
1 Proofs

1.1 Theorem 1 and Table 2

We combine the proofs of the Theorem 1 and the variance analysis in Table 2 due to substantial overlap. In
particular, the results of Table 2 entail Theorem 2. First, we consider the advantage estimator derived from
vθ(Ot):

Var(Gt − vθ(Ot))
(a)
= E[Var(Gt − vθ(Ot)|Ot)] + Var(E[Gt − vθ(Ot)|Ot])
(b)
= E[Var(Gt|Ot)] + Var(E[Gt − vθ(Ot)|Ot])
(c)
= E[Var(Gt|Ot)] + Var(E[Gt|Ot]− E[vθ(Ot)|Ot])
(d)
= E[Var(Gt|Ot)] + Var(E[Gt|Ot]− E[E[Gt|Ot]|Ot]︸ ︷︷ ︸

0

)

= E[Var(Gt|Ot)].

where (a) follows from the law of total variance, (b) follows because the conditional variance of vθ(Ot) given
Ot is zero, (c) follows from the linearity of expectation, and (d) follows from the definition of vθ(Ot). An
identical series of transformations can be applied for vθ(Ht) and vθ(St), except by applying the law of total
variance using Ht and St respectively, instead of Ot. Var(Gt − uθt (H)) cannot be substantially simplified,
however, the value listed in the table may be derived as follows:

Var(Gt − uθt (H))
(a)
= Var(E[Gt|H]− E[vθ(St)|H])

(b)
= Var(E[Gt − vθ(St)|H]),

where (a) follows because Gt = E[Gt|H] and from the definition of uθt , and (b) follows by linearity of
expectation.

Next we consider the difference between each baseline, starting with vθ(Ot) and vθ(Ht):

Var(Gt − vθ(Ot))−Var(Gt − vθ(Ht))
(a)
= E[Var(Gt|Ot)]− E[Var(Gt|Ht)]

(b)
= E[Var(E[Gt|Ht, Ot]|Ot)] + E[Var(Gt|Ht, Ot)]− E[Var(Gt|Ht)]

(c)
= E[Var(E[Gt|Ht]|Ot)] + E[Var(Gt|Ht)]− E[Var(Gt|Ht)]︸ ︷︷ ︸

0

(d)
= E[Var(vθ(Ht)|Ot)],

where (a) follows from the previously derived expressions, (b) follows from law of total conditional variance,
(c) follows because Ot is a component of Ht, so conditioning on Ot and Ht together is equivalent to con-
ditioning on Ht, and (d) follows from the definition of vθ(Ht). The same series of transformations applies
without issue when comparing vθ(Ht) and vθ(St):

Var(Gt − vθ(Ht))−Var(Gt − vθ(St))
(a)
= E[Var(Gt|Ht)]− E[Var(Gt|St)]
(b)
= E[Var(E[Gt|Ht, St]|Ht)] + E[Var(Gt|Ht, St)]− E[Var(Gt|St)]
(c)
= E[Var(E[Gt|St]|Ht)] + E[Var(Gt|St)]− E[Var(Gt|St)]︸ ︷︷ ︸

0

(d)
= E[Var(vθ(St)|Ht)].
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A subtle difference in reasoning occurs in (c), being that we are able to condition on just St instead of Ht

and St together due to the Markov property, i.e., because Gt is conditionally independent of Ht given St.
Lastly, we compare uθt (H) and vθ(St):

Var(Gt − vθ(St))−Var(Gt − uθt (H))
(a)
= Var(Gt − vθ(St))−Var(E[Gt − vθ(St)|H])

(b)
= E[Var(Gt − vθ(St)|H)] + Var(E[Gt − vθ(St)|H])−Var(E[Gt − vθ(St)|H])

(c)
= E[Var(Gt − vθ(St)|H)]

(d)
= E[Var(vθ(St)|H)],

where (a) substitutes the previously derived expression for Var(Gt − uθt (H)), (b) follows from the law of
total variance, (c) results from terms canceling, and (d) follows because the conditional variance of Gt given
H is zero and because for any X, Var(−X) = Var(X). Thus, the proof of the results listed in Table 2 is
complete. Theorem 1 follows from the above results because as variance and conditional variance are always
non-negative.

1.2 Theorem 2

By linearity of expectation, we can write the above expression as:

E

 ∞∑
t=0

(
Gt − uθt (H)

) ∂ lnπθ(Ot, At)

∂θ︸ ︷︷ ︸
ψ(Ot,At)

 = E

[ ∞∑
t=0

Gtψ(Ot, At)

]
︸ ︷︷ ︸

∇J(θ)

−E

[ ∞∑
t=0

uθt (H)ψ(Ot, At)

]
︸ ︷︷ ︸

0

,

where we define ψ as the compatible features, ψ(Xt, At) := ∂ lnπθ(Xt, Ut)/∂θ. The first component is ∇J(θ),
and we will prove the latter component is zero. Therefore, the entire expression is equal to ∇J(θ), proving
the theorem. For all t:

E
[
uθt (H)ψ(Ot, At)

]
(a)
= E

[
E[vθ(St)|H]ψ(Ot, At)

]
(b)
= E

[
E[vθ(St)ψ(Ot, At)|H]

]
(c)
= E

[
vθ(St)ψ(Ot, At)

]
,

where (a) follows from the definition of uθt and (c) holds due to the tower property. The critical step is
(b). Because Ot and At are components of H, ψ(Ot, At) may be moved inside the inner expectation. The
remainder of the proof is essentially equivalent to the standard proof that the vθ(St) baseline is unbiased,
which can be found in any standard RL text, but we will complete the proof here in our notation.

Continuing, we again use the tower property, essentially reversing the steps above, except this time condi-
tioning on St instead of H:

E
[
vθ(St)ψ(Ot, At)

]
= E

[
E[vθ(St)ψ(Ot, At)|St]

]
= E

[
vθ(St)E[ψ(Ot, At)|St]︸ ︷︷ ︸

0

]
.

Again, we can move vθ(St) out of the inner expectation because it is constant given St. The remaining inner
expression is zero because:
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E[ψ(Ot, At)|St]
(a)
=
∑
o∈O

Pr(Ot = o|St)
∑
a∈A

Pr(At = a|Ot = o, St)︸ ︷︷ ︸
πθ(o,a)

ψ(o, a)

(b)
=
∑
o∈O

Pr(Ot = o|St)
∑
a∈A

πθ(o, a)
∂ lnπθ(o, a)

∂θ

(c)
=
∑
o∈O

Pr(Ot = o|St)
∑
a∈A

πθ(o, a)
1

πθ(o, a)

∂πθ(o, a)

∂θ

(d)
=
∑
o∈O

Pr(Ot = o|St)
∑
a∈A

∂πθ(o, a)

∂θ

(e)
=
∑
o∈O

Pr(Ot = o|St)
∂

∂θ

∑
a∈A

πθ(o, a)

(f)
=
∑
o∈O

Pr(Ot = o|St)
∂

∂θ

∑
a∈A

Pr(At = a|Ot = o, θ)︸ ︷︷ ︸
1

(g)
= 0,

where (a) follows from the law of total expectation, (b) follows from the definition of πθ and ψ, (c) follows
from a well-known property of the derivative of a logarithmic function, (d) follows trivially by canceling
terms, (e) follows from the linearity of differentiation, (f) follows from the definition of πθ, and (g) follows
because the sum over the probability of all possible actions is 1, and the derivative of a constant is 0.

1.3 Theorem 3

Let ψ(Ot, At) := ∂ lnπθ(Ot, At)/∂θ. Then:

Var
(
(Gt − uθt (H))ψ(Ot, At)

) (a)
=Var

((
E[Gt|H]− E[vθ(St)|H]

)
ψ(Ot, At)

)
(b)
= Var

(
E[Gt − vθ(St)|H]ψ(Ot, At)

)
(c)
=Var

(
E[(Gt − vθ(St))ψ(Ot, At)|H]

)
(d)

≤Var
(
E[(Gt − vθ(St))ψ(Ot, At)|H]

)
+ E

[
Var
(
(Gt − vθ(St))ψ(Ot, At)|H

)]
(e)
=Var

(
(Gt − vθ(St))ψ(Ot, At)

)
,

where (a) follows because Gt = E[Gt|H] always and by the definition of uθt , (b) is due to the linearity
of expectation, (c) holds because Ot and At are components of H, (d) holds because variance is always
positive, and (e) holds by the law of total variance. This completes the proof.

1.4 Theorem 4

The layout of the proof is as follows: We first show that, for all h ∈ H, Pr(H = h) = Pr(H̃ = h). Next, we
show that ∇J(θ) = ∇J̃(θ). Finally, we show that the given expectation is equal to ∇J̃(θ), and therefore, by
substitution, ∇J(θ).
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First, recall the two conditions are that for all o ∈ O, partial histories h = (o0, a0, r0, . . . , ot), h
′ =

(o0, a0, r0, . . . , ot+1), and actions a ∈ A:

Pr(O0 = o) = Pr(Õ0 = o) (1)

Pr(Ht+1 = h′|Ht = h,At = a) = Pr(H̃t+1 = h′|H̃t = h, Ãt = a) (2)

Additionally, we define the following helper functions for notational convenience: For any history, h =
(o0, a0, r0, . . . , oi), such that i ≥ t, we define ot(h) := ot. For any history such that i > t, at(h) := at. Finally,

for any complete history, we define gt(h) :=
∑|h|
i=t ri, where |h| is the length of h in terms of timesteps.

1.4.1 Probability of Histories

We first prove by induction that the two conditions given are sufficient to prove that for all histories h,
Pr(H = h) = Pr(H̃ = h). We show that for all partial histories h and h′, if Pr(Ht = h) = Pr(H̃t = h), then
Pr(Ht+1 = h′) = Pr(H̃t+1 = h′). Because H0 = O0, the initial condition, Pr(H0 = h) = Pr(H̃0 = h), holds
trivially by (1). Then:

Pr(Ht+1 = h′)
(a)
=
∑
h

Pr(Ht = h) Pr(Ht+1 = h′|Ht = h)

(b)
=
∑
h

Pr(H̃t = h) Pr(Ht+1 = h′|Ht = h)

(c)
=
∑
h

Pr(H̃t = h)
∑
a∈A

Pr(At = a|Ht = h) Pr(Ht+1 = h′|Ht = h,At = a)

(d)
=
∑
h

Pr(H̃t = h)
∑
a∈A

πθ(ot(h), a) Pr(Ht+1 = h′|Ht = h,At = a)

(e)
=
∑
h

Pr(H̃t = h)
∑
a∈A

πθ(ot(h), a) Pr(H̃t+1 = h′|H̃t = h, Ãt = a)

(f)
=
∑
h

Pr(H̃t = h)
∑
a∈A

Pr(Ãt = a|H̃t = h) Pr(H̃t+1 = h′|H̃t = h, Ãt = a)

(g)
= Pr(H̃t+1 = h′),

where (a) follows from the law of total probability, (b) follows from the inductive assumption, (c) again
follows from the law of total probability, (d) follows from the definition of πθ, (e) follows from (2), (f)
follows again from the definition of πθ, and (g) follows from the law of total probability again.

1.4.2 Equality of Policy Gradients

First of all, we note that for any complete history h:

E[G0|H = h] = g0(h) = E[G̃0|H̃ = h], (3)

because for both M and M̃ , G0 is simply the deterministic sum of rewards in h. Therefore:
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J(θ) = E[G0]

(a)
=
∑
h

Pr(H = h)E[G0|H = h]

(b)
=
∑
h

Pr(H̃ = h)E[G0|H = h]

(c)
=
∑
h

Pr(H̃ = h)E[G̃0|H̃ = h]

(d)
= E[G̃0]

= J̃(θ),

where (a) follows from the law of total expectation, (b) was proved in the previous subsection, (c) follows
from (3), and (d) again follows from the law of total expectation. Therefore, ∇J(θ) = ∇J̃(θ).

1.4.3 Completion of Proof

We have:

E

[ ∞∑
t=0

(Gt − ũθt (H))
∂ lnπθ(Ot, At)

∂θ

]
(a)
=
∑
h

Pr(H = h)E

[ ∞∑
t=0

(Gt − ũθt (H))
∂ lnπθ(Ot, At)

∂θ

∣∣∣∣∣H = h

]
(b)
=
∑
h

Pr(H = h)

∞∑
t=0

(gt(h)− ũθt (h))
∂ lnπθ(ot(h), at(h))

∂θ

(c)
=
∑
h

Pr(H = h)E

[ ∞∑
t=0

(G̃t − ũθt (H))
∂ lnπθ(Õt, Ãt)

∂θ

∣∣∣∣∣H̃ = h

]
(d)
=
∑
h

Pr(H̃ = h)E

[ ∞∑
t=0

(G̃t − ũθt (H))
∂ lnπθ(Õt, Ãt)

∂θ

∣∣∣∣∣H̃ = h

]
(e)
= E

[ ∞∑
t=0

(G̃t − ũθt (H))
∂ lnπθ(Õt, Ãt)

∂θ

]
(f)
= ∇J̃(θ)

(g)
= ∇J(θ),

where (a) follows from the law of total expectation, (b) and (c) follows from the definitions of gt, ot, and at,
(d) follows from the proof in Section 1.4.1, (e) follows from the law of total expectation again, (f) follows
from Theorem 2, and (g) was shown in Section 1.4.2. Thus, the proof is completed.

1.5 Theorem 5

Following the proof of Theorem 4, it is straightforward but tedious to prove that Var(Gt − ũθt (H)) =
Var(G̃t − ũθt (H̃)) and Var(Gt − vθ(Ht)) = Var(G̃t − ṽθ(H̃t)), where ṽθ(Ht) := E[G̃t|H̃t]. We know from
Theorem 1 that Var(G̃t− ũθt (H̃)) ≤ Var(G̃t− ṽθ(H̃t)). Therefore, by substitution, we have immediately that
Var(Gt − ũθt (H)) ≤ Var(Gt − vθ(Ht)).
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However, we must still prove the prior statements. First we prove Var(Gt − ũθt (H)) = Var(G̃t − ũθt (H̃)):

Var(Gt − ũθt (H))
(a)
= E[(Gt − ũθt (H)− E[Gt − ũθt (H)])2]

(b)
=
∑
h

Pr(H = h)E[(Gt − ũθt (H)− E[Gt − ũθt (H)])2|H = h]

(c)
=
∑
h

Pr(H = h)(gt(h)− ũθt (h)− E[Gt − ũθt (H)])2

(d)
=
∑
h

Pr(H̃ = h)(gt(h)− ũθt (h)− E[Gt − ũθt (H̃)])2

(e)
=
∑
h

Pr(H̃ = h)(gt(h)− ũθt (h)− E[G̃t − ũθt (H̃)])2

(f)
=
∑
h

Pr(H̃ = h)E[(G̃t − ũθt (H̃)− E[G̃t − ũθt (H̃)])2|H̃ = h]

(g)
= Var(G̃t − ũθt (H̃)),

where (a) follows from the definition of variance, (b) follows from the law of total expectation, (c) follows
from the definition of gt(h), (d) follows from the proof found in Section 1.4.1, (f) follows from the definition
of gt(h), (g) follows again from the definition of variance. (e) follows from a similar series of transformations:

E[Gt − ũθt (H)] =
∑
h

Pr(H = h)E[Gt − ũθt (H)|H = h]

=
∑
h

Pr(H̃ = h)(gt(h)− ũθt (h))

=
∑
h

Pr(H̃ = h)E[G̃t − ũθt (H̃)|H̃ = h]

= E[G̃t − ũθt (H̃)].

Next we prove Var(Gt − vθ(Ht)) = Var(G̃t − ṽθ(H̃t)):

Var(Gt − vθ(Ht))
(a)
= E[(Gt − vθ(Ht)− E[Gt − vθ(Ht)])

2]

= E[(Gt − vθ(Ht))
2]

=
∑
h

Pr(H = h)E[Gt − vθ(Ht))
2|H = h]

=
∑
h

Pr
(
H = h

)(
gt(h)− vθ(ht(h))

)2
(b)
=
∑
h

Pr
(
H = h

)(
gt(h)− ṽθ(ht(h))

)2
=
∑
h

Pr(H̃ = h)E[G̃t − ṽθ(H̃t))
2|H̃ = h]

= E[(G̃t − ṽθ(H̃t))
2]

(c)
= E[(G̃t − ṽθ(H̃t)− E[G̃t − ṽθ(H̃t)])

2]

= Var(G̃t − vθ(H̃t)).
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where (a) and (c) follow from:

E[Gt − vθ(Ht)] = E[E[Gt − vθ(Ht)|Ht]] = E[E[Gt − E[Gt|Ht]|Ht]] = E[E[Gt|Ht]− E[Gt|Ht]] = 0,

and (b) follows because

vθ(ht) = E[Gt|Ht = ht] =
∑
h

Pr(H = h|Ht = ht)E[Gt|H = h,Ht = ht]

=
∑
h

Pr(H̃ = h|H̃t = ht)gt(h)

=
∑
h

Pr(H̃ = h|H̃t = ht)E[G̃t|H̃ = h, H̃t = ht]

= ṽθ(ht).

This completes the proof. The supplemental material continues on the next page.
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1.6 Theorem 6

We assume that v̂ is a tabular representation with parameters ω, such that for all o ∈ O and z ∈ Z,
v̂(o, z) = ωo,z. Consider the following loss function:

L(ω) =

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o, Zt = z)
(
vθ(o, z)− v̂(o, z)

)2
. (4)

This loss function is convex with a global minimum where ∀o ∈ O, z ∈ Z : ωo,z = vθ(o, z), and therefore a
good candidate for stochastic approximation. The gradient of L is:

∇L(ω) = 2

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o, Zt = z)
(
vθ(o, z)− v̂(o, z)

)∂v̂(o, z)

∂ω
. (5)

The proposed update direction could be rewritten as:

∞∑
t=0

∑
z∈Z

Pr(Zt = z|H)(Gt − v̂(Ot, z))
∂v̂(Ot, z)

∂ω
.

In expectation, this update is:

E

[ ∞∑
t=0

∑
z∈Z

Pr(Zt = z|H)(Gt − v̂(Ot, z))
∂v̂(Ot, z)

∂ω

]

=

∞∑
t=0

∑
z∈Z

E
[
Pr(Zt = z|H)(Gt − v̂(Ot, z))

∂v̂(Ot, z)

∂ω

]

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o)E
[
Pr(Zt = z|H)(Gt − v̂(o, z))

∂v̂(o, z)

∂ω

∣∣∣∣Ot = o

]

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o)
∑
h

Pr(H = h|Ot = o) Pr(Zt = z|H = h)(gt(h)− v̂(o, z))
∂v̂(o, z)

∂ω

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o)
∑
h

Pr(H = h|Ot = o) Pr(Zt = z|H = h,Ot = o)(gt(h)− v̂(o, z))
∂v̂(o, z)

∂ω

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o)
∑
h

Pr(H = h|Ot = o) Pr(Zt = z|H = h,Ot = o)

× E
[
(Gt − v̂(o, z))

∂v̂(o, z)

∂ω

∣∣∣∣H = h,Ot = o, Zt = z

]
=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o) Pr(Zt = z|Ot = o)E
[
(Gt − v̂(o, z))

∂v̂(o, z)

∂ω

∣∣∣∣Ot = o, Zt = z

]

Continuing:
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∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o) Pr(Zt = z|Ot = o)E
[
(Gt − v̂(o, z))

∂v̂(o, z)

∂ω

∣∣∣∣Ot = o, Zt = z

]

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o, Zt = z)E
[
(Gt − v̂(o, z))

∂v̂(o, z)

∂ω

∣∣∣∣Ot = o, Zt = z

]

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o, Zt = z)(vθ(o, z)− v̂(o, z))
∂v̂(o, z)

∂ω

=
1

2
∇L(ω).

Therefore, we can see that the proposed update is an unbiased estimator for the gradient of the given loss
times a positive constant. Therefore, given an appropriate step-size schedule for αi, we are given the standard
guarantees of gradient descent [1]. Further, because L is convex with respect to its parameters, the method
will converge to the global optimum almost surely, i.e.:

∀o ∈ O, z ∈ Z : Pr
(

lim
i→∞

v̂i(o, z) = vθ(o, z)
)

= 1.

Because v̂(o, z) = vθi (o, z) =⇒ ût,i(h) = uθt (h) by the construction of ût,i and the definition of uθt , we
conclude:

∀h, t : Pr
(

lim
i→∞

ût,i(h) = uθt (h)
)

= 1.

This completes the proof. The supplemental material continues on the next page.
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1.7 Theorem 7

We again consider the loss function given by (4). We can rewrite the more efficient update as:

∞∑
t=0

(Gt − v̂(Ot, Ẑt))
∂v̂(Ot, Ẑt)

∂ω
.

In expectation, we have:

E

[ ∞∑
t=0

(Gt − v̂(Ot, Ẑt))
∂v̂(Ot, Ẑt)

∂ω

]

=

∞∑
t=0

E

[
(Gt − v̂(Ot, Ẑt))

∂v̂(Ot, Ẑt)

∂ω

]

=

∞∑
t=0

∑
h

Pr(H = h)
∑
z∈Z

Pr(Ẑ = z|H = h)E

[
(Gt − v̂(Ot, Ẑt))

∂v̂(Ot, Ẑt)

∂ω

∣∣∣∣∣H = h, Ẑ = z

]

=

∞∑
t=0

∑
h

Pr(H = h)
∑
z∈Z

Pr(Ẑ = z|H = h)

(
(gt(h)− v̂(ot(h), z))

∂v̂(ot(h), z)

∂ω

)

=

∞∑
t=0

∑
h

Pr(H = h)
∑
z∈Z

Pr(Z = z|H = h)

(
(gt(h)− v̂(ot(h), z))

∂v̂(ot(h), z)

∂ω

)

=

∞∑
t=0

E
[
(Gt − v̂(Ot, Zt))

∂v̂(Ot, Zt)

∂ω

]

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o, Zt = z)E
[
(Gt − v̂(o, z))

∂v̂(o, z)

∂ω

∣∣∣∣Ot = o, Zt = z

]

=

∞∑
t=0

∑
z∈Z

∑
o∈O

Pr(Ot = o, Zt = z)(vθ(o, z)− v̂(o, z))
∂v̂(o, z)

∂ω

=
1

2
∇L(ω).

Thus, by the same argument as for Theorem 6:

∀o ∈ O, z ∈ Z : Pr
(

lim
i→∞

v̂i(o, z) = vθ(o, z)
)

= 1.

However, this time we must also consider û. We again consider a tabular representation, û(o, φ) = ψo,φ,
where ψ is a parameter vector. Consider the loss:

L(ψ) =

∞∑
t=0

∑
h

Pr(H = h)
(
uθt (h)− ût(ot(h), φ(h))

)2
(6)

∇L(ψ) = 2

∞∑
t=0

∑
h

Pr(H = h)
(
uθt (h)− ût(ot(h), φt(h))

)∂ût(ot(h), φt(h))

∂ψ
. (7)

Again, notice this loss is convex, with a global optimum at ût(ot(h), φt(h)) = uθt (h). In the limit as i→∞,
our update is:
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∞∑
t=0

(
vθ(Ot, Z̃t)− ût(Ot, φt)

)∂ût(Ot, φt)
∂ψ

.

In expectation, this is:

∞∑
t=0

E
[(
vθ(Ot, Z̃t)− ût(Ot, φt)

)∂ût(Ot, φt)
∂ψ

]

=

∞∑
t=0

∑
h

Pr(H = h)
∑
z

Pr(Z̃ = z|H = h)
(
vθ(ot(h), z)− ût(ot(h), φt(h))

)∂ût(ot(h), φt(h))

∂ψ

∞∑
t=0

∑
h

Pr(H = h)
(∑

z

Pr(Z̃ = z|H = h)vθ(ot(h), z)︸ ︷︷ ︸
uθt (h)

−
∑
z

Pr(Z̃ = z|H = h)︸ ︷︷ ︸
1

ût(ot(h), φt(h))
)∂ût(ot(h), φt(h))

∂ψ

∞∑
t=0

∑
h

Pr(H = h)
(
uθt (h)− ût(ot(h), φt(h))

)∂ût(ot(h), φt(h))

∂ψ

=
1

2
∇L(ψ).

However, recall that we cannot sample vθ(Ot, Z̃t) directly, and instead must rely on v̂(Ot, Z̃t). However, due
to the fact that the above estimators are unbiased, by choosing appropriate learning rate schedules for the
two updates, we achieve the convergence guarantees of two-timescale stochastic gradient descent [2]. Due to
the convexity of our loss functions, the system will converge to the global optimum almost surely.

2 Notes on POMDP Formulation

In order to clarify the concepts presented in this paper, maintain greater consistency with other work in the
field of RL in the MDP setting, and to simplify certain proofs, we modified the standard POMDP formulation
slightly. In this section, we briefly show that this modification causes no loss of generality, and show how to
represent a standard POMDP is represented in our notation.

In the standard formulation, a POMDP is a tuple, (S,A, T,R,Ω,O), where S is the set of states, A is the
set of actions, T : S × A × S → [0, 1] is the transition probability function, R : S × A → R is the reward
function, Ω is the set of observations, and O : S × Ω→ [0, 1] is the observation probability function. In our
formulation, the observations are a component of S, and the observation probabilities are defined by a single
transition function, P .

Any standard POMDP can be converted to our formulation as follows: First, we define a new state set,
S ′ = S × Ω, such that the hidden component set is Z = S and the observable component set is O = Ω.
Then, for any s and s′ in S ′, where s = (o, z) and s′ = (o′, z′), and any a ∈ A, we define a new transition
function P (s, a, s′) = T (z, a, z′)O(z, o) and a reward function R′(s, a) = R(z, a). Thus, we capture the
dynamics of the original system.

3 Additional Experimental Details

All algorithms were tabular variants of REINFORCE [3] (sometimes also known as “vanilla policy gradient”)
with no discount factor. Each policy was implemented using softmax action selection. Each observation or
belief state was represented as a string, which was mapped to a vector (containing one element for each
action) which was then passed through a softmax function to compute the action probabilities. The vector
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was always initialized to zero, i.e., a uniform policy. At the end of each episode, the policy parameters were
update by

θxt,i+1 = θxt,i + αi(gt − bt(h))
∂ lnπθ(xt, at)

∂θi
, (8)

where xt is the observation or belief state at time t, i is the episode, θxt,i are the policy parameters for
xt during episode i, αi is the learning rate during episode i, gt is the return, h is the entire history of the
episode, and bt is the baseline. Both the belief state were computed analytically from a known model. The
baselines for the posterior models were updated according to Equation 14 in the main text. The baselines
for the standard models were updated for all t according to

v̂i+1(xt) = v̂i(xt) + βi(gt − v̂i(xt)), (9)

where βi is the critic learning rate at episode i and the other terms are as defined above.

The latent state is Z ∈ {0, 1, 2, 3}, corresponding to each gridworld, and is constant for all timesteps during
an episode. The prior distribution is computed at time t by computing which gridwords are compatible with
the history Ht using a known model and assigning the remaining gridworlds equal probability. The posterior
distribution is computed similarly, except using the complete history H.

The actor learning rate was 0.01 and the critic learning rate was 0.05 for all agents. These were annealed
linearly to 0 over 20,000 episodes. Each value function was pretrained for 5000 episodes on a uniform random
policy.

The environment used is illustrated in the main text. The agent always starts in the top left square, {0, 0},
and the episode terminates upon reaching the bottom right square, {4, 4}. At the beginning of each episode,
the agent is placed randomly in one of the four gridworlds with equal probability. Transitions are fully
deterministic and the agent can move up, down, left, or right, moving one square at at time. If the agent
attempts to move into a wall, the movement fails and the timestep advances. If the agent fails to reach the
goal within 30, the episode terminates and the agent receives a punishment of −10.
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