such that for some p(*) € R and K > 0 large enough,

Ez |[6°(2) — p¥ — / o4 ((w(l))TZ + b(l)) m(k®) drx®
M<K

Note that we can bound

/ m(s®) dr®
1w <K

4 22 2y (D)2
gr/ 7€ el 2R 4w ® = 70, < O,
]Rkug— g

For & > 0, consider the set

K 2 {m e RVF xR |||V < K, [|xP]] < & for j # z} :

Denote by B, the closed ball of radius & in R*+1 centered at 0. Now define
]_Kél) (}{(1)’ e 7/q/(n))

Vol (Bg)n71

mél) (,41)7 . m“") 2 (k0
We will show that for sufficiently small £ and some constant vector vieh e R,

Ey [H5<€J>(Z) —vEh / $(Z; k)m (r) drs
R

nXxXkyRn

| =06

2

Note that given z € R¥,
ik wren 0g (@2 +50Y m (k) dic
RnxkxRr 99 ¢

o (2) é/}R e (2 k)m (i) drs = : cR".
n X X R™ . l
Jrrtsemn 7 (@M)T2 +6O) m (k) dr
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For j = 1,...,n, we denote the j-th component function of @él) by [Cfél)} . Observe that if we denote dr(=D =
J

drM - dr=D gD L gk () then by our construction of m and K,

1o (50, &™)
0 =/ oy ((WNTZ 4+ b0 ) m(x® / .
[ 3 L( ) RE xR g (( ) ) (=) R(n—1)xk xRn—1 VOl(Bﬁ)n_l

_ / 7y (@072 460 ) m(x®) ),
IO <K

which is 3e-close to 6°(Z) — p® within L' (qz(z) dz), regardless of €.

)

Next we bound the remaining components of i)él . Since o4 (r) is continuous at = 0 (by (AG)), we can take £ so that

g

log(r) — ag(0)] < m

(1)

holds for all || < (1 + R). Observe that for j # [,
~ , , 15, (k™)
{@él)} (2) :/ o, ((w(J))TZ+b(J)> [l Lo () Bs(n,l ) / m(k®) dx® | dr =Y
J R(n—1)xk x Rn—1 Vol (B¢) @ || <K

1 / GOVT 4 p() / Oy 7.0 ) 7,.G)
= — o w z 4+ bV m(&\"Y) dk dr\/.
Vol (Be) Jywoj<e (( ) ) IO || <K )

Define

(- & / Oy g — L DY gx® | g
p = oa(0)m(k\) ds'" = / 04(0) / m(k\)dr' | de').
o)< Vol (Be) Jywon<e IxO|<K

Then we have

- 1 . )
V| () — (_l)’ < 7/ ’a WwONTz 40} — 5, (0 ‘ / m(kW) dx®
“ ¢ L( AN Vol (Be) Jjw i< g<( ) ) ) I ® <K )

1 / , , 4
< Con ‘J wiN T2 10} — 5 (0 ‘ dr@)
Vol (Bg) HW(j)HSf g (( ) ) g( )

Note the integrand is nonzero only when ||x()|| < &, which implies ||w(?) ||, [1)| < £. Therefore, on the event ||z|| < R,
we have |(w(j))Tz + b(j)‘ <&+ |z|) &1+ R),so0(11) gives

dr @)

9 &
< = .
- CmQ(n - 1)Cm  2(n-—1)

’ F’g)] (2) = pY

When ||z|| > R, the crude bound

el

< 2HUgHooCm

is enough, because Prob[||Z]| > R] < . We have established

e
4(n—1)[logllocCm

E. H 0] (2)- ”(Z)H <

J n—1

for all j # 1.
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Now, with
__p(_l)_
_p(=D
viEh = ,o(l) < on [-th coordinate,
—p=h
—pt1 ]
we have
E, H 5@ (Z) —vED - / &(Z;k)ym () dr ]
R Xk xRn 2
<Ez [HS<€J>(Z) — v - / O(Z; kym (k) dr }
Rn Xk xR" 1
N = (1 = (1 _
—Ez [|5(2) - o - [80'] ()] + D_E2 H &) (2)- o0 }
il
-1 = 4e.
<3+ (n )n — €
The space of vector functions h = ([h]1, ..., [h],): RF — R" satisfying Ez [|[];(Z)|?] < oo foreachj =1,...,n can

be identified as the direct sum of L? spaces

w2 @L2(qz(z) dz).

This is a Hilbert space equipped with the inner product (g, h)3 = Z;‘L=1 Ez[l9];(Z)[h];(Z)] =Ez[gT(Z)h(Z)]. Now let
p(k) > 0 be the density function on R"** x R™ from which we sample «’s, and define

l
m (k)

p(k)

C’,(é) 2 sup

which is finite because m" is bounded and compactly supported, while p is positive and continuous. For each random «;,
1=mn+1,..., Ny, the corresponding realization

l
m (k)

hi = p(hji)

d(3 ki) €H

satisfies ||h; ||y < \/ﬁ||ag\|ooC,(Cl). Hence, as in the n = 1 case,

N 1)
Loy 0 Vgl Cx ( 10
h; — NZ;k)my (k) dr|| < Y2222k (14, /2log =
Ng—n Z Rnxk xRn ( ) £ ( ) Ngfn C

1=n—+1 H

m® i ]
(qun% fOI"L = n+17"'aNg- Take K1 =

(Onxksb1),-- . kn = (Opxk,bpn), where by,...,b, € R™, in a way that the constant vectors o, (b;) are linearly inde-
pendent. Then there exist GEE’Z), ceey 95{5’[) € R such that

with probability > 1 — ¢ over ky41,...,KN,. Let ez(s,l) _

n n

D0 ag(bi) = Y0 oermi) = v,

i=1 i=1



WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points

Given f: R* — R"™, let M = sup,cgx || f(2)]2. Chaining all the approximation steps, we have

N, T

5 | (6000 - Yooz | 12
=1
_ T

< [B2 [(s0(2) - 5=0(2))" 1(2)] | +E2 || 502 - % 0V o(Z; ki) | £(2)

N.’?
< B2 [(5(2) - 5(2)) (1u(2)] |+ ME7 |50 (2) = 3 600 6(Z3 1)
=1 9
< Gy sup (|F(2)] + [[VIAU]) + M H Fe0z) v - [ gzimm) ) dr ]
z€RF R Xk X R7 9

N.‘?
#ME ||Vt [ sz k- 3 0 6(Zi k)
R‘nxk XR" 1—1
2

Vitloll=s O I
< ((as #age s VUL (1 \/mogC)) sup (17(:) e + D7)

with probability > 1 — (. Clearly, with sufficiently large N, the last term is O(e sup,cpx (|[f(2)|l2 + | Df(2)]]))-

B. Experimental details and additional experimental results
B.1. Gaussian mixture sample generation

‘We now provide details of the experiments for Figure 6. The code is available atht tps://github.com/sehyunkwon/
Infinite—-WGAN. The true and latent distributions are 2-dimensional, i.e., n = 2 and k = 2. The true distribution Px
is a mixture of 8 Gaussians with equal weights, where the means are (\/5 cos %7 V/2sin %) form =0,1,...,7, and
012 0

0 0.2
described in (AG) for 1 < ¢ < N, = 5000, where the activation function o, is tanh. Weights x,, and x; for generator
feature functions are randomly sampled (IID) from the Gaussian distribution with zero mean and variance 102. As required
in Lemma 7, we create constant hidden units by replacing two sets of (k.,, kp) With (02x2, (1,0)) and (02x2, (0,1)). The
discriminator feature functions are of form 1;() = o(ajx + b;) as described in (AD) for 1 < j < N4 = 1000 where the
activation function o is tanh. We generate a; and b; independently according to the following procedure:

the covariance matrices are . The generator feature functions are of the form ¢;(x) = o4(kwz + Kp) as

e Pick z-intercept @ and y-intercept b from —4 to 4 uniformly randomly.

e Then, % + % = 1 is the line with those intercepts.

e Pick c uniformly randomly from 1 to 10, then set a; = (c/a, ¢/b) and b; = —c.

The generator stepsize starts at o« = 10~° and decays by a factor of 0.9 at every epoch. The networks are trained for 25
epochs with (X -sample) batch size 5000. At each iteration, 5000 latent vectors (Z-samples) are sampled IID from the
standard Gaussian distribution for the stochastic gradient ascent step, and another 5000 latent vectors are sampled IID from
the standard Gaussian distribution for the stochastic gradient descent step. The generator parameter 6 is randomly initialized
(IID) with the Gaussian distribution with zero mean and variance 5 x 10~3. The discriminator parameter ~y is randomly
initialized (IID) with the standard normal distribution. We visualize the generated distribution using the kernel density
estimation (KDE) plot.

We also perform additional experiments under distinct settings. The first additional experiment considers the true distribution
Px that is a mixture of 9 Gaussians with equal weights. The means are (mq,ms) form; = —1,0,1 and ms = —1,0, 1,
and the covariance matrices are the same as before. We use the initial stepsize « = 5 x 10~ for the generator and
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Figure 6. Additional experiments with mixtures of Gaussians. The code is available at https://github.com/sehyunkwon/
Infinite-WGAN.

N, = 10,000 for generator feature functions. The generator parameter ¢ is randomly initialized (IID) with the Gaussian
distribution with zero mean and variance 3 x 10~3. Discriminator feature functions are generated in the same manner.
Figure 6(a) shows the true distribution, and Figure 6(b) shows the generated samples. The second additional experiment
considers the true distribution Px, which is a spiral-shaped mixture of 20 Gaussians with equal weights. The means are
(% cos 22%17T’ 50 sin é—’gﬂ) form = 0,1,...,19, and the covariance matrices are the same as before. We use the initial
stepsize & = 107 for the generator and N, = 10,000 for generator feature functions. The generator parameter 6 is
randomly initialized (IID) with the Gaussian distribution with zero mean and variance 3 x 1073, For the discriminator,
feature function weights are generated by sampling z-intercept a and y-intercept b from —2 to 2 uniformly randomly.
Figure 6(d) shows the true distribution, and Figure 6(e) shows the generated samples. In both cases, the generators closely
mimic the true distributions and loss functions converge to zero.

B.2. Loss landscape

In this section, we describe the experiments for Figure 5, which visualizes the loss landscape of J(#) for the cases IV, = 2
and N, = 10. We also provide additional experiments for Ny = 3, 5, and 100. In the IV, = 2 case, the landscape is highly
non-convex and displays at least three non-global local minima. We observe that in Figures 7 and 8, the landscapes become
better behaved, although still non-convex, as N, increases.

When N, > 2, the parameter space is projected down to a 2D plane spanned by two random directions, as recommended
by Li et al. (2018b). The true and latent distributions are 2-dimensional, i.e., n = 2 and k£ = 2. The true distribution
Px is a mixture of 2 Gaussians with equal weights, where the means are (m;y, ms) for m; = 0 and my = £2, and the
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Vv0.52 0

covariance matrices are ( 0 \/ﬁ) The latent distribution is the standard Gaussian distribution. The generator

feature functions are of the form ¢;(x) = o4 (kw2 + k) as described in (AG) for 1 < i < N, = 2, 3, 5, 10, and 100, where
the activation function o is tanh. Weights «,, are randomly sampled (IID) from an isotropic Gaussian and then multiplied
by a scalar factor, sampled independently from the standard normal distribution. Weights x;, are randomly sampled (IID)
from the Gaussian distribution with zero mean and variance 3 x 10~!. The discriminator feature functions are of the form
¥j(z) = o(ajx + bj) as described in (AD) for 1 < j < Ny = 8, where the activation function o is tanh.
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Figure 7. Loss landscapes of J(0) for Ny = 2, 3, 5, 10, and 100.
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Figure 8. Corresponding contour plots of the landscapes of Figure 7.
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