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Abstract

We consider a stochastic contextual bandit prob-
lem where the dimension d of the feature vectors
is potentially large, however, only a sparse subset
of features of cardinality s0 � d affect the re-
ward function. Essentially all existing algorithms
for sparse bandits require a priori knowledge of
the value of the sparsity index s0. This knowl-
edge is almost never available in practice, and
misspecification of this parameter can lead to se-
vere deterioration in the performance of existing
methods. The main contribution of this paper is to
propose an algorithm that does not require prior
knowledge of the sparsity index s0 and establish
tight regret bounds on its performance under mild
conditions. We also comprehensively evaluate our
proposed algorithm numerically and show that it
consistently outperforms existing methods, even
when the correct sparsity index is revealed to them
but is kept hidden from our algorithm.

1. Introduction
In classical multi-armed bandits (MAB), one of the arms
is pulled in each round and a reward corresponding to the
chosen arm is revealed to the decision-making agent. The re-
wards are, typically, independent and identically distributed
samples from an arm-specific distribution. The goal of the
agent is to devise a strategy for pulling arms that maximizes
cumulative rewards, suitably balancing between exploration
and exploitation. Linear contextual bandits (Abe & Long,
1999; Auer, 2002; Chu et al., 2011) and generalized linear
contextual bandits (Filippi et al., 2010; Li et al., 2017) are
more recent important extensions of the basic MAB setting,
where each arm a is associated with a known feature vector
xa ∈ Rd, and the expected payoff of the arm is a (typically,
monotone increasing) function of the inner product x>a β

∗

for a fixed and unknown parameter vector β∗ ∈ Rd. Unlike
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the traditional MAB problem, here pulling any one arm
provides some information about the unknown parameter
vector, and hence, insight into the average reward of all the
other arms. These contextual bandit algorithms are applica-
ble in a variety of problem settings, such as recommender
systems, assortment selection in online retail, and healthcare
analytics (Li et al., 2010; Oh & Iyengar, 2019; Tewari &
Murphy, 2017), where the contextual information can be
used for personalization and generalization.

In most application domains highlighted above, the fea-
ture space is high-dimensional (d� 1), yet typically only
a small subset of the features influence the expected re-
ward. That is, the unknown parameter vector is sparse
with only elements corresponding to the relevant features
being non-zero, i.e., the sparsity index s0 = ‖β∗‖0 � d,
where the zero norm ‖x‖0 counts non-zero entries in the
vector x. There is an emerging body of literature on con-
textual bandit problems with sparse linear reward functions
(Abbasi-Yadkori et al., 2012; Gilton & Willett, 2017; Bas-
tani & Bayati, 2020; Wang et al., 2018; Kim & Paik, 2019)
which propose methods to exploit the sparse structure under
various conditions. However, there is a crucial shortcoming
in almost all of these approaches: the algorithms require
prior knowledge of the sparsity index s0, information that
is almost never available in practice. In the absence of
such knowledge, the existing algorithms fail to fully lever-
age the sparse structure, and their performance does not
guarantee the improvements in dimensionality-dependence
which can be realized in the sparse problem setting (and
can lead to extremely poor performance if s0 is underspec-
ified). The purpose of this paper is to demonstrate that a
relatively simple contextual bandit algorithm that exploits
`1-regularized regression using Lasso (Tibshirani, 1996) in
a sparsity-agnostic manner, is provably near-optimal insofar
as its regret performance (under suitable regularity). Our
contributions are as follows:

(a) We propose the first general sparse bandit algorithm
that does not require prior knowledge of the sparsity
index s0.

(b) We establish that the regret bound of our proposed al-
gorithm is O(s0

√
T log(dT )) for the two-armed case,

which affords the most accessible exposition of the key
analytical ideas. (Extensions to the general K-armed
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case are discussed later.) The regret bound scale in s0

and d matches the equivalent terms in the offline Lasso
results (see the discussions in Section 4.1).

(c) We comprehensively evaluate our algorithm on numer-
ical experiments and show that it consistently outper-
forms existing methods, even when these methods are
granted prior knowledge of the correct sparsity index
(and can greatly outperform them if this information is
misspecified).

The salient feature of our algorithm is that it does not rely
on forced sampling which was used by almost all previous
work, e.g., Bastani & Bayati (2020); Wang et al. (2018);
Kim & Paik (2019), to satisfy certain regularity of the em-
pirical Gram matrix. Forced sampling requires prior knowl-
edge of s0 because such schemes, the key ideas of which go
back to Goldenshluger & Zeevi (2013), need to be fine-tuned
using the correct sparsity index. (See further discussions in
Section 2.4.)

2. Preliminaries
2.1. Notation

For a vector x ∈ Rd, we use ‖x‖1 and ‖x‖2 to denote
its `1-norm and `2 norm respectively, the notation ‖x‖0 is
reserved for the cardinality of the set of non-zero entries of
that vector. We define [n] for a positive integer n to be a set
containing positive integers up to n, i.e., {1, 2, ..., n}. For
a real-valued function f , we use ḟ and f̈ to denote its first
and second derivatives.

2.2. Generalized Linear Contextual Bandits

We consider the stochastic generalized linear bandit problem
with K arms. Let T be the problem horizon, namely the
number of rounds to be played. In each round t ∈ [T ],
the learning agent observes a context consisting of a set
of K feature vectors Xt =

{
Xt,i ∈ Rd | i ∈ [K]

}
, where

the tuple Xt is drawn i.i.d. over t ∈ [T ] from an unknown
joint distribution with probability density pX with respect
to the Lebesgue measure. Note that the feature vectors for
different arms are allowed to be correlated. Each feature
vector Xt,i is associated with an unknown stochastic reward
Yt,i ∈ R. The agent then selects one arm, denoted by at ∈
[K] and observes the reward Yt := Yt,at , corresponding to
the chosen arm’s feature Xt := Xt,at , as a bandit feedback.
The policy consists of the sequence of actions π = {at :
t = 1, 2, ...} and is non-anticipating, namely each action
only depends on past observations and actions.

In this work, we assume that the reward Yt,i of arm i is
given by a generalized linear model (GLM), i.e.

Yt,i = µ(X>t,iβ
∗) + εt,i

where µ : R → R (also known as inverse link function)
is a known increasing function, β∗ ∈ Rd is an unknown
parameter, and each εt,i is an independent zero-mean noise.
Therefore, E[Yt,i|Xt,i = x] = µ(x>β∗) for all i ∈ [K] and
t ∈ [T ]. Widely used examples for µ are µ(z) = z which
corresponds to the linear model, and µ(z) = 1/(1 + e−z)
which corresponds to the logistic model. The parameter
β∗ and the feature vectors {Xt,i} are potentially high-
dimensional, i.e., d � 1, but β∗ is sparse, that is, the
number of non-zero elements in β∗, s0 = ‖β∗‖0 � d. It
is important to note that the agent does not know s0 or the
support of the unknown parameter β∗.

We assume that there is an increasing sequence of sigma
fields {Ft} such that each εt,i is Ft-measurable with
E[εt,i|Ft−1] = 0. In our problem, Ft is the sigma-field gen-
erated by random variables of chosen actions {a1, ..., at},
their features {X1,a1 , ..., Xt,at}, and the corresponding re-
wards {Y1,a1 , ..., Yt,at}. We assume the noise εt,i for all
i ∈ [K] is sub-Gaussian with parameter σ, where σ is a
positive absolute constant, i.e., E[eαεt,i ] ≤ eα

2σ2/2 for all
α ∈ R. In practice, for bounded reward Yt,i, the noise
εt,i is also bounded and hence satisfies the sub-Gaussian
assumption with an appropriate σ value.

The agent’s goal is to maximize the cumulative expected
reward E[

∑T
t=1 µ(X>t,atβ

∗)] over T rounds. Let a∗t =

argmaxi∈[K]

{
µ(X>t,iβ

∗)
}

denote the optimal arm for each
round t. Then, the expected cumulative regret of policy
π = {a1, ..., aT } is defined as

Rπ(T ) :=

T∑
t=1

E
[
µ(X>t,a∗t β

∗)− µ(X>t,atβ
∗)
]
.

Hence, maximizing the expected cumulative rewards of
policy π over T rounds is equivalent to minimizing the
cumulative regret Rπ(T ). Note that all the expectations
and probabilities throughout the paper are with respect to
feature vectors and noise unless explicitly stated otherwise.

2.3. Lasso for Generalized Linear Models

For given samples Y1, ..., Yn and corresponding features
X1, ..., Xn, the Lasso (Tibshirani, 1996) estimate for the
generalized linear model can be defined as

β̂n ∈ argmin
β

{
`n(β) + λ‖β‖1

}
(1)

where `n(β) := − 1
n

∑n
j=1

[
YjX

>
j β −m(X>j β)

]
, m(·)

is infinitely differentiable with ṁ(X>β∗) = E[Y |X] =
µ(X>β∗), and λ is a penalty parameter. Lasso is known
to be an efficient (offline) tool for estimating the high-
dimensional linear regression parameter. The “fast con-
vergence” property of Lasso is guaranteed when data are
i.i.d. and when the observed covariates are not highly cor-
related. The restricted eigenvalue condition (Bickel et al.,
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2009; Raskutti et al., 2010), the compatibility condition
(Van De Geer & Bühlmann, 2009), and the restricted isome-
try property (Candes & Tao, 2007) have been used to ensure
that such high correlations are avoided. In sequential learn-
ing settings, however, these conditions are often violated
because the observations are adapted to the past and the
feature variables of the chosen arms converge to a small
region of the feature space as the learning agent updates its
arm selection policy.

2.4. Why do existing sparse bandit algorithms require
prior knowledge of the sparsity index?

The primary reason that a priori knowledge of sparsity is
assumed throughout most of the literature is, roughly speak-
ing, to ensure suitable “size” of the confidence bounds and
concentration. For example, (Abbasi-Yadkori et al., 2012)
require the parameter s0 to explicitly construct a high proba-
bility confidence set with its radius proportional to s0 rather
than d. The recently proposed bandit algorithms of (Bastani
& Bayati, 2020; Kim & Paik, 2019) and the variant with
MCP estimator in (Wang et al., 2018) employ a logic that
is similar in spirit (though different in execution). Specif-
ically, the compatibility condition or restricted eigenvalue
condition is assumed to hold only for the theoretical Gram
matrix, and the empirical Gram matrix may not satisfy such
condition (the difficulty in controlling that is due to the
non-i.i.d. adapted samples of the feature variables). As a
remedy to this issue, (Bastani & Bayati, 2020) and (Wang
et al., 2018) utilize the forced-sampling technique of (Gold-
enshluger & Zeevi, 2013) to obtain a “sufficient” number of
i.i.d. samples and use that to show that the empirical Gram
matrices concentrate in the vicinty of the theoretical Gram
matrix, and hence, satisfy the compatibility condition after a
sufficient amount of forced-sampling. The forced-sampling
duration needs to be predefined and scales at least polynomi-
ally in the sparsity s0 to ensure concentration of the Gram
matrices. That is, if the algorithm does not know s0, the
forced-sampling duration will have to scale polynomially in
d. (Kim & Paik, 2019) propose an alternative to forced sam-
pling that builds on doubly-robust techniques used in the
missing data literature; however, their algorithm involves
random arm selection with a probability that is calibrated us-
ing s0, and initial uniform sampling whose duration requires
knowledge of s0 and scales polynomially with s0 in order to
establish their regret bounds. The sensitivity to the sparsity
index specification is also evident in cases where its value
is misspecified which may result in severe deterioration in
the performance of the algorithm (see further discussion in
Section 5.1).

The key observation in our analysis is that, under some
mild conditions, i.i.d. samples, which are the key output of
the forced sampling scheme, are in fact not essential. We
show that the empirical Gram matrix satisfies the required

regularity after a sufficient number of rounds, provided the
theoretical Gram matrix is also regular; the details of this
analysis are in Section 4. Numerical experiments support
this findings, and moreover, demonstrate that the perfor-
mance of the algorithm can be superior to forced-sampling-
based schemes that are tuned with foreknowledge of the
parameter s0.

3. Proposed Algorithm
Our proposed SPARSITY-AGNOSTIC (SA) LASSO BANDIT
algorithm for high-dimensional GLM bandits is summarized
in Algorithm 1. As the name suggests, our algorithm does
not require prior knowledge of the sparsity index s0. It relies
on Lasso for parameter estimation, and does not explicitly
use exploration strategies or forced-sampling. Instead, in
each round, we choose an arm which maximizes the inner
product of a feature vector and the Lasso estimate. After ob-
serving the reward, we update the regularization parameter
λt and update the Lasso estimate β̂t which minimizes the
penalized negative log-likelihood function defined in (1).

SA LASSO BANDIT requires only one input parameter λ0.
We show in Section 4 that λ0 = 2σxmax where xmax is
a bound on the `2-norm of the feature vectors Xt,i. Thus,
λ0 does not depend on the sparsity index s0 or the under-
lying parameter β∗. (Note that, in comparison, Kim &
Paik (2019) require three tuning parameters, and Bastani &
Bayati (2020) and Wang et al. (2018) require four tuning
parameters, most of which are functions of the unknown
sparsity index s0.) It is worth noting that tuning parame-
ters, while helping to achieve low regret, are challenging to
specify in online learning settings. In contrast, our proposed
algorithm is practical and easy to implement.

Algorithm 1 SA LASSO BANDIT

1: Input parameter: λ0

2: for all t = 1 to T do
3: Observe Xt,i for all i ∈ [K]

4: Compute at = argmaxi∈[K]X
>
t,iβ̂t

5: Pull arm at and observe Yt
6: Update λt ← λ0

√
4 log t+2 log d

t

7: Update β̂t+1 ← argminβ {`t(β) + λt‖β‖1}
8: end for

Discussion of the algorithm. Algorithm 1 may appear to
be an exploration-free greedy algorithm (see e.g., Bastani
et al. 2020), but this is not the case. To better understand
this we will compare the steps in Algorithm 1 to upper-
confidence bound (UCB) algorithms. A UCB algorithm
constructs a high-probability confidence ellipsoid around
a greedy maximum likelihood estimate and chooses a pa-
rameter value within the ellipse that maximizes the reward.
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Once the UCB estimate is chosen, the action selection is
greedy with respect to the parameter estimate.1 The UCB
algorithms regularize parameter estimates by carefully con-
trolling the size of the confidence ellipsoid to ensure conver-
gence, thus, exploration is loosely equivalent to regularizing
the parameter estimate. The algorithm we propose also com-
putes the parameter estimate by regularizing the MLE with
a sparsifying norm, and then, as in UCB, takes a greedy
action with respect to this regularized parameter estimate.
We adjust the penalty parameter associated with the spar-
sifying norm over time at carefully specified rate in order
to ensure that our estimate is consistent as we collect more
samples. (This adjustment and specification do not require
knowledge of sparsity s0.) Incorrect choice for the penalty
parameter would lead to large regret, which is analogous to
poor choice of confidence widths in UCB.

4. Regret Analysis
In this section, we establish an upper bound on the expected
regret of SA LASSO BANDIT for the two-armed generalized
linear bandits. We focus on the two-arm case primarily
for clarity and accessibility of key analysis ideas. We later
extend our analysis to the K-armed case with K ≥ 3 in
Section 5. It is important to note that our proposed algorithm
does not change with the number of arms. We start with
an assumption standard in the (generalized) linear bandit
literature.
Assumption 1 (Feature set and parameter). There exists a
positive constant xmax such that ‖x‖2 ≤ xmax for all x ∈
Xt and all t, and a positive constant b such that ‖β∗‖2 ≤ b.
Assumption 2 (Link function). There exist κ0 > 0 and
κ1 < ∞ such that the derivative µ̇(·) of the link function
satisfies κ0 ≤ µ̇(x>β) ≤ κ1 for all x and β.

Clearly for the linear link function, κ0 = κ1 = 1. For the
logistic link function, we have κ1 = 1/4.
Definition 1 (Active set and sparsity index). The active set
S0 := {j : β∗j 6= 0} is the set of indices j for which β∗j
is non-zero, and the sparsity index s0 = |S0| denotes the
cardinality of the active set S0.

For the active set S0, and an arbitrary vector β ∈ Rd, we
can define

βj,S0
:= βj1{j ∈ S0} , βj,Sc0 := βj1{j /∈ S0} .

Thus, βS0
= [β1,S0

, ..., βd,S0
]> has zero elements outside

the set S0 and the components of βSc0 can only be non-
zero in the complement of S0. Let C(S0) denote the set of
vectors

C(S0) := {β ∈ Rd | ‖βSc0‖1 ≤ 3‖βS0‖1} . (2)

1Likewise, in Thompson sampling (Thompson, 1933), the
agent chooses the greedy action for the sampled parameter.

Let X ∈ RK×d denote the design matrix where each row is
a feature vector for an arm. (Although we focus on K = 2
case in this section, the definitions and the assumptions
introduced here also apply to the case of K ≥ 3.) Then,
in keeping with the previous literature on sparse estimation
and specifically on sparse bandits (Bastani & Bayati, 2020;
Wang et al., 2018; Kim & Paik, 2019), we assume that
the following compatibility condition is satisfied for the
theoretical Gram matrix Σ := 1

KE[X>X].

Assumption 3 (Compatibility condition). For active set S0,
there exists compatibility constant φ2

0 > 0 such that

φ2
0‖βS0‖21 ≤ s0β

>Σβ for all β ∈ C(S0) .

We add to this the following mild assumption that is more
specific to our analysis.

Assumption 4 (Relaxed symmetry). For a joint distribution
pX , there exists ν <∞ such that pX (−x)

pX (x) ≤ ν for all x.

Discussion of the assumptions. Assumptions 1 and 2
are the standard regularity assumptions used in the GLM
bandit literature (Filippi et al., 2010; Li et al., 2017; Kveton
et al., 2020). It is important to note that unlike the existing
GLM bandit algorithms which explicitly use the value of
κ0, our proposed algorithm does not use κ0 or κ1 — this in-
formation is only needed to establish the regret bound. The
compatibility condition in Assumption 3 is analogous to the
standard positive-definite assumption on the Gram matrix
for the ordinary least squares estimator for linear models but
is less restrictive. The compatibility condition ensures that
truly active components of the parameter vector are not “too
correlated.” As mentioned above, the compatibility condi-
tion is a standard assumption in the sparse bandit literature
(Bastani & Bayati, 2020; Wang et al., 2018; Kim & Paik,
2019). Assumption 4 states that the joint distribution pX can
be skewed but this skewness is bounded. Obviously, if pX
is symmetrical, we have ν = 1. Assumption 4 is satisfied
for a large class of continuous and discrete distributions,
e.g., elliptical distributions including Gaussian and trun-
cated Gaussian distributions, multi-dimensional uniform
distribution, and Rademacher distribution. Note that in the
non-sparse low dimensional setting (i.e., d = s), the relaxed
symmetry in Assumption 4 together with the positive defi-
niteness of the theoretical Gram matrix is equivalent to the
covariate diversity condition introduced in (Bastani et al.,
2020). However, in the sparse high-dimensional setting con-
sidered here, the relaxed symmetry does not imply diversity
in all covariates. Consequently, the greedy parameter esti-
mation approach proposed by (Bastani et al., 2020) is not
guaranteed to achieve a sublinear regret. As in the case of
κ0 and κ1 in Assumption 2, the parameter ν is only needed
to establish the regret bound, our proposed algorithm does
not require knowledge of ν.
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4.1. Regret Bound for SA LASSO BANDIT

Theorem 1 (Regret bound for two arms). Suppose K = 2
and Assumptions 2-4 hold. Then the expected regret of the
SA LASSO BANDIT policy (π) over horizon T is upper-
bounded by

Rπ(T ) ≤ 4κmax +
2 log(2d2) + 2

C0(φ0, s0)2

+
32κmaxρ0σs0

√
T log(dT )

κminφ2
0

where C0(φ0, s0) = min
(

1
2 ,

φ2
0

128s0ρ0

)
.

Discussion of Theorem 1. In terms of key prob-
lem primitives, Theorem 1 establishes a regret bound of
O(s0

√
T log(dT )) without any prior knowledge on s0. The

bound shows that the regret of SA LASSO BANDIT grows
at most logarithmically in feature dimension d. The key
takeaway from this theorem is that SA LASSO BANDIT
is sparsity-agnostic and is able to achieve correct depen-
dence on parameters d and s0. Based on the offline Lasso
convergence results under the compatibility condition (e.g.,
Theorem 6.1 in (Bühlmann & Van De Geer, 2011)), we
believe that the dependence on d and s0 in Theorem 1 is
best possible.2

The regret bound in Theorem 1 is tighter than the previously
known bound in the same problem setting (Kim & Paik,
2019) although direct comparison is not immediate, given
the difference in assumptions involved — compared to (Kim
& Paik, 2019), we require Assumption 4 whereas they as-
sume the sparsity index s0 is known. Having said that, the
numerical experiments in Section 6 support our theoretical
claims and provide additional evidence that our proposed
algorithm compares very favorably to other existing meth-
ods (which are tuned with the knowledge of the correct s0),
and moreover, the performance is not sensitive to several
of our assumptions that were imposed primarily for techni-
cal tractability purposes. As mentioned earlier, the previous
work on sparse bandits (Bastani & Bayati, 2020; Wang et al.,
2018; Kim & Paik, 2019) require the knowledge of sparsity.
In the absence of such knowledge, if sparsity is underspec-
ified, then these algorithms would suffer a regret linear in
T . On the other hand, if the sparsity is overspecified, the
regret of these algorithms scales with d instead of s0. Our
proposed algorithm does not require such prior knowledge,
hence there is no risk of under or over specification, and yet

2Since the horizon T does not exist in offline Lasso results,
it is not straightforward to see whether

√
T dependence can be

improved comparing only with the offline Lasso results. Clearly,
without an additional assumption on the separability of the arms,
we know that poly-logarithmic scalability in T is not feasible. We
briefly discuss our conjecture in comparison with the lower bound
result in the non-sparse linear bandits in Secton B.1 in the appendix
where we discuss the regret bound under the RE condition.

our analysis provides a sharper regret guarantee. Further-
more, our result also suggests that even when the sparsity is
known, random sampling to satisfy the compatibility con-
dition, invoked by all existing sparse bandit algorithms to
date, can be wasteful since said conditions may be already
satisfied even in the absence of such sampling. This finding
is also supported by the numerical experiments in Section 6
and additional experiments in the appendix. We provide the
outline of the proof and the key lemmas in the following
section.

4.2. Challenges and Proof Outlines

There are two essential challenges that prevent us from fully
benefiting from the fast convergence property of Lasso:

(i) The samples induced by our bandit policy are not i.i.d.,
therefore the standard Lasso oracle inequality does not
hold.

(ii) Empirical Gram matrices do not necessarily satisfy
the compatibility condition even under Assumption 3.
This is because the selected feature variables for which
the rewards are observed do not provide an “even” rep-
resentation for the entire distribution.

To resolve (i), we provide a Lasso oracle inequality for the
GLM with non-i.i.d. adapted samples under the compati-
bility condition in Lemma 1. For (ii), we aim to provide a
remedy without using the knowledge of sparsity or without
using i.i.d. samples. Hence, this poses a greater challenge.
In Section 4.2.2, we address this issue by showing that
the empirical Gram matrix behaves “nicely” even when we
choose arms adaptively without deliberate random sampling.
In particular, we show that adapted Gram matrices can be
controlled by the theoretical Gram matrix, and the empiri-
cal Gram matrix concentrates properly around the adapted
Gram matrix as we collect more samples. Connecting this
matrix concentration to the corresponding compatibility con-
stants, we show that the empirical Gram matrix satisfies the
compatibility condition with high probability.

4.2.1. LASSO ORACLE INEQUALITY FOR GLM WITH
NON-I.I.D. DATA.

We present an oracle inequality for the Lasso estimator for
GLM under non-i.i.d. data. This is a generalization of the
standard Lasso oracle inequality (Bühlmann & Van De Geer,
2011) that allows adapted sequences of observations. This
result may be of independent interest.
Lemma 1 (Oracle inequality). Suppose the compatibil-
ity condition holds for the empirical covariance matrix
Σ̂t = 1

t

∑t
τ=1XτX

>
τ with active set S0 and compatibility

constant φt. For some δ ∈ (0, 1), define the regularization

parameter λt := 2σ
√

2[log(2/δ)+log d]
t . Then with proba-
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bility at least 1 − δ, the Lasso estimate β̂t defined in (1)
satisfies

‖β̂t − β∗‖1 ≤
4s0λt
κminφ2

t

.

Note that here we assume that the compatibility condition
holds for the empirical Gram matrix Σ̂t. In the next section,
we show that this holds with high probability. The Lasso
oracle inequality holds without further assumptions on the
underlying parameter β∗ or its support. Therefore, if we
show that Σ̂t satisfies the compatibility condition absent
knowledge of s0, then the remainder of the result does not
require this knowledge as well.

4.2.2. COMPATIBILITY CONDITION AND MATRIX
CONCENTRATION.

For matrix M , we define φ2(M,S0) :=
minβ

{
s0β
>Mβ/‖βS0

‖21 : ‖βSc0‖1 ≤ 3‖βS0
‖1 6= 0

}
as the (generic) compatibility constant. Hence, it suffices to
show φ2(M,S0) > 0 in order to show that matrix M satis-
fies the compatibility condition. Now, under Assumption 3,
the theoretical Gram matrix Σ = 1

KE[X>X] satisfies the
compatibility condition i.e., φ2

0 = φ2(Σ, S0) > 0.

Definition 2. We define the adapted Gram matrix as Σt :=
1
t

∑t
τ=1 E[XτX

>
τ |Fτ ] and the empirical Gram matrix as

Σ̂t :=
∑t
τ=1XτX

>
τ .

For each E[XτX
>
τ |Fτ ] in Σt, the history Fτ affects how

the feature vector Xτ is chosen. More specifically, our
algorithm uses Fτ to compute β̂τ and then chooses arm
aτ such that its (realized) feature xaτ maximizes x>aτ β̂τ .
Therefore, we can rewrite Σt as

Σt=
1

t

t∑
τ=1

2∑
i=1

EXτ
[
Xτ,iX

>
τ,i1{Xτ,i=argmax

X∈Xτ
X>β̂τ}|β̂τ

]
.

Since the compatibility condition is satisfied only for the
theoretical Gram matrix Σ and we need to show the empiri-
cal Gram matrix Σ̂t satisfies the compatibility condition, the
adapted Gram matrix Σt serves as a bridge between Σ and
Σ̂t in our analysis. We first lower-bound the compatibility
constant φ2(Σt, S0) in terms of φ2(Σ, S0) so that we can
show that Σt satisfies the compatibility condition as long
as Σ satisfies the compatibility condition. Then, we show
that Σ̂t concentrates around Σt with high probability and
that such matrix concentration guarantees the compatibility
condition of Σ̂t.

In Lemma 2, we show that Σt can be controlled in terms of
the theoretical Gram matrix Σ, which allows us to link the
compatibility constant of Σ to compatibility constant of Σt.
Note that Lemma 2 shows the result for any fixed vector β;
hence can be applied to E[XτX

>
τ |Fτ ].

Lemma 2. For fixed β ∈ Rd, we have∑2
i=1 E

[
Xt,iX

>
t,i1{Xt,i = argmaxX∈Xt X

>β}
]
< Σ

ρ0
.

Therefore, we have Σt < Σ
ρ0

which implies that

φ2(Σt, S0) ≥ φ2(Σ,S0)
ρ0

> 0, i.e., Σt satisfies the compati-
bility condition. Note that both Σ and Σt can be singular.
In Lemma 3, we show that Σ̂t concentrates to Σt with high
probability. This result is crucial in our analysis since it
allows the matrix concentration without using i.i.d. sam-
ples. The proof of Lemma 3 utilizes a new Bernstein-type
inequality for adapted samples (Lemma 8 in the appendix)
which may be of independent interest.

Lemma 3. For t ≥ 2 log(2d2)
C(φ0,s0)2 where C(φ0, s0) =

min
(

1
2 ,

φ2
0

128s0ρ0

)
, we have

P
(
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0ρ0

)
≤ exp

{
− tC(φ0, s0)2

2

}
.

Then, we invoke the following corollary to use the matrix
concentration results to ensure the compatibility condition
for Σ̂t.

Corollary 1 (Corollary 6.8, (Bühlmann & Van De Geer,
2011)). Suppose that Σ0-compatibility condition holds for
the index set S with cardinality s = |S|, with compati-
bility constant φ2(Σ0, S), and that ‖Σ1 − Σ0‖∞ ≤ ∆,
where 32s∆ ≤ φ2(Σ0, S). Then, for the set S, the Σ1-
compatibility condition holds as well, with φ2(Σ1, S) ≥
φ2(Σ0, S)/2.

In order to satisfy the hypotheses for Lemma 3 and
Corollary 1, we define the initial period t < T0 :=
2 log(2d2)/C(φ0, s0)2 during which the compatibility con-
dition for the empirical Gram matrix is not guaranteed, and
the event Et :=

{
‖Σt − Σ̂t‖∞ ≤ φ2

0/(32s0ρ0)
}

. Then for
all t ≥ dT0e and Σt for which event Et holds, we have

φ2
t := φ2(Σ̂t, S0) ≥ φ2(Σt, S0)

2
≥ φ2

0

2ρ0
> 0 .

Hence, the compatibility condition is satisfied for the empir-
ical Gram matrix without using sparsity information.

4.2.3. PROOF SKETCH OF THEOREM 1

We combine the results above to analyze the regret bound of
SA LASSO BANDIT shown in Theorem 1. First, we divide
the time horizon [T ] into three groups:

(a) (t ≤ T0). Here the compatibility condition is not
guaranteed to hold.

(b) (t > T0) such that Et holds.

(c) (t > T0) such that Et does not hold.
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These sets are disjoint, hence we bound the regret contribu-
tion from each separately and obtain an upper bound on the
overall regret. It is important to note that SA LASSO BAN-
DIT Algorithm does not rely in any way on this partitioning
– it is introduced purely for the purpose of analysis. Set (a) is
the initial period over which we do not have guarantees for
the compatibility condition. Therefore, we cannot apply the
Lasso convergence result; hence we can incur O(s2

0 log d)
regret. Set (b) is where the compatibility condition is sat-
isfied; hence the Lasso oracle inequality in Lemma 1 can
apply. In fact, this group can be further divided to two
cases: (b-1) when the high-probability Lasso result holds
and (b-2) when it does not, where the regret of (b-2) can be
bounded by O(1). For (b-1), using the Lasso convergence
result and summing the regret over the time horizon gives
O(s0

√
T log(dT )) regret, which is the leading factor in the

regret bound of Theorem 1. Lastly, (c) contains the failure
events of Lemma 3 whose regret is O(s2

0). The proofs of
the lemmas are deferred to the appendix.

5. Extension to K Arms
Recall that SA LASSO BANDIT is valid for any number of
arms; hence, no modifications are required to extend the
algorithm to K ≥ 3 arms. The analysis of SA LASSO
BANDIT for the K-armed case tackles largely the same
challenges described in Section 4.2: the need for a Lasso
convergence result for adapted samples and ensuring the
compatibility condition without knowing s0 (and without
relying on i.i.d. samples). The former challenge is again
taken care of by the Lasso convergence result in Lemma 1.
However, the latter issue is more subtle in the K-armed
case than in the two-armed case. In particular, when con-
trolling the adapted Gram matrix Σt with the theoretical
Gram matrix Σ, the Gram matrix for the unobserved feature
vectors could be incomparable with the Gram matrix for
the observed feature vectors. For this issue, we introduce
an additional regularity condition, which we denote as the
“balanced covariance” condition.
Assumption 5 (Balanced covariance). Consider a per-
mutation (i1, ..., iK) of (1, ...,K). For any integer k ∈
{2, ...,K − 1} and fixed vector β, there exists CX < ∞
such that

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 CXE

[
(Xi1X

>
i1 +XiKX

>
iK )1{X>i1β < ... < X>iKβ}

]
.

In Algorithm 1 we observe only the reward corresponding to
arm i1, and Assumption 4 implies that we have some control
on the arm iK . This balanced covariance condition implies
that there is “sufficient randomness” in the observed features
compared to non-observed features. The exact value of CX
depends on the joint distribution of X including the correla-
tion between arms. In general, the more positive the corre-

lation, the smaller CX (obviously, with an extreme case of
perfectly correlated arms having a constant CX independent
of any problem parameters). When the arms are indepen-
dent and identically distributed, Assumption 5 holds with
CX = O(1) for both the multivariate Gaussian distribution
and a uniform distribution on a sphere, and for an arbitrary
independent distribution for each arm, Assumption 5 holds
for CX =

(
K−1
K0

)
where K0 = d(K−1)/2e. It is important

to note that even in this pessimistic case, CX does not ex-
hibit dependence on dimensionality d or the sparsity index
s0. These are formalized in Proposition 1 in the appendix.3

This balanced covariance condition is somewhat similar to
“positive-definiteness” condition for observed contexts in
the bandit literature (e.g., Goldenshluger & Zeevi (2013);
Bastani et al. (2020)). However, notice that we allow the
covariance matrices on both sides of the inequality to be
singular. Hence, the positive-definiteness condition for ob-
served context in our setting may not hold even when the
balanced covariance condition holds. While this condition
admittedly originates from our proof technique, it also pro-
vides potential insights on learnability of problem instances.
That is, CX close to infinity implies that the distribution of
feature vectors is heavily skewed toward a particular direc-
tion. Hence, learning algorithms may require many more
samples to learn the unknown parameter, leading to larger
regret. It is important to note that our algorithm does not
require any prior information on CX . The regret bound
for the K-armed sparse bandits under Assumption 5 is as
follows.

Theorem 2 (Regret bound for K arms). Suppose K ≥ 3
and Assumptions 1-4, and 5 hold. Let λ0 = 2σxmax. Then
the expected cumulative regret of the SA LASSO BANDIT
policy π over horizon T ≥ 1 is upper-bounded by

Rπ(T ) ≤ 4κ1 +
4κ1xmaxb(log(2d2) + 1)

C1(s0)2

+
64κ1νCXσxmaxs0

√
T log(dT )

κ0φ2
0

where C1(s0) = min
(

1
2 ,

φ2
0

256s0νCXx2
max

)
.

Theorem 2 establishes O
(
s0

√
T log(dT )

)
regret without

prior knowledge on s0, achieving the same rate as Theo-
rem 1 in terms of the key problem primitives. Since both
multivariate Gaussian distributions and uniform distribu-
tions satisfy Assumption 4 with ν = 1 and Assumption 5
with CX = O(1), the regret bound in Theorem 2 still holds

3While it is not our primary goal to derive general tight bounds
on CX , we acknowledge that the bound on CX for an arbitrary
distribution for independent arms is very loose, and is the result
of conservative analysis driven by lack of information on pX .
Numerical evaluation on distributions other than Gaussian and
uniform distributions, detailed in Section 5, buttress this point and
indicate that the dependence on K is no greater than linear.



Sparsity-Agnostic Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

200

400

600

800

1000

1200

C
um

ul
at

iv
e 

R
eg

re
t

Corr=0.3, d=100, s0=5, K=20

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e 

R
eg

re
t

Corr=0.3, d=100, s0=5, K=100

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

200

400

600

800

1000

C
um

ul
at

iv
e 

R
eg

re
t

Corr=0.7, d=100, s0=5, K=20

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

250

500

750

1000

1250

1500

1750

2000

C
um

ul
at

iv
e 

R
eg

re
t

Corr=0.7, d=100, s0=5, K=100

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

200

400

600

800

1000

1200

1400

C
um

ul
at

iv
e 

R
eg

re
t

d=100, s0=5, K=20, Uniform

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

500

1000

1500

2000

C
um

ul
at

iv
e 

R
eg

re
t

d=100, s0=5, K=100, Uniform

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

200

400

600

800

1000

1200

1400

C
um

ul
at

iv
e 

R
eg

re
t

d=200, s0=5, K=20, Uniform

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

250

500

750

1000

1250

1500

1750

2000

C
um

ul
at

iv
e 

R
eg

re
t

d=200, s0=5, K=100, Uniform

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

200

400

600

800

1000

C
um

ul
at

iv
e 

R
eg

re
t

d=100, s0=5, K=20, Elliptical

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

1000

2000

3000

4000

C
um

ul
at

iv
e 

R
eg

re
t

d=100, s0=5, K=100, Elliptical

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

500

1000

1500

2000

C
um

ul
at

iv
e 

R
eg

re
t

d=200, s0=5, K=20, Elliptical

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

0 200 400 600 800 1000
Time (t)

0

1000

2000

3000

4000

C
um

ul
at

iv
e 

R
eg

re
t

d=200, s0=5, K=100, Elliptical

Lasso Bandit
DR Lasso Bandit
SA Lasso Bandit

Figure 1. The evaluations of SA LASSO BANDIT (Algorithm 1), DR LASSO BANDIT (Kim & Paik, 2019), and LASSO BANDIT (Bastani
& Bayati, 2020). The first row shows results for features drawn from a multivariate Gaussian distribution with varying correlation between
arms. The second and third rows show results for uniform and non-Gaussian elliptical distributions respectively. The results provide clear
evidence that SA LASSO BANDIT outperforms the benchmarks across various experiments.

under Assumptions 1-3 for these distributions. Therefore,
to our knowledge, this is the first sparsity-agnostic regret
bound for a general K-armed high-dimensional contextual
bandit algorithm even for the Gaussian distribution or uni-
form distribution.

The proof of Theorem 2 largely follows that of Theorem 1.
The main difference is how we control the adapted Gram
matrix Σt with the theoretical Gram matrix Σ. Under the
balanced covariance condition, we can ensure the lower
bound of the adapted Gram matrix as a function of the
theoretical Gram matrix, which is analogous to the result in
Lemma 2. In particular, we show that for a fixed β ∈ Rd,
K∑
i=1

EXt
[
Xt,iX

>
t,i1{Xt,i=argmax

X∈Xt
X>β}

]
< (2νCX )−1Σ .

The formal result is presented in Lemma 10 in the appendix
along with its proof. Next, we again invoke the matrix
concentration result in Lemma 3 to connect the compatibility
constant of empirical Gram matrix Σ̂t to that of Σt, and
eventually to the theoretical Gram matrix Σ. Thus, we
ensure the compatibility condition of Σ̂t. The additional
regret in the K-armed case as compared to the two-armed
case is essentially a scaling by CX to ensure the balanced
covariance condition.

6. Experiments
We conduct numerical experiments to evaluate SA LASSO
BANDIT and compare with existing sparse bandit algo-
rithms: DR LASSO BANDIT (Kim & Paik, 2019) and
LASSO BANDIT (Bastani & Bayati, 2020). For each case
with different experimental configurations, we conduct 20
independent runs. For performance evaluations, we report
the average of the cumulative regret for each of the algo-
rithms. The error bars represent the standard deviations.
Each row of the plots show experiments using different
distributions for feature vectors. Additional results are pre-
sented in the appendix. SA LASSO BANDIT exhibits supe-
rior performances across different distributions as well as
other problem parameters.

The results provide convincing evidence that the perfor-
mance of our proposed algorithm is superior to the existing
sparse bandit methods that we compare with. SA LASSO
BANDIT outperforms the existing sparse bandit algorithms
by significant margins, even though the correct sparsity in-
dex s0 is revealed to these algorithms and kept hidden from
SA LASSO BANDIT. Furthermore, SA LASSO BANDIT
is much more practical and simple to implement with a
minimal number of a hyperparameter.
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algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, pp. 2312–2320,
2011.

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. Online-
to-confidence-set conversions and application to sparse
stochastic bandits. In Artificial Intelligence and Statistics,
pp. 1–9, 2012.

Abe, N. and Long, P. M. Associative reinforcement learn-
ing using linear probabilistic concepts. In International
Conference on Machine Learning, pp. 3–11, 1999.

Agrawal, S. and Goyal, N. Thompson sampling for contex-
tual bandits with linear payoffs. In International Confer-
ence on Machine Learning, pp. 127–135, 2013.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

Bang, H. and Robins, J. M. Doubly robust estimation in
missing data and causal inference models. Biometrics, 61
(4):962–973, 2005.

Bastani, H. and Bayati, M. Online decision making with
high-dimensional covariates. Operations Research, 68
(1):276–294, 2020.

Bastani, H., Bayati, M., and Khosravi, K. Mostly
exploration-free algorithms for contextual bandits. Man-
agement Science, 2020.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. Simultaneous
analysis of lasso and dantzig selector. The Annals of
Statistics, 37(4):1705–1732, 2009.
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A. Proofs of Lemmas for Theorem 1
A.1. Proof of Lemma 1

The proof follows from modifying the proof of the standard Lasso oracle inequality (Bühlmann & Van De Geer, 2011) using
martingale theory. Recall from (1) that the negative log-likelihood of the GLM is

`t(β) = −1

t

t∑
τ=1

[
YτX

>
τ β −m(X>τ β)

]
where m is a normalizing function with its gradient ṁ(X>β) = µ(X>β). Now, we denote the expectation of `t(β) over Y
by ¯̀

t(β):

¯̀
t(β) := EY [`t(β)] = −1

t

t∑
τ=1

[
µ(X>τ β

∗)X>τ β −m(X>τ β)
]
.

Note that ∇β ¯̀
t(β) = − 1

t

∑t
τ=1

[
µ(X>τ β

∗)− µ(X>τ β)
]
Xτ . Hence, we have ∇β ¯̀

t(β
∗) = ~0d which implies that β∗ =

argminβ
¯̀
t(β) given the fact that m is convex in the GLM. Hence, for any parameter β ∈ Rd, the excess risk is defined as

E(β) := ¯̀
t(β)− ¯̀

t(β
∗).

Note that by definition, E(β) ≥ 0, for all β ∈ Rd (with E(β∗) = 0). The Lasso estimate β̂t for the GLM is given by the
minimization of the penalized negative log-likelihood

β̂t := argmin
β

{
`t(β) + λt‖β‖1

}
where λ is the penalty parameter whose value needs to be chosen to control the noise of the model. Now, we define the
empirical process of the problem as

vt(β) := `t(β)− ¯̀
t(β).

Note that the randomness in {Yτ} still plays a role on `t(β) and hence on vt(β). Then by the definition of β̂t, we have

`t(β̂t) + λt‖β̂t‖1 ≤ `t(β∗) + λt‖β∗‖1.

Adding and subtracting terms, we have

`t(β̂t)− ¯̀
t(β̂t) + ¯̀

t(β̂t)− ¯̀
t(β
∗) + λt‖β̂t‖1 ≤ `t(β∗)− ¯̀

t(β
∗) + λt‖β∗‖1 .

Rearranging terms gives the following “basic inequality” for the GLM

E(β̂t) + λt‖β̂t‖1 ≤ −[vt(β̂t)− vt(β∗)] + λt‖β∗‖1 .

The basic inequality implies that in order to provide an upper-bound for the penalized excess risk, we need to control the
deviation of the empirical process [vt(β̂t)− vt(β∗)] (Bühlmann & Van De Geer, 2011). And we bound this deviation of the
empirical process in terms of the parameter estimation error ‖β̂t − β∗‖1. Essentially, [vt(β̂t)− vt(β∗)] is where the random
noise plays a role, and with large enough penalization (suitably large λ) we can control such randomness in the empirical
process. We define the event of the empirical process being controlled by the penalization.

T := {|vt(β̂t)− vt(β∗)| ≤ λ‖β̂t − β∗‖1} . (3)

Lemma 4 ensures that we can control this empirical process deviation with high probability. Hence, in the rest of the proof,
we restrict ourselves to the case where the empirical process behaves well, i.e., event T in (3) holds.

Lemma 4. Assume Xt satisfies ‖Xt‖2 ≤ xmax for all t. If λ = σxmax

√
2[log(2/δ)+log d]

t , then with probability at least
1− δ we have

|vt(β̂t)− vt(β∗)| ≤ λ‖β̂t − β∗‖1 .
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On event T , for λt ≥ 2λ, we have

2E(β̂t) + 2λt‖β̂t‖1 ≤ λt‖β̂t − β∗‖1 + 2λt‖β∗‖1 . (4)

Let β̂ := β̂t for brevity. Using the active set S0, we can define the following:

βj,S0
:= βj1{j ∈ S0} βj,Sc0 := βj1{j /∈ S0}

so that βS0 = [β1,S0 , ..., βd,S0 ]> has zero elements outside the set S0 and the elements of βSc0 can only be non-zero in the
complement of S0. We can then lower-bound ‖β̂‖1 using the triangle inequality,

‖β̂‖1 = ‖β̂S0
‖1 + ‖β̂Sc0‖1

≥ ‖β∗S0
‖1 − ‖β̂S0

− β∗S0
‖1 + ‖β̂Sc0‖1 .

Also, we can rewrite

‖β̂ − β∗‖1 = ‖β̂S0 − β∗S0
‖1 + ‖β̂Sc0 − β

∗
Sc0
‖1

= ‖β̂S0
− β∗S0

‖1 + ‖β̂Sc0‖1 .

Then we continue from (4)

2E(β̂) + 2λt‖β∗S0
‖1 − 2λt‖β̂S0

− β∗S0
‖+ 2λt‖β̂Sc0‖1 ≤ λt‖β̂S0

− β∗S0
‖1 + λt‖β̂Sc0‖1 + 2λt‖β∗‖1

= λt‖β̂S0
− β∗S0

‖1 + λt‖β̂Sc0‖1 + 2λt‖β∗S0
‖1 .

Therefore, we have

0 ≤ 2E(β̂) ≤ 3λt‖β̂S0 − β∗S0
‖1 − λt‖β̂Sc0‖1 (5)

= λt

(
3‖β̂S0

− β∗S0
‖1 − ‖β̂Sc0 − β

∗
Sc0
‖1
)

Then the compatibility condition can be applied to the vector β̂ − β∗ which gives

‖β̂S0
− β∗S0

‖21 ≤ s0(β̂ − β∗)>Σ̂(β̂ − β∗)/φ2
t . (6)

From (5), we have

2E(β̂) + λt‖β̂Sc0‖1 ≤ 3λt‖β̂S0
− β∗S0

‖1 .

Therefore, we have

2E(β̂) + λt‖β̂ − β∗‖1 = 2E(β̂) + λt‖β̂Sc0‖1 + λt‖β̂S0 − β∗S0
‖1

≤ 3λt‖β̂S0 − β∗S0
‖1 + λt‖β̂S0 − β∗S0

‖1
= 4λt‖β̂S0

− β∗S0
‖1

≤ 4λt

√
s0(β̂ − β∗)>Σ̂(β̂ − β∗)/φt

≤ κ0(β̂ − β∗)>Σ̂(β̂ − β∗) +
4λ2

t s0

κ0φ2
t

≤ 2E(β̂) +
4λ2s0

κ0φ2
t

where the second inequality is from applying the compatibility condition (6) and the third inequality is by using 4uv ≤
u2 + 4v2 with u =

√
κ0(β̂ − β∗)>Σ̂(β̂ − β∗) and v =

λt
√
s0

φt
√
κ0

. The last inequality is from Lemma 5. Hence, rearranging
gives

‖β̂ − β∗‖1 ≤
4s0λt
κ0φ2

t

.

This completes the proof.
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A.2. Proof of Lemma 4

Proof. By the definitions of the negative log-likelihood `t(β) and its expectation ¯̀
t(β), we can rewrite the empirical process

vt(β) as

vt(β) = `t(β)− ¯̀
t(β)

= −1

t

t∑
τ=1

[
YτX

>
τ β −m(X>τ β)

]
+

1

t

t∑
τ=1

[
µ(X>τ β

∗)X>τ β −m(X>τ β)
]

= −1

t

t∑
τ=1

[
YτX

>
τ β − µ(X>τ β

∗)X>τ β
]

= −1

t

t∑
τ=1

ετX
>
τ β

where the last equality uses the definition of ετ . Then, the empirical process deviation is

vt(β̂t)− vn(β∗) = −1

t

t∑
τ=1

ετX
>
τ (β̂t − β∗).

Applying Hölder’s inequality, we have

|vt(β̂t)− vt(β∗)| ≤
1

t

∥∥∥∥∥
t∑

τ=1

ετXτ

∥∥∥∥∥
∞

‖β̂t − β∗‖1.

Then controlling the empirical process reduces to controlling 1
t

∥∥∥∑t
τ=1 ετXτ

∥∥∥
∞

. Then, using the union bound, it follows
that

P

(
1

t

∥∥∥∥∥
t∑

τ=1

ετXτ

∥∥∥∥∥
∞

≤ λ

)
= 1− P

(
1

t

∥∥∥∥∥
t∑

τ=1

ετXτ

∥∥∥∥∥
∞

> λ

)

≥ 1−
d∑
j=1

P

(
1

t

∣∣∣∣∣
t∑

τ=1

ετX
(j)
τ

∣∣∣∣∣ > λ

)

where X(j)
τ is the j-th element of Xτ . For each j ∈ [d], and τ ∈ [t], we let Z(j)

τ := ετX
(j)
τ . Let F̃t−1 denote the sigma-field

that contains all observed information prior to taking an action in round t, i.e., F̃t−1 is generated by random variables of
previously chosen actions {a1, ..., at−1}, their features {X1, ..., Xt−1}, the corresponding rewards {Y1, ..., Yt−1} and the
set of feature vectors Xt = {Xt,1, ..., Xt,K} in round t.

Then, each {Z(j)
τ }tτ=1 for j ∈ [d] is a martingale difference sequence adapted to the filtration F̃1 ⊂ ... ⊂ F̃τ since

E[ετX
(j)
τ |F̃τ−1] = X

(j)
τ E[ετ |F̃τ−1] = 0 for each j. Note that each X(j)

τ is a bounded random variable with |X(j)
τ | ≤

‖Xτ‖∞ ≤ ‖Xτ‖2 ≤ xmax. Then from the fact that ετ is σ2-sub-Gaussian, it follows that Z(j)
τ is also σ2-sub-Gaussian.

That is,

E
[
exp(αZ(j)

τ ) | F̃τ−1

]
= E

[
exp

{(
αX(j)

τ

)
ετ

}
| F̃τ−1

]
≤ E

[
exp(αxmaxετ ) | F̃τ−1

]
≤ exp

(
α2x2

maxσ
2

2

)
for any α ∈ R. Then, using the concentration result in Lemma 14, we have

P

(∣∣∣∣∣
t∑

τ=1

ετX
(j)
τ

∣∣∣∣∣ > tλ

)
≤ 2 exp

(
− t2λ2

2tσ2x2
max

)
≤ 2 exp

(
− tλ2

2σ2x2
max

)
.
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So, with λ = σxmax

√
2[log(2/δ)+log d]

t , we have

P

(
1

t

∥∥∥∥∥
t∑

τ=1

ετXτ

∥∥∥∥∥
∞

≤ λ

)
≥ 1− 2d exp

(
log

δ

2
− log d

)
= 1− δ .
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Lemma 5. The excess risk is lower-bounded by

E(β̂t) ≥
κ0

2
(β̂t − β∗)>Σ̂(β̂t − β∗) .

Proof. By the definition of the excess risk E(β), we have

E(β) = ¯̀
t(β)− ¯̀

t(β
∗)

= −1

t

t∑
τ=1

[
µ(X>τ β

∗)X>τ β −m(X>τ β)
]

+
1

t

t∑
τ=1

[
µ(X>τ β

∗)X>τ β
∗ −m(X>τ β

∗)
]
.

Since ṁ(·) = µ(·), we have ∇β ¯̀
t(β
∗) = ~0d. Hence, the gradient of the excess risk∇βE(β) and the Hessian are given as

∇βE(β) = −1

t

t∑
τ=1

[
µ(X>τ β

∗)Xτ − µ(X>τ β)Xτ

]
,

HE(β) := ∇2
βE(β) =

1

t

t∑
τ=1

µ̇(X>τ β)XτX
>
τ .

Using the Taylor expansion, with β̄ = cβ∗ + (1− c)β̂ for some c ∈ (0, 1)

E(β̂t) = E(β∗) +∇βE(β∗)>(β̂t − β∗) +
1

2
(β̂t − β∗)>HE(β̄)(β̂t − β∗) . (7)

Note that by the definition of β∗, we have E(β∗) = 0 and∇βE(β∗) = ∇β`(β∗) = ~0d. Hence, combining with the definition
of the Hessian, we have

E(β̂t) =
1

2
(β̂t − β∗)>

[
1

t

t∑
τ=1

µ̇(X>τ β̄)XτX
>
τ

]
(β̂t − β∗)

≥ κ0

2
(β̂t − β∗)>Σ̂(β̂t − β∗)

where the last inequality is from Assumption 2 and Σ̂ = 1
t

∑t
τ=1XτX

>
τ .

A.3. Proof of Lemma 2

Proof. Consider X = {X1, X2}. Let the joint density function of x1, x2 as pX (x1, x2). Then we have

E[X>X] =

∫
(x1x

>
1 + x2x

>
2 )pX (x1, x2)dx1, x2

=

∫
x1x
>
1

[
1
{

(x1 − x2)>β ≥ 0
}

+ 1
{

(x1 − x2)>β ≤ 0
}]
pX (x1, x2)dx1, x2

+

∫
x2x
>
2

[
1
{

(x1 − x2)>β ≥ 0
}

+ 1
{

(x1 − x2)>β ≤ 0
}]
pX (x1, x2)dx1, x2
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Let’s first look at the first integral.∫
x1x
>
1

[
1
{

(x1 − x2)>β ≥ 0
}

+ 1
{

(x1 − x2)>β ≤ 0
}]
pX (x1, x2)dx1, x2

=

∫
x1x
>
1

[
1
{

(x1 − x2)>β ≥ 0
}
pX (x1, x2) + 1

{
−(x1 − x2)>β ≥ 0

}
pX (x1, x2)

]
dx1, x2

4
∫
x1x
>
1 1
{

(x1 − x2)>β ≥ 0
}
pX (x1, x2)dx1, x2

+ ν

∫
x1x
>
1 1
{
−(x1 − x2)>β ≥ 0

}
pX (−x1,−x2)dx1, x2

=

∫
x1x
>
1 1
{

(x1 − x2)>β ≥ 0
}
pX (x1, x2)dx1, x2

+ ν

∫
x1x
>
1 1
{

(x1 − x2)>β ≥ 0
}
pX (x1, x2)dx1, x2

= (1 + ν)

∫
x1x
>
1 1
{

(x1 − x2)>β ≥ 0
}
pX (x1, x2)dx1, x2

= (1 + ν)E
[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]
where the inequality follows from Assumption 4. Likewise, we can show for the second integral that∫

x2x
>
2

[
1
{

(x1 − x2)>β ≥ 0
}

+ 1
{

(x1 − x2)>β ≤ 0
}]
pX (x1, x2)dx1, x2

= (1 + ν)E
[
X2X

>
2 1{X1 = argmax

X∈X
X>β}

]
.

Hence,

E[X>X] = (1 + ν)

(
E
[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]
+ E

[
X2X

>
2 1{X2 = argmax

X∈X
X>β}

])
.

Therefore, with the fact that ν ≥ 1, we have

2∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
<

2

1 + ν
· 1

2
E[X>X] < ν−1Σ .

A.4. Bernstein-type Inequality for Adapted Samples

In this section, we derive a Bernstein-type inequality for adapted samples which is shown in Lemma 8. We first define the
following function of a random variable Xt which is used throughout this section.

Definition 3. For all i, j with 1 ≤ i ≤ j ≤ d, we define γijt (Xt) to be a real-value function which take random variable
Xt ∈ Rd as input:

γijt (Xt) :=
1

2x2
max

(
X

(i)
t X

(j)
t − E[X

(i)
t X

(j)
t | Ft−1]

)
(8)

where X(i)
t is the i-th element of Xt.

It is easy to see that E
[
γijt (Xt) | Ft−1

]
= 0 and E

[
|γijt (Xt)|m | Ft−1

]
≤ 1 for all integer m ≥ 2. While we introduce this

specific function γijt (Xt) in order to connect to the matrix concentration ‖Στ − Σ̂τ‖∞, Lemma 7 and Lemma 8 can be
applied to any function γijt (Xt) that satisfies the zero mean and the bounded m-th moment conditions.
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Lemma 6 (Bühlmann & Van De Geer (2011), Lemma 14.1). Let Zt ∈ R be a random variable with E[Zt | Ft−1] = 0.
Then it holds that

logE
[
eZt | Ft−1

]
≤ E

[
e|Zt| | Ft−1

]
− 1− E [|Z| | Ft−1] .

Proof. The proof follows directly from the proof of Lemma 14.1 in Bühlmann & Van De Geer (2011), applying their result
to a conditional expectation. For any c > 0,

exp(Zt − c)− 1 ≤ exp(Zt)

1 + c
− 1

=
eZt − 1− Zt + Zt − c

1 + c

≤ e|Zt| − 1− |Zt|+ Zt − c
1 + c

.

Let c = E
[
e|Zt| | Ft−1

]
− 1− E [|Z| | Ft−1]. Hence, since E[Zt | Ft−1] = 0,

E [exp(Zt − c) | Ft−1]− 1 ≤
E
[
e|Zt| | Ft−1

]
− 1− E [|Zt| | Ft−1]− c

1 + c
= 0 .

Lemma 7. Suppose E
[
γijt (Xt) | Ft−1

]
= 0 and E

[
|γijt (Xt)|m | Ft−1

]
≤ m! for all integer m ≥ 2, all t ≥ 1 and all

1 ≤ i ≤ j ≤ d. Then, for L > 1 we have

E

[
exp

(
1

L

τ∑
t=1

γijt (Xt)

)]
≤ exp

(
τ

L(L− 1)

)
.

Proof.

E

[
exp

(
1

L

τ∑
t=1

γijt (Xt)

)]
= E

[
E
[

exp

(
1

L

τ∑
t=1

γijt (Xt)

)
| Fτ−1

]]

= E

[
E
[

exp

(
γijτ (Xτ )

L

)
| Fτ−1

]
exp

(
1

L

τ−1∑
t=1

γijt (Xt)

)]

≤ e
1

L(L−1)E

[
exp

(
1

L

τ−1∑
t=1

γijt (Xt)

)]
where the inequality is from Lemma 6 and noting that

logE
[

exp

(
γijτ (Xτ )

L

)
| Fτ−1

]
≤ E

[
e|γ

ij
τ (Xτ )|/τ − 1−

∣∣γijτ (Xτ )
∣∣

L
| Fτ−1

]

= E

[ ∞∑
m=2

∣∣γijτ (Xτ )
∣∣m

Lmm!
| Fτ−1

]

=

∞∑
m=2

E
[∣∣γijτ (Xτ )

∣∣m | Fτ−1

]
Lmm!

≤ 1

L(L− 1)
.

Then, repeatedly applying this to the rest of the sum 1
L

∑τ−1
t=1 γ

ij
t (Xt), we have

E

[
exp

(
1

L

τ∑
t=1

γijt (Xt)

)]
≤ exp

(
τ

L(L− 1)

)
.
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Lemma 8 (Bernstein-type inequality for adapted samples). Suppose E
[
γijt (Xt) | Ft−1

]
= 0 and E

[
|γijt (Xt)|m | Ft−1

]
≤

m! for all integer m ≥ 2, all t ≥ 1 and all 1 ≤ i ≤ j ≤ d. Then for all w > 0, we have

P

(
max

1≤i≤j≤d

∣∣∣∣∣1τ
τ∑
t=1

γijt (Xt)

∣∣∣∣∣ ≥ w +
√

2w +

√
4 log(2d2)

τ
+

2 log(2d2)

τ

)
≤ exp

(
−τw

2

)
.

Proof. Using the Chernoff bound and Lemma 7, for any L > 1 we have

P

(
τ∑
t=1

γijt (Xt) ≥ a

)
= P

(
exp

(
1

L

τ∑
t=1

γijt (Xt)

)
≥ exp

( a
L

))

≤
E
[
exp
(

1
L

∑τ
t=1 γ

ij
t (Xt)

)]
exp
(
a
L

)
≤ exp

(
− a
L

)
exp

(
τ

L(L− 1)

)
= exp

(
− a
L

+
τ

L(L− 1)

)
.

Here, L = τ+a+
√
τ2+τa
a minimizes the right hand side above for L > 1. Therefore,

P

(
τ∑
t=1

γijt (Xt) ≥ a

)
≤ exp

{
− a2

τ + a+
√
τ2 + τa

+
τa2

(τ + a+
√
τ2 + τa)(τ +

√
τ2 + τa)

}

= exp

{
−

( √
1 + a/τ

1 +
√

1 + a/τ

)
a2

τ + a+
√
τ2 + τa

}

≤ exp

{
− a2

2
(
τ + a+

√
τ2 + τa

)}

≤ exp

{
− a2

2
(
τ + a+

√
τ2 + 2τa

)} .

Choosing a = τ
(
w +
√

2w
)

gives

P

(
1

τ

τ∑
t=1

γijt (Xt) ≥ w +
√

2w

)
≤ exp

(
−τw

2

)
. (9)

Then for the maximal inequality, we first apply the union bound to (9).

P

(
max

1≤i≤j≤d

1

τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)

∣∣∣∣∣ ≥ w +
√

2w

)
≤

∑
1≤i≤j≤d

2P

(
1

τ

τ∑
t=1

γijt (Xt) ≥ w +
√

2w

)

≤ 2d2 exp
(
−τw

2

)
= exp

(
−τw

2
+ log(2d2)

)
.
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Then,

P

(
max

1≤i≤j≤d

1

τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)

∣∣∣∣∣ ≥ w +
√

2w +

√
4 log(2d2)

τ
+

2 log(2d2)

τ

)

≤ P

(
max

1≤i≤j≤d

1

τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)

∣∣∣∣∣ ≥
(
w +

2 log(2d2)

τ

)
+

√
2

(
w +

2 log(2d2)

τ

))

= P

(
max

1≤i≤j≤d

1

τ

∣∣∣∣∣
τ∑
t=1

γijt (Xt)

∣∣∣∣∣ ≥ w′ +√2w′

)

≤ exp

(
−τw

′

2
+ log(2d2)

)
= exp

(
−τw

2

)
where w′ = w + 2 log(2d2)

τ .

A.5. Proof of Lemma 3

Proof. Notice the difference between the unconditional theoretical Gram matrix Σ and its adapted version E[XtX
>
t |Ft−1]

which is a conditional covariance matrix conditioned on the history Ft−1. Recall that from Algorithm 1, in each round t we
choose Xt given the history Ft−1. More precisely, we compute βt based on Ft−1 and choose Xt which maximizes the
product X>t β̂t, i.e., argmaxX∈Xt X

>β̂t where Xt = {Xt,1, Xt,2}. Hence, we can write E[XtX
>
t |Ft−1] as the following:

E[XtX
>
t |Ft−1] =

2∑
i=1

EXt
[
Xt,iX

>
t,i1{Xti = argmax

X∈Xt
X>β̂t} | β̂t

]
.

From Lemma 2, it follows that

E[XtX
>
t |Ft−1] < ν−1Σ .

Now, taking an average over t gives,

Στ =
1

τ

τ∑
t=1

E[XtX
>
t |Ft−1] < ν−1Σ .

Then, we define β̃ corresponding to compatibility constant φ2(Στ , S0), that is,

β̃ := argmin
β

{
β>Στβ

‖βS0
‖21

: ‖βSc0‖1 ≤ 3‖βS0
‖1 6= 0

}
.

Therefore, it follows that

β̃>Στ β̃

‖β̃S0‖21
≥ β̃>Σβ̃

ν‖β̃S0‖21
≥ φ2

0

ν
(10)

where the second inequality is by the compatibility condition on Σ. Thus, Στ satisfies the compatibility condition with
compatibility constant φ2(Στ , S0) =

φ2
0

ν .

Now, noting that 1
2x2

max
‖Στ−Σ̂τ‖∞ = max1≤i≤j≤d

1
τ

∣∣∣∑τ
t=1 γ

ij
t (Xt)

∣∣∣ for γijt (·) defined in (8), we can use a Bernstein-type
inequality for adapted samples in Lemma 8 to get

P

(
‖Στ − Σ̂τ‖∞

2x2
max

≥ w +
√

2w +

√
4 log(2d2)

τ
+

2 log(2d2)

τ

)
≤ exp

(
−τw

2

)
.
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For τ ≥ 2 log(2d2)
C0(s0)2 where C0(s0) = min

(
1
2 ,

φ2
0

256s0νx2
max

)
, letting w = C0(s0)2 gives

w +
√

2w +

√
4 log(2d2)

τ
+

2 log(2d2)

τ
≤ 2

(
C0(s0)2 +

√
2C0(s0)

)
≤ 4C0(s0)

≤ φ2
0

64s0νx2
max

=
φ2(Στ , S0)

64s0x2
max

.

Hence,

P

(
‖Στ − Σ̂τ‖∞

2x2
max

≥ φ2(Στ , S0)

64s0x2
max

)
≤ P

(
‖Στ − Σ̂τ‖∞

2x2
max

≥ w +
√

2w +

√
4 log(2d2)

τ
+

2 log(2d2)

τ

)
≤ exp

(
−τw

2

)
= exp

(
−τC0(s0)2

2

)
.

Corollary 2. For t ≥ 2 log(2d2)
C0(s0)2 where C0(s0) = min

(
1
2 ,

φ2
0

256s0νx2
max

)
, the empirical Gram matrix Σ̂t satisfies the

compatibility condition with compatibility constant φt ≥ φ2
0

2ν > 0 with probability at least 1− exp
{
−tC0(s0)2/2

}
.

Proof. We can use Corollary 1 (Bühlmann & Van De Geer (2011), Corollary 6.8) to show that the empirical Gram matrix
Σ̂τ satisfies the compatibility condition as long as Στ satisfies the compatibility condition. From (10), we know Στ satisfies
the compatibility condition with compatibility constant φ

2
0

ν . Then, combining Lemma 3 and Corollary 1, it follows that given

‖Σt − Σ̂t‖∞ ≤ φ2
0

32s0ν
for t ≥ dT0e, we have

φ2(Σ̂t, S0) ≥ φ2(Σt, S0)

2
≥ φ2

0

2ν
> 0 .

That is, Σ̂τ satisfies the compatibility condition with compatibility constant which is at least φ
2
0

2ν > 0.

B. Proof of Theorem 1
Proof. First, let T0 := 2 log(2d2)

C0(s0)2 where C0(s0) = min
(

1
2 ,

φ2
0

256s0νx2
max

)
. Also, we define the high probability event Et:

Et :=

{
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0ν

}
.

Hence, on this event Et, if t ≥ T0, then from Corollary 2 we have φ2
t ≥

φ2
0

2ν , i.e., the compatibility condition holds in
round t. Slightly overloading the subscript for brevity, let Xt := Xt,at be a feature of the arm chosen in round t and
Xa∗t

:= Xt,a∗t
be the feature of the optimal arm in round t. First, we look at the (non-expected) immediate regret Reg(t)

withR(t) = E[Reg(t)] in round t. Notice that by Assumptions 1 and 2 and by the mean value theorem, Reg(t) is bounded
by

Reg(t) ≤ κ1

(
X>a∗t β

∗ −X>t β∗
)
≤ κ1‖Xa∗t

−Xt‖2‖β∗‖2 ≤ 2κ1xmaxb

Then we can decompose the immediate regret as follows.

Reg(t) = Reg(t)1(t ≤ T0) + Reg(t)1(t > T0, Et) + Reg(t)1(t > T0, Ect )

≤ 2κ1xmaxb1(t ≤ T0) + Reg(t)1(t > T0, Et) + 2κ1xmaxb1(t > T0, Ect )

= 2κ1xmaxb1(t ≤ T0) + Reg(t)1
(
µ(X>t β̂t) ≥ µ(X>a∗t β̂t), t > T0, Et

)
+ 2κ1xmaxb1(t > T0, Ect )
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where the last equality follows from the optimality of Xt with respect to parameter β̂t, i.e., Xt = argmaxX∈Xt µ(X>β̂t).
For the second term, we have

P
(
µ(X>t β̂t) ≥ µ(X>a∗t β̂t)

)
= P

(
µ(X>t β̂t)− µ(X>a∗t β̂t) + Reg(t) ≥ Reg(t)

)
= P

(
(µ(X>t β̂t)− µ(X>t β

∗))− (µ(X>a∗t β̂t)− µ(X>a∗t β
∗)) ≥ Reg(t)

)
≤ P

(
|µ(X>t β̂t)− µ(X>t β

∗)|+ |µ(X>a∗t β̂t)− µ(X>a∗t β
∗)| ≥ Reg(t)

)
≤ P

(
κ1‖β̂t − β∗‖1‖Xt‖∞ + κ1‖β̂t − β∗‖1‖Xa∗t

‖∞ ≥ Reg(t)
)

≤ P
(

2κ1‖β̂t − β∗‖1 ≥ Reg(t)
)

where the last inequality is from the fact that each Xt,i is bounded. For an arbitrary constant gt > 0, we continue with
expected regretR(t) = E[Reg(t)] for t > T0.

R(t) ≤ E
[
Reg(t)1

(
2κ1‖β̂t − β∗‖1 ≥ Reg(t), Et

)]
+ 2κ1xmaxbP(Ect )

= E
[
Reg(t)1

(
2κ1‖β̂t − β∗‖1 ≥ Reg(t),Reg(t) ≤ κ1gt, Et

)]
+ E

[
Reg(t)1

(
2κ1‖β̂t − β∗‖1 ≥ Reg(t),Reg(t) > κ1gt, Et,

)]
+ 2κ1xmaxbP(Ect )

≤ κ1gt + κ1P
(

2‖β̂t − β∗‖1 ≥ gt, Et
)

+ 2κ1xmaxbP(Ect ) .

Summing over all rounds after the initial T0 rounds, we have

T∑
t=dT0e

R(t) ≤ κ1

T∑
t=dT0e

gt︸ ︷︷ ︸
(a)

+κ1

T∑
t=dT0e

P
(

2‖β̂t − β∗‖1 ≥ gt, Et
)

︸ ︷︷ ︸
(b)

+ 2κ1xmaxb

T∑
t=dT0e

P(Ect )

︸ ︷︷ ︸
(c)

. (11)

We first bound the term (b) in (11). We choose gt := 2s0λt
κ0φ2

t
= 4σxmaxs0

κ0φ2
t

√
4 log t+2 log d

t . Then using Lemma 1, we have

P
(

2‖β̂t − β∗‖1 ≥ gt, Et
)
≤ 2

t2
.

for all t ≥ T0. Therefore, it follows that

T∑
t=dT0e

P
(

2‖β̂t − β∗‖1 ≥ gt, Et
)
≤

T∑
t=dT0e

2

t2
≤
∞∑
t=1

2

t2
≤ π2

3
< 4 .

For the term (a) in (11), we have φ2
t ≥

φ2
0

2ν provided that event Et holds. Hence, we have

T∑
t=dT0e

gt =

T∑
t=dT0e

4σxmaxs0

κ0φ2
t

√
4 log t+ 2 log d

t

≤
T∑

t=dT0e

8νσxmaxs0

κ0φ2
0

√
4 log t+ 2 log d

t

≤ 8νσxmaxs0

√
4 log T + 2 log d

κ0φ2
0

T∑
t=dT0e

1√
t

≤ 8νσxmaxs0

√
4 log T + 2 log d

κ0φ2
0

T∑
t=1

1√
t

≤ 16νσxmaxs0

√
4 log T + 2 log d

κ0φ2
0

√
T
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where the last inequality is from the fact that
∑T
t=1

1√
t
≤
∫ T
t=0

1√
t

= 2
√
T .

Finally, for the term (c) in (11), we have from Lemma 3:

T∑
t=dT0e

P(Ect ) ≤
T∑

t=dT0e

P
(
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0ν

)

≤
T∑

t=dT0e

exp

(
− tC0(s0)2

2

)

≤
∞∑
t=1

exp

(
− tC0(s0)2

2

)
≤ 2

C0(s0)2
.

B.1. Regret under the Restricted Eigenvalue Condition

In our analysis so far, we have presented the main results under the compatibility condition in order to be consistent with
previous results in the sparse bandit literature. In this section, we present the regret bound for SA LASSO BANDIT under
the restricted eigenvalue (RE) condition and briefly discuss its implication in terms of potentially matching lower bounds.
Similar to the analysis under the compatibility condition, we assume that the RE condition is satisfied only for the theoretical
Gram matrix Σ = 1

KE[X>X].

Assumption 6 (RE condition). For active set S0 and Σ, there exists restricted eigenvalue φ1 > 0 such that φ2
1‖β‖22 ≤ β>Σβ

for all β ∈ C(S0) defined in (2).

The RE condition is very similar to the compatibility condition in Assumption 3 but uses the `2 norm instead of the `1 norm.
Based on this condition, we can show the following regret bound.

Theorem 3 (Regret bound under RE condition). Suppose K = 2 and Assumptions 1, 2, 4, and 6 hold. Then the expected
cumulative regret of the SA LASSO BANDIT policy is O

(√
s0T log(dT )

)
.

Theorem 3 establishes O
(√

s0T log(dT )
)

regret without any prior knowledge on s0. The regret upper-bound based on
the RE condition still enjoys logarithmic dependence on d and furthermore sub-linear dependence on s0. Compared to
Theorem 1, the regret bound in Theorem 3 is smaller by

√
s0 factor, which is again consistent with the offline Lasso

results under the RE condition (Theorem 7.19 in Wainwright 2019). The difference in the regret bounds in Theorem 1 and
Theorem 3 is due to the RE condition being slightly stronger than the compatibility condition.

The RE condition is more directly analogous (as compared to the compatibility condition) to the standard positive-definiteness
assumption for covariance matrices in GLM bandits (Li et al., 2017). That is, the RE condition is equivalent to positive-
definite covariance when s0 = d , i.e., non-sparse settings. Li et al. (2017) showed O

(
(log T )3/2

√
dT logK

)
regret bound

of for GLM bandits, which matches the Ω(
√
dT ) minimax lower bound established (Chu et al., 2011) for linear bandits

with finite arms, up to logarithmic factors. Therefore, in sparse settings, we conjecture that O
(√

s0T log(dT )
)

regret is
best possible up to logarithmic factors under the RE condition (and so is O

(
s0

√
T log(dT )

)
regret under the compatibility

condition). While we present these conjectures, we do not claim our results are minimax.

C. Proof of Theorem 3
The proof follows similar arguments as the proof of Theorem 1. The key difference is that the RE condition involves `2 norm
and therefore the analysis requires the Lasso oracle inequality of the GLM in `2 norm, which we provide as an extension of
Lemma 1.
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Corollary 3. Assume that the RE condition holds for Σ̂t with active set S0 and restricted eigenvalue φt. For some δ ∈ (0, 1),
let the regularization parameter λt be

λt := 2σxmax

√
2[log(2/δ) + log d]

t
.

Then with probability at least 1− δ, we have

‖β̂t − β∗‖2 ≤
3
√
s0λt

κ0φ2
t

.

Proof. Continuing from (5) in Lemma 1, the RE condition can be applied to the vector β̂ − β∗ which gives

‖β̂ − β∗‖22 ≤
(β̂ − β∗)>Σ̂t(β̂ − β∗)

φ2
t

. (12)

Again from (5), we can use the margin condition in Lemma 5

3λt‖β̂S0 − β∗S0
‖1 ≥ 2E(β̂n)

≥ κ0(β̂ − β∗)>Σ̂t(β̂ − β∗)

≥ κ0φ
2
t‖β̂ − β∗‖22

where the last inequality is from (12) applying the RE condition. Then, it follows that

κ0φ
2
t‖β̂ − β∗‖22 ≤ 3λt‖β̂S0

− β∗S0
‖1

≤ 3λt
√
s0‖β̂S0

− β∗S0
‖2

≤ 3λt
√
s0‖β̂ − β∗‖2 .

Hence, dividing the both sides by ‖β̂ − β∗‖2 and rearranging gives

‖β̂ − β∗‖2 ≤
3
√
s0λt

κ0φ2
t

.

This complete the proof.

C.1. Ensuring the RE Condition for the Empirical Gram Matrix

To distinguish from the compatibility constant, we introduce the definition of a generic restricted eigenvalue of matrix M
over active set S0.

Definition 4. The restricted eigenvalue of M over S0 is

φ2
RE(M,S0) := min

β

{
β>Mβ

‖β‖22
: ‖βSc0‖1 ≤ 3‖βS0‖1 6= 0

}
.

Note that Assumption 6 only provides the RE condition for the theoretical Gram matrix Σ. Then, we follow the same
arguments as in the analysis under the compatibility condition to show that φ2

RE(Σt, S0) ≥ φ2
RE(Σ,S0)
ν > 0, i.e., Σt satisfies

the RE condition. Then using Lemma 3, we can show that Σ̂t concentrates to Σt with high probability. The following
lemma (similar to Corollary 1) ensures the RE condition of Σ̂t conditioned on the matrix concentration of the empirical
Gram matrix Σ̂t.

Lemma 9. Suppose that the RE condition holds for Σ0 and the index set S with cardinality s = |S|, with restricted
eigenvalue φ2

RE(Σ0, S) > 0, and that ‖Σ1 − Σ0‖∞ ≤ ∆, where 32s∆ ≤ φ2
RE(Σ0, S). Then, for the set S, the RE condition

holds as well for Σ1, with φ2
RE(Σ1, S) ≥ φ2

RE(Σ0, S)/2.
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Proof. The proof is an adaptation of Lemma 6.17 in (Bühlmann & Van De Geer, 2011) to the RE condition.∣∣β>Σ1β − β>Σ0β
∣∣ =

∣∣β>(Σ1 − Σ0)β
∣∣

≤ ‖Σ1 − Σ0‖∞‖β‖21
≤ ∆‖β‖21

For β such that ‖βSc‖ ≤ 3‖βS‖, we have the RE condition satisfied for Σ0. Hence, we have

‖β‖1 ≤ 4‖βS‖1 ≤ 4
√
s‖βS‖2 ≤ 4

√
s‖β‖2 ≤

4
√
s0β>Σ0β

φRE(Σ0, S)
.

Therefore, it follows that ∣∣β>Σ1β − β>Σ0β
∣∣ ≤ 16s∆β>Σ0β

φ2
RE(Σ0, S)

.

Since β>Σ0β > 0, dividing the both sides by β>Σ0β gives∣∣∣∣β>Σ1β

β>Σ0β
− 1

∣∣∣∣ ≤ 16s∆

φ2
RE(Σ0, S)

Now, since 32s∆ ≤ φ2
RE(Σ0, S), it follows that

1

2
· β
>Σ0β

‖β‖22
≤ β>Σ1β

‖β‖22
≤ 3

2
· β
>Σ0β

‖β‖22
.

Hence,

φ2
RE(Σ1, S) ≥ φ2

RE(Σ0, S)

2
.

C.2. Proof of Theorem 3

Proof. The proof of Theorem 3 follows the similar arguments as the proof of Theorem 1. The only difference is that we use
`2 error bound ‖β̂t − β∗‖2 instead of ‖β̂t − β∗‖1. First, note that

P
(
µ(X>t β̂t) ≥ µ(X>a∗t β̂t)

)
≤ P

(
|µ(X>t β̂t)− µ(X>t β

∗)|+ |µ(X>a∗t β̂t)− µ(X>a∗t β
∗)| ≥ Reg(t)

)
≤ P

(
κ1‖β̂t − β∗‖2‖Xt‖2 + κ1‖β̂t − β∗‖2‖X∗t ‖2 ≥ Reg(t)

)
≤ P

(
2κ1‖β̂t − β∗‖2 ≥ Reg(t)

)
.

For an arbitrary constant gt > 0, we continue with expected regret E[Reg(t)] for t > T0.

R(t) ≤ κ1gt + κ1P
(

2‖β̂t − β∗‖2 ≥ gt, Et
)

+ 2κ1xmaxbP(Ect ) .

Hence, the cumulative regret is bounded by

T∑
t=1

R(t) ≤ 2κ1xmaxbT0 + κ1

T∑
t=dT0e

gt + κ1

T∑
t=dT0e

P
(

2‖β̂t − β∗‖2 ≥ gt, Et
)

+ 2κ1xmaxb

T∑
t=dT0e

P(Ect ) .

Let gt :=
3
√
s0λt

2κ0φ2
t

= 6σxmax

κ0φ2
t

√
s0(4 log t+2 log d)

t . From Lemma 1, we have

P
(

2‖β̂t − β∗‖2 ≥ gt, Et
)
≤ 2

t2
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for all t. Therefore, it follows that

T∑
t=dT0e

P
(

2‖β̂t − β∗‖2 ≥ gt, Et
)
≤

T∑
t=1

P
(

2‖β̂t − β∗‖2 ≥ gt, Et
)
≤ π2

3
< 4 .

For t ≥ T0, we have φ2
t ≥

φ2
1

2ν provided that event Et holds. Hence, we have

T∑
t=dT0e

gt =

T∑
t=dT0e

6σxmax

κ0φ2
t

√
s0(4 log t+ 2 log d)

t

≤
T∑

t=dT0e

12νσxmax

κ0φ2
1

√
s0(4 log t+ 2 log d)

t

≤
12νσxmax

√
s0(4 log T + 2 log d)

κ0φ2
1

T∑
t=1

1√
t

≤
24νσxmax

√
s0(4 log T + 2 log d)

κ0φ2
1

√
T

where the last inequality is from the fact that
∑T
t=1

1√
t
≤
∫ T
t=0

1√
t

= 2
√
T . Combining all the results with the bounds on T0

and
∑T
t=dT0e P(Ect ) from the proof of Theorem 1, the expected regret under the RE condition is bounded by

Rπ(T ) ≤ 4κ1 +
4κ1xmaxb(log(2d2) + 1)

C2(φ1, s0)2
+

48κ1νσxmax

√
s0T log(dT )

κ0φ2
1

where C2(φ1, s0) = min
(

1
2 ,

φ2
1

256s0νx2
max

)
.

D. Regret Analysis for K-Armed Case
D.1. Proof Outline of Theorem 2

As discussed in Section 5, the analysis for the K-armed bandit mostly follows the proof of the two-armed bandit analysis in
Section 4. Assuming the compatibility condition of the empirical Gram matrix Σ̂t, the Lasso oracle inequality for adapted
samples in Lemma 1 can be directly applied. Hence, what we have left is ensuring the compatibility condition of Σ̂t. As
before, for each E[XτX

>
τ |Fτ ] in Σt, the history Fτ affects how feature vector Xτ is chosen. Similar to the two-armed

bandit case, we rewrite Σt as

Σt =
1

t

t∑
τ=1

K∑
i=1

EXt
[
Xτ,iX

>
τ,i1{Xτ,i = argmax

X∈Xτ
X>β̂τ} | β̂τ

]
.

Recall that the compatibility condition is only assumed for the theoretical Gram matrix Σ (Assumption 3). Again, the
adapted Gram matrix Σt is used to bridge Σ and Σ̂t to ensure the compatibility of Σ̂t. The key difference between the
two-armed bandit analysis and the K-armed bandit analysis lies in how Σt is controlled by Σ. In particular, under the
balanced covariance condition in Assumption 5, we show the following lemma which is a generalization of Lemma 2.

Lemma 10. Suppose Assumption 5 holds. For a fixed vector β ∈ Rd, we have

K∑
i=1

EXt
[
Xt,iX

>
t,i1{Xi = argmax

X∈Xt
X>β}

]
< (2νCX )−1Σ .

With this result, we can lower-bound the compatibility constant φ2(Σt, S0) of the adapted Gram matrix in terms of the
compatibility constant φ2(Σ, S0) for the theoretical Gram matrix. That is, we have Σt < (2νCX )−1Σ which implies that

φ2(Σt, S0) ≥ φ2(Σ, S0)

2νCX
> 0 .
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Hence, Σt satisfies the compatibility condition. Then, we can show that Σ̂t concentrates to Σt with high probability which
directly follows from applying Lemma 2, which is formally stated as follows.

Corollary 4. For t ≥ 2 log(2d2)
C1(s0)2 where C1(s0) = min

(
1
2 ,

φ2
0

256s0νCXx2
max

)
, we have

P
(
‖Σt − Σ̂t‖∞ ≥

φ2
0

32s0νCX

)
≤ exp

{
− tC1(s0)2

2

}
.

Now, we can invoke Corollary 1 to connect this matrix concentration result to guaranteeing the compatibility condition of
Σ̂t. Therefore, Σ̂t satisfies the compatibility condition with compatibility constant φ2

t =
φ2
0

4νCX
> 0. The rest of the proof of

Theorem 2 directly follows the proof of Theorem 1 using this compatibility constant.

D.2. Proof of Lemma 10

Proof. Since the distribution of Xt = {Xt,1, ..., Xt,K} is time-invariant, we suppress the subscript on t and write X =
{X1, ..., XK}. Let joint distribution of X as pX (x1, ..., xK) = pX (x) where we let x = (x1, ..., xK). All expectations in
this proof is taken with respect to the tuple X . Then the theoretical Gram matrix is defined as

E[X>X] = E

[
K∑
i=1

XiX
>
i

]

=

∫
(x1x

>
1 + ...+ xKx

>
K)pX (x)dx

Let’s first focus on
∫
x1x
>
1 pX (x)dx.∫

x1x
>
1 pX (x)dx =

∫
x1x
>
1 1

{
x1 = argmax

xi∈X
x>i β

}
pX (x)dx

+

∫
x1x
>
1 1

{
x1 = argmin

xi∈X
x>i β

}
pX (x)dx

+

∫
x1x
>
1 1

{
x1 6= argmax

xi∈X
x>i β, x1 6= argmin

xi∈X
x>i β

}
pX (x)dx .

We define three disjoint sets of possible orderings for {1, ...,K} as follows.

Definition 5. We define the following sets of permutations of (1, ...,K).

Imax
1 := {indices (i1, ..., iK) such that iK = 1}
Imin

1 := {indices (i1, ..., iK) such that i1 = 1}
Imid

1 := {indices (i1, ..., iK) such that i1 6= 1 and iK 6= 1}.

Then, for
∫
x1x
>
1 1{x1 = argminxi∈X x

>
i β}pX (x)dx, we can write∫

x1x
>
1 1

{
x1 = argmin

xi∈X
x>i β

}
pX (x)dx =

∑
(i1,...,iK)∈Imin

1

∫
x1x
>
1 1

{
x>i1β ≤ ... ≤ x

>
iKβ

}
pX (x)dx

Then for any (i1, ..., iK) ∈ Imin
1 ,∫

x1x
>
1 1

{
x>i1β ≤ ... ≤ x

>
iKβ

}
pX (x)dx =

∫
x1x
>
1 1

{
− x>i1β ≥ ... ≥ −x

>
iKβ

}
pX (x)dx

4 ν

∫
x1x
>
1 1

{
− x>i1β ≥ ... ≥ −x

>
iKβ

}
pX (−x)dx

= ν

∫
x1x
>
1 1

{
x>i1β ≥ ... ≥ x

>
iKβ

}
pX (x)dx



Sparsity-Agnostic Lasso Bandit

where the inequality is again from Assumption 4. Since the elements in Imin
1 can be considered as reversed orderings of

elements in Imax
1 (and obviously |Imin

1 | = |Imax
1 |),

E
[
X1X

>
1 1{X1 = argmin

X∈X
X>β}

]
=

∫
x1x
>
1 1

{
x1 = argmin

xi∈X
x>i β

}
pX (x)dx

=
∑

(i1,...,iK)∈Imin
1

∫
x1x
>
1 1

{
x>i1β ≤ ... ≤ x

>
iKβ

}
pX (x)dx

4
∑

(i1,...,iK)∈Imin
1

ν

∫
x1x
>
1 1

{
x>i1β ≥ ... ≥ x

>
iKβ

}
pX (x)dx

= ν

∫
x1x
>
1 1

{
x1 = argmax

xi∈X
x>i β

}
pX (x)dx

= νE
[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]
.

Also, using the definitions of Imin
1 , Imid

1 and Imax
1 , we can rewrite E

[
X1X

>
1

]
.

E
[
X1X

>
1

]
= E

[
X1X

>
1 1{X1 = argmin

X∈X
X>β}

]
+ E

[
X1X

>
1 1{X1 = argmax

X∈X
X>β}

]
+ E

[
X1X

>
1 1{X1 6= argmin

X∈X
X>β,X1 6= argmax

X∈X
X>β}

]
=

∑
(i1,...,iK)∈Imin

1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imax

1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imid

1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]
=

∑
(i1,...,iK)∈Imin

1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imax

1

E
[
XiKX

>
iK1{X

>
i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imid

1

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]
.

sFrom Assumption 5, we have

E
[
X1X

>
1 1{X>i1β < · · · < X>iKβ}

]
4 CXE

[
(Xi1X

>
i1 +XiKX

>
iK )1{X>i1β < · · · < X>iKβ}

]
.
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Then it follows that

E
[
X1X

>
1

]
4

∑
(i1,...,iK)∈Imin

1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imax

1

E
[
XiKX

>
iK1{X

>
i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imid

1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]
4

∑
(i1,...,iK)∈Imin

1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imax

1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imid

1

CXE
[(
Xi1X

>
i1 +XiKX

>
iK

)
1{X>i1β < · · · < X>iKβ}

]
.

Since Imin
1 , Imid

1 and Imax
1 are disjoint sets, we can write

E
[
XiX

>
i 1{Xi = argmin

X∈X
X>β}

]
=

∑
(i1,...,iK)∈Imin

1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imax

1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]
+

∑
(i1,...,iK)∈Imid

1

E
[
Xi1X

>
i11{X

>
i1β < · · · < X>iKβ}

]
.

We can also express E
[
XiX

>
i 1{Xi = argmaxX∈X X

>β}
]

similarly. Therefore, we have

E
[
X1X

>
1

]
4 CX

K∑
i=1

(
E
[
XiX

>
i 1{Xi = argmin

X∈X
X>β}

]
+ E

[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

])

4 CX (1 + ν)

K∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
.

Then, summing E
[
XjX

>
j

]
over all j = 1, ...,K gives

E[X>X] =

K∑
j=1

E
[
XjX

>
j

]
4 KCX (1 + ν)

K∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
.

Hence,

K∑
i=1

E
[
XiX

>
i 1{Xi = argmax

X∈X
X>β}

]
<

1

CX (1 + ν)
· 1

K
E[X>X] < (2CX ν)−1Σ .

D.3. Proposition 1

Proposition 1. In the case of independent arms, both a multivariate Gaussian distribution and a uniform distribution
on a unit sphere satisfy Assumption 5 with CX = O(1). For an arbitrary distribution, it holds with CX =

(
K−1
K0

)
where

K0 = d(K − 1)/2e.

The proof of Proposition 1 involves the following few technical lemmas.
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Lemma 11. Suppose each Xi ∈ Rd is i.i.d. Gaussian with mean µ and covariance matrix Γ. For any permutation
(i1, ..., iK) of (1, ...,K), any integer k ∈ {2, ...,K − 1} and fixed β,

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 E

[
Xi1X

>
i11{X

>
i1β < ... < X>iKβ}

]
+ E

[
XiKX

>
iK1{X

>
i1β < ... < X>iKβ}

]
.

Proof. It suffices to show that for any y ∈ Rd

E
[
(X>iky)2

1{X>i1β < ... < X>iKβ}
]

≤ E
[
(X>i1y)2

1{X>i1β < ... < X>iKβ}
]

+ E
[
(X>iKy)2

1{X>i1β < ... < X>iKβ}
]
.

Now, we can write

y = β̃(β̃>y) +

d−1∑
j=1

gjg
>
j y := β̃w0 +

d−1∑
j=1

gjg
>
j y .

where w0 = β̃>y and β̃ = β
‖β‖ and

[
β̃, gi, ..., gd−1

]
form an orthonormal basis. For i ∈ [N ], we can write

X>i y = (X>i β̃)w0 +X>i

d−1∑
j=1

gjg
>
j

 y

= (X>i β̃)w0 +

d−1∑
j=1

gjg
>
j

Xi

> y .
Then we define the following two random variables

Ui := X>i β̃, Vi := GXi

where G =
∑d−1
j=1 gjg

>
j . Then we have [

Ui
Vi

]
∼ N

([
µ>β̃
Gµ

]
,

[
A11 A12

A21 A22

])
where

A11 = β̃>Γβ̃ ∈ R

A12 = A>21 = β̃>ΓG> ∈ R1×d

A22 = GΓG> ∈ Rd×d .

Then, we know from Lemma 15 that the conditional distribution Vi | Ui of a multivariate normal distribution is also a
multivariate normal distribution. In particular,

Vi | Ui = ui ∼ N
(
Gµ+A21A

−1
11 (ui − µ>β̃), B

)
where B = A22 −A21A

−1
11 A12. Therefore, given Uik = uik , we can write

X>iky = uikw0 + V >ik y

= uikw0 +
(
Gµ+A21A

−1
11 (uik − µ>β̃) +B1/2Z

)>
y .
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where Z ∼ N (0, Id) and Z ⊥⊥ Uik . Rearranging gives

X>iky = uik
(
w0 +A−1

11 A12y
)

+
(
Gµ−A21A

−1
11 µ

>β̃
)>

y + Z>B1/2y .

Hence, X>iky is a linear function of uik . Then it follows that

(
X>iky

)2
=

[
uik
(
w0 +A−1

11 A12y
)

+
(
Gµ−A21A

−1
11 µ

>β̃
)>

y + Z>B1/2y

]2

≤ max

{[
ui1
(
w0 +A−1

11 A12y
)

+
(
Gµ−A21A

−1
11 µ

>β̃
)>

y + Z>B1/2y

]2

,

[
uiK

(
w0 +A−1

11 A12y
)

+
(
Gµ−A21A

−1
11 µ

>β̃
)>

y + Z>B1/2y

]2
}

≤
[
ui1
(
w0 +A−1

11 A12y
)

+
(
Gµ−A21A

−1
11 µ

>β̃
)>

y + Z>B1/2y

]2

+

[
uiK

(
w0 +A−1

11 A12y
)

+
(
Gµ−A21A

−1
11 µ

>β̃
)>

y + Z>B1/2y

]2

.

Therefore, it follows that

E
[
(X>iky)2

1{X>i1β < ... < X>iKβ}
]

≤ E
[
(X>i1y)2

1{X>i1β < ... < X>iKβ}
]

+ E
[
(X>iKy)2

1{X>i1β < ... < X>iKβ}
]
.

Hence,

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 E

[
(Xi1X

>
i1 +XiKX

>
iK )1{X>i1β < ... < X>iKβ}

]
.

Lemma 12. Suppose X ∈ Rd is uniformly distributed on the unit sphere Sd−1 and K = o(d). For fixed vector β ∈ Rd
and a given integer k ∈ {2, ...,K − 1},

E
[
XikX

>
ik
1{X>i1β < ... < X>iKβ}

]
4 CXE

[
(Xi1X

>
i1 +XiKX

>
iK )1{X>i1β < ... < X>iKβ}

]
.

where CX = O(1).

Proof. Here, we instead show directly

E[XX>] 4 C

(
E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X>i β̃}

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X>i β̃}

])

for some constant C. It can be shown that if C = O(1), then the claim holds with CX = O(1). Suppose X ∈ Rd is
uniformly distributed on the unit sphere Sd−1 := {s ∈ Rd : ‖s‖2 = 1}. Then by Lemma 2 in (Cambanis et al., 1981), we
can write for each Xi,

Xi ∼
(
BiUi,1, (1−B2

i )1/2Ui,2

)
where Bi ∼ beta

(
1
2 ,

d−1
2

)
, Ui,1 = ±1 with probability 1

2 , Ui,2 ∼ unif(Sd−2). Ui,1, Ui,2 and Bi are independent of each
other. Similar to the analysis of the Gaussian case, we can normalize β so that β̃ = β

‖β‖ . Without loss of generality, assume

that β̃ = [1, 0, ..., 0]>. That is, only the first element is non-zero. We can do this since X is spherical and rotation invariant.
Then we can write

E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X>i β̃}

]
= E

[
XX>1{X = argmax

Xi∈{X1,...,XK}
X

(1)
i }

]
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where X(1)
i is the first element of Xi. Similarly,

E
[
XX>1{X = argmin

Xi∈{X1,...,XK}
X>i β̃}

]
= E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X

(1)
i }

]
.

Now, from the definition of X , for B ∼ beta
(

1
2 ,

d−1
2

)
we have

XiX
>
i =

[
B2
i Bi

√
1−B2

i Ui,1U
>
i,2

Bi
√

1−B2
i Ui,1Ui,2 (1−B2

i )Ui,2U
>
i,2

]
.

By the independence of U1, U2, and B, we have

E
[
XX>

]
= E

[
B2 0
0 1

d−1 (1−B2)Id−1

]
.

By the definitions of Bi and Ui,1, it follows that

E
[
XX>1{B = max

Bi∈{B1,...,BK}
Bi}

]
4 E

[
XX>1{X = argmax

Xi∈{X1,...,XK}
X

(1)
i }

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X

(1)
i }

]
.

Since E[B2] = (α+1)α
(α+β+1)(α+β) for B ∼ beta(α, β), we have E[B2] = 3

d(d+2) and 1−E[B2]
d−1 = d+3

d(d+2) using α = 1
2 and

β = d−1
2 . Clearly, λmin(E

[
XX>

]
) = 3

d(d+2) . Similarly, for the matrix E
[
XX>1{B = maxiBi}

]
, we have

E
[
XX>1{B = max

i
Bi}

]
= E

[
B2

1{B = maxiBi} 0
0 1

d−1 (1−B2)1{B = maxiBi}Id−1

]
.

Note that E[B2
1{B = maxiBi}] =

∑K
j=1 E[B2

j1{Bj = maxiBi}] ≥ E[B2]. Then, we need to show

C(1− E[B2
1{B = max

i
Bi}]) ≥ 1− E[B2]

for some C. Note that E[B2
1{B = maxiBi}] ≤ NE[B2]. Hence, we can show

C ≥ 1− E[B2]

1−NE[B2]
=

1− 3
d(d+2)

1− 3K
d(d+2)

=
d2 + d− 3

d2 + d− 3K
.

Since K = o(d), we have C = O(1). Hence,

E[XX>] 4 CE
[
XX>1{B = max

Bi∈{B1,...,BK}
Bi}

]
4 C

(
E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X

(1)
i }

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X

(1)
i }

])

= C

(
E
[
XX>1{X = argmax

Xi∈{X1,...,XK}
X>i β̃}

]
+ E

[
XX>1{X = argmin

Xi∈{X1,...,XK}
X>i β̃}

])

which implies CX = O(1).

Lemma 13. Consider i.i.d. arbitrary distribution pX . Fix some vector β ∈ Rd. For a given integer k ∈ {2, ...,K − 1},

E
[
XkX

>
k 1{X>1 β < ... < X>k β < ... < X>Kβ}

]
4 CK,kE

[
(X1X

>
1 +XKX

>
K)1{X>1 β < ... < X>Kβ}

]
where CX =

(
K−1

(K−1)/2

)
assuming K is odd — if K is even, we can use d(K − 1)/2e.
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Proof. First notice that

E
[
XkX

>
k 1{X>1 β < · · · < X>k β < · · · < X>Kβ}

]
= EV

[
V V >EX1:K/Xk

[
1{X>1 β < · · · < X>k−1β < V >β < X>k+1β < · · · < X>Kβ} | V

]]
where X1:K/Xk denotes X1, ..., Xk−1, Xk+1, ..., XK . Also,

E
[
X1X

>
1 1{X>1 β < · · · < X>Kβ}

]
= EV

[
V V >EX2:K

[
1{V >β < X>2 β < · · · < X>Kβ} | V

]]
E
[
XKX

>
K1{X>1 β < · · · < X>Kβ}

]
= EV

[
V V >EX1:K−1

[
1{X>1 β < · · · < X>K−1β < V >β} | V

]]
Let ψ(y) := P(X>β ≤ y) denote the CDF of X>β. Then

P
(
X>1 β < · · · < X>k−1β < V >β < X>k+1β < · · · < X>Kβ

)
=

k−1∏
i=1

P
(
X>i β ≤ V >β

) 1

(k − 1)!

N∏
i=k+1

P
(
X>i β ≥ V >β

) 1

(K − k)!

=
1

(k − 1)!(K − k)!
ψ(V >β)k−1

(
1− ψ(V >β)

)K−k
.

Likewise

P
(
V >β < X>2 β < · · · < X>Kβ

)
=

1

(K − 1)!

(
1− ψ(V >β)

)K−1
,

P
(
X>1 β < · · · < X>K−1β < V >β

)
=

1

(K − 1)!
ψ(V >β)K−1.

Then, we need to show there exists CK,k such that

P
(
X>1 β < · · · < X>k−1β < V >β < X>k+1β < · · · < X>Kβ

)
≤ CK,k

[
P
(
V >β < X>2 β < · · · < X>Kβ

)
+ P

(
X>1 β < · · · < X>K−1β < V >β

)]
.

That is,

ψ(V >β)k−1
(
1− ψ(V >β)

)K−k
(k − 1)!(K − k)!

≤ CK,k
(K − 1)!

[(
1− ψ(V >β)

)K−1
+ ψ(V >β)K−1

]
.

Hence,

CK,k ≥
(
K − 1

k − 1

)
ψ(V >β)k−1

(
1− ψ(V >β)

)K−k
(1− ψ(V >β))

K−1
+ ψ(V >β)K−1

.

Since ψ(V >β) ∈ [0, 1], we have

ψ(V >β)k−1
(
1− ψ(V >β)

)K−k
(1− ψ(V >β))

K−1
+ ψ(V >β)K−1

≤ 1

for all K and k. Hence, for CK,k =
(
K−1
k−1

)
,

E
[
XkX

>
k 1{X>1 β < · · · < X>k β < · · · < X>Kβ}

]
4 CK,kE

[
(X1X

>
1 +XKX

>
K)1{X>1 β < · · · < X>Kβ}

]
.
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E. Other lemmas
Lemma 14 (Wainwright (2019), Theorem 2.19). Let {Zτ ,Fτ}∞τ be a martingale difference sequence, and suppose that Zτ
is σ2-sub-Gaussian in an adapted sense, i.e., for all α ∈ R, E[eαZτ |Fτ−1] ≤ eα

2σ2/2 almost surely. Then for all γ ≥ 0,
P [|
∑n
τ=1 Zτ | ≥ γ] ≤ 2 exp[−γ2/(2nσ2)].

Note that Lemma 15 is a well-known result, but for the sake of completeness, we present its formal statment and proof.

Lemma 15. Let X ∈ Rd follow a multivariate Gaussian distribution with mean µ and covarance matrix Σ and consider
the partition of X with

X =

[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

Then the conditional distribution of X1 given X2 is also a multivariate Gaussian distribution. In particular

X1 | X2 = x2 ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
.

Proof. Define Z = X1 + AX2 where A = −Σ12Σ−1
22 . Now we can write

cov(Z,X2) = cov(X1, X2) + cov(AX2, X2)

= Σ12 + Avar(X2)

= Σ12 − Σ12Σ−1
22 Σ22

= 0

Therefore Z and X2 are not correlated and, since they are jointly normal, they are independent4. Now, clearly we have
E(Z) = µ1 + Aµ2. Then

E[X1|X2] = E[Z −AX2|X2]

= E[Z|X2]− E[AX2|X2]

= E[Z]−AX2

= µ1 + A(µ2 −X2)

= µ1 + Σ12Σ−1
22 (X2 − µ2).

For the covariance matrix, note that

var(X1|X2) = var(Z −AX2|X2)

= var(Z|X2) + var(AX2|X2)−Acov(Z,−X2)− cov(Z,−X2)A>

= var(Z|X2)

= var(Z)

Hence, it follows that

var(X1|X2) = var(Z)

= var(X1 + AX2)

= var(X1) + Avar(X2)A> + Acov(X1, X2) + cov(X2, X1)A>

= Σ11 + Σ12Σ−1
22 Σ22Σ−1

22 Σ21 − 2Σ12Σ−1
22 Σ21

= Σ11 + Σ12Σ−1
22 Σ21 − 2Σ12Σ−1

22 Σ21

= Σ11 − Σ12Σ−1
22 Σ21
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Figure 2. The plots show the t-round regret of SA LASSO BANDIT (Algorithm 1), DR LASSO BANDIT (Kim & Paik, 2019), and LASSO

BANDIT (Bastani & Bayati, 2020) for K = 2, d = 100 (first row) and d = 200 (second row) with varying sparsity s0 = 10, 20, 40 under
a weak correlation.

F. Numerical Experiment Details
We conduct numerical experiments to evaluate SA LASSO BANDIT and compare with existing sparse bandit algorithms:
DR LASSO BANDIT (Kim & Paik, 2019) and LASSO BANDIT (Bastani & Bayati, 2020). We follow the experimental
setup of (Kim & Paik, 2019) to evaluate algorithms under different levels of correlation between arms. Although we
consider K = 2 case in this section, the experimental setup introduced here also applies to numerical evaluations for K ≥ 3

arm case in Section 5. For each dimension i ∈ [d], we sample each element of the feature vectors [x
(i)
t,1, ..., x

(i)
t,K ] from

multivariate Gaussian distribution N (~0K , V ) where covariance matrix V is defined as Vi,i = 1 for all diagonal elements i, i
and Vi,j = ρ2 for all off-diagonal elements i 6= j ∈ [d]. Hence, for ρ2 > 0, feature vectors for each arm are allowed to
be correlated. We consider two levels of correlation with ρ2 = 0.3 (weak correlation) and ρ2 = 0.7 (strong correlation).
In these two sets of experiments, we consider feature dimensions d = 100 and d = 200. For comparison, we use a linear
reward with the linear link function µ(z) = z since both LASSO BANDIT and DR LASSO BANDIT are proposed in linear
reward settings. We generate β∗ with varying sparsity s0 = ‖β∗‖0. For a given s0, we generate the non-zero elements of β∗

from a uniform distribution in [0, 1]. For each case with different experimental configurations, we conduct 20 independent
runs, and report the average of the cumulative regret for each of the algorithms. The error bars represent the standard
deviations.

DR LASSO BANDIT is proposed for the same problem setting as ours. Therefore, it does not require any modifications.
However, the problem setting of LASSO BANDIT is different from ours: it assumes that the context variable is the same for
all arms but the underlying parameter differs for each arm. As was done in the experiments of (Kim & Paik, 2019), LASSO
BANDIT can be applied in our setting by constructing a Kd-dimensional context vector xt = [x>t,i, ..., x

>
t,K ]> ∈ RKd and

Kd-dimensional parameter β∗i for each arm i where β∗i = [β∗>1(i = 1), ..., β∗>1(i = K)]> ∈ RKd. Note that despite
the concatenation, the effective dimension of the unknown parameter β∗i remains the same as far as estimation is concerned.

F.1. Evaluation for 2 Arms

We first discuss the numerical evaluation results for two-armed bandits, which are shown in Figure 2 and Figure 3 under
various problem instances. It is important to note that we report the performances of the benchmarks (DR LASSO BANDIT

4If a random vector has a multivariate normal distribution then any two or more of its components that are uncorrelated are independent.
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Figure 3. The plots show the t-round regret of SA LASSO BANDIT (Algorithm 1), DR LASSO BANDIT (Kim & Paik, 2019), and LASSO

BANDIT (Bastani & Bayati, 2020) for K = 2, d = 100 (first row) and d = 200 (second row) with varying sparsity s0 = 10, 20, 40 under
a strong correlation.

and LASSO BANDIT) assuming that they have access to correct sparsity s0 and this information is kept hidden from ours.
Despite such advantage to the benchmarks, the experiment results shown in Figure 2 and Figure 3 demonstrate that SA
LASSO BANDIT outperforms the other methods by significant margins consistently across various instances of experiments.
We also verify that the performance of our proposed algorithm is the least sensitive and scales very well with changes in
problem instances, which suggests that our algorithm is very effective for various high-dimensional bandit problem instances
with a sparse structure. Regret scalability on sparsity s0 appears to be at most linear while dependence on feature dimension
d appears to be very minimal in most of the instances, which is consistent with our theoretical findings. We also observe that
a higher correlation between arms (feature vectors) improves the overall performances of the algorithms. This finding is
further evidenced by the experiments for the K-armed case.

F.2. Evaluation for K Arms

In this section, we validate the performance of SA LASSO BANDIT in K-armed sparse bandit settings via additional
numerical experiments and provide comparison with the existing sparse bandit algorithms. The setup of the experiments is
identical to the setup described in Section 6. We perform evaluations under various instances. In particular, we focus on
the performances of algorithms as the number of arms increases (Figure 1). Additionally, to investigate the effect of the
balanced covariance condition, we also evaluate algorithms on features drawn from a non-Gaussian elliptical distribution,
for which we do not have a tight bound of CX . In Figure 4, we further investigate the effect of correlation between arms as
well as the effect of ambient feature dimension in K-armed settings.

The evaluation results in Figure 1 and Figure 4 again provide the convincing evidence that the performance of our proposed
algorithm is superior to the existing sparse bandit methods that we compare with in K-armed bandits. Again, SA LASSO
BANDIT outperforms the existing sparse bandit algorithms by significant margins. Furthermore, SA LASSO BANDIT is
much more practical and easy to implement with a minimal number of a hyperparameter (only noise variance parameter
is needed for our algorithm). We again observe that under strong correlation, the algorithms generally perform better
compared to weak correlation instances. This strong correlation would imply a smaller CX as briefly discussed earlier when
we introduce the balanced covariance condition. Hence, the results are consistent with our theoretical findings. Note that
strong correlation does not immediately imply that the performances are generally better since it potentially decreases the
value of compatibility constant. Thus, the regret would increase with an increase in correlation as far as the compatibility
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Figure 4. The plots show the t-round regret of SA LASSO BANDIT (Algorithm 1), DR LASSO BANDIT (Kim & Paik, 2019), and LASSO

BANDIT (Bastani & Bayati, 2020) for K = 50 and s0 = 10. The first three rows are the results with features drawn from a multivariate
Gaussian distribution with varying levels of correlation between arms. In the fourth row, the features are drawn from a uniform distribution
on a unit sphere. For each row, we present evaluations for varying feature dimensions, d = 100, 200, 400, 800.
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condition is concerned. However, as evidenced by our experiments, there appears to be an offsetting effect, which we argue
can potentially be explained by the balanced covariance condition. As for features i.i.d. from the uniform distribution
(the fourth row in Figure 4) and i.i.d. from the Gaussian distribution (the first row in Figure 4), while the performance
of existing algorithms (e.g., DR LASSO BANDIT from (Kim & Paik, 2019)) deteriorates significantly with the change of
feature distributions (particularly without correlation between arms), SA LASSO BANDIT remains very robust, and still
exhibits superior performances.

G. Related Work
Linear bandits and generalized linear bandits have been widely studied (Abe & Long, 1999; Auer, 2002; Dani et al., 2008;
Rusmevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Filippi et al., 2010; Chu et al., 2011; Agrawal & Goyal,
2013; Li et al., 2017). However, these (generalized) linear contextual bandit strategies are not able to exploit sparse structure
in the unknown parameter vector and hence may incur regret proportional to the full ambient dimension d rather than the
sparse set of features of cardinality s0. To exploit spare structure, Abbasi-Yadkori et al. (2012) propose a framework to
construct high probability confidence sets for online linear prediction and establish the Õ(

√
s0dT ) regret bound, where

Õ hides logarithmic terms. However, their algorithm needs to know the sparsity s0. Furthermore, their algorithm is not
computationally efficient; an implementable version of their framework is not yet known (Section 23.5 in (Lattimore
& Szepesvári, 2019)). It is worth noting that the

√
d dependence in the regret bound is unavoidable unless additional

assumptions are imposed; see Theorem 24.3 in (Lattimore & Szepesvári, 2019). Gilton & Willett (2017) adapt Thompson
sampling (Thompson, 1933) to sparse linear bandits; however, they also assume a priori knowledge of a small superset of
the support for the parameter.

Bastani & Bayati (2020) address the contextual bandit problem with high-dimensional features. They propose a bandit
algorithm which uses Lasso (Tibshirani, 1996) to estimate the parameter of each arm separately. To ensure compatibility of
the empirical Gram matrices, they adapt the forced-sampling technique in (Goldenshluger & Zeevi, 2013) which is now
tuned using the (a priori known) sparsity index, and is implemented for each arm at predefined time points. They establish a
O(K4s2

0[log d+log T ]2) regret bound whereK is the number of arms. Note that they invoke several additional assumptions:
a margin condition that ensures that the density of the context distribution is bounded near the decision boundary, and
arm-optimality which assumes a gap between the optimal and sub-optimal arms exists with some positive probability. In the
same problem setting, Wang et al. (2018) propose an algorithm which uses forced-sampling along with the minimax concave
penalty (MCP) estimator (Zhang, 2010) and improve the regret bound to O(K3s2

0[s0 + log d] log T ). Note that (Bastani &
Bayati, 2020) and (Wang et al., 2018) achieve a poly-logarithmic dependence on T in regret, exploiting the arm optimality
condition which assumes a gap between the optimal and sub-optimal arms exists with some probability. Since we do not
assume such separability between arms, poly-logarithmic dependence on T is not attainable in our problem setting. Kim &
Paik (2019) extend the Lasso bandit (Bastani & Bayati, 2020) to linear bandit settings and propose a different approach to
address the non-compatibility of the empirical Gram matrices by using a doubly-robust technique (Bang & Robins, 2005)
that originates with the missing data / imputation literature. They achieve O(s0

√
T log(dT )) regret.

All of the aforementioned algorithms require that the learning agent know the sparsity s0 of the unknown parameter (or
a non-trivial upper-bound on sparsity which is strictly less than d).5 That is, only when the algorithm knows s0, it can
guarantee the regret bounds mentioned above. Otherwise, the regret bounds would scale polynomially with d instead of s0

or potentially scale linearly with T . To our knowledge, the only work in sparse bandits which does not require this prior
knowledge of sparsity is the work by Carpentier & Munos (2012) although the algorithm still requires to know the `2-norm
of the unknown parameter. However, their analysis uses a non-standard definition of noise and is restricted to the case where
the set of arms is the `2 unit ball and fixed over time, a structure they exploit in a significant manner, and which limits the
scope of their algorithm.

5Besides sparsity, some algorithms require further knowledge, such as arm optimality lower bounding probability (Bastani & Bayati,
2020; Wang et al., 2018), which is also not readily available in practice.


