
Vector Quantized Models for Planning

Sherjil Ozair * 1 2 Yazhe Li * 1 Ali Razavi 1 Ioannis Antonoglou 1 Aäron van den Oord 1 Oriol Vinyals 1

Abstract
Recent developments in the field of model-based
RL have proven successful in a range of envi-
ronments, especially ones where planning is es-
sential. However, such successes have been lim-
ited to deterministic fully-observed environments.
We present a new approach that handles stochas-
tic and partially-observable environments. Our
key insight is to use discrete autoencoders to cap-
ture the multiple possible effects of an action in
a stochastic environment. We use a stochastic
variant of Monte Carlo tree search to plan over
both the agent’s actions and the discrete latent
variables representing the environment’s response.
Our approach significantly outperforms an offline
version of MuZero on a stochastic interpretation
of chess where the opponent is considered part of
the environment. We also show that our approach
scales to DeepMind Lab, a first-person 3D envi-
ronment with large visual observations and partial
observability.

1. Introduction
Making predictions about the world may be a necessary
ingredient towards building intelligent agents, as humans
use these predictions to devise and enact plans to reach
complex goals (Lake et al., 2017). However, in the field of
reinforcement learning (RL), a tension still exists between
model-based and model-free RL. Model-based RL and plan-
ning have been key ingredients in many successes such as
games like chess (Shannon, 1950; Silver et al., 2017a), Go
(Silver et al., 2016b; 2017b), and Poker (Moravčík et al.,
2017; Brown et al.). However, their applicability to richer
environments with larger action and state spaces remains
limited due to some of the key assumptions made in such
approaches. Other notable results have not used any form
of model or planning, such as playing complex video games

*Equal contribution 1DeepMind, London, United King-
dom 2Mila, University of Montreal. Correspondence
to: Sherjil Ozair <sherjilozair@deepmind.com>, Yazhe Li
<yazhe@deepmind.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Dota 2 (OpenAI et al., 2019) and StarCraft II (Vinyals et al.,
2019), or robotics (OpenAI et al., 2018).

In this work we are motivated by widening the applicability
of model-based planning by devising a solution which re-
moves some of the key assumptions made by the MuZero
algorithm (Schrittwieser et al., 2019). Table 1 and Figure 1
summarize the key features of model-based planning al-
gorithms discussed in this paper. MuZero lifts the crucial
requirement of having access to a perfect simulator of the
environment dynamics found in previous model-based plan-
ning approaches (Silver et al., 2017a; Anthony et al., 2017).
In many cases such a simulator is not available (eg., weather
forecasting), is expensive (eg., scientific modeling), or is
cumbersome to run (e.g. for complex games such as Dota 2
or StarCraft II).

However, MuZero still makes a few limiting assumptions. It
assumes the environment to be deterministic, limiting which
environments can be used. It assumes full access to the state,
also limiting which environments can be used. The search
and planning is over future agent(s) actions, which could be
millions in environments with complex action spaces. The
search occurs at every agent-environment interaction step,
which may be too fine grained and wasteful.

Largely inspired by both MuZero and the recent successes of
VQVAEs (van den Oord et al., 2017; Razavi et al., 2019) and
large language models (Radford et al.; Brown et al., 2020),
we devise VQ models for planning, which in principle can
remove most of these assumptions.

Our approach uses a state VQVAE and a transition model.
The state VQVAE encodes future observations into discrete
latent variables. This allows the use of Monte Carlo tree
search (MCTS, (Coulom, 2006)) for planning not only over

Table 1. Key features of different planning algorithms.

Method
Learned
Model

Agent
Perspective Stochastic

Abstract
Actions

Temporal
Abstraction

AlphaZero 7 7 7 7 7

Two-player
MuZero 3 7 7 7 7

Single-player
MuZero 3 3 7 7 7

VQHybrid 3 3 3 7 7

VQPure 3 3 3 3 7

VQJumpy 3 3 3 3 3

Vector Quantized Models for Planning

(a) AlphaZero

(b) Two-player MuZero

(c) Single-player MuZero

(d) VQHybrid

(e) VQPure

(f) VQJumpy

Figure 1. Comparison of model-based planning formulations.
(c) AlphaZero plans with both player and opponent actions and
the groundtruth states with the help of a simulator; (b) Two-player
version of MuZero plans with both player and opponent actions;
(c) Single-player MuZero plans only with the player actions; (d)
VQHybrid plans with player actions and discrete latent variables;
(e) VQPure plans with the player action for the first step and dis-
crete latent variables thereafter; (f) VQJumpy plans with discrete
latent variables that expand for more than a single agent step.
Notations: The rounded squares denote states. Circles are actions
in real action space. Diamonds are discrete latent variables.
P denotes the player’s action. E denotes the environment’s action.

future actions, but also over future observations, thus al-
lowing planning in stochastic or partially-observed environ-
ments.

We also propose a “pure” version of our model which en-
codes both future observations and actions into discrete
latent variables, which would allow planning entirely in dis-
crete latent variables. These discrete latent variables can be
designed to have cardinality and time granularity indepen-
dent of the actions, thus enabling planning in large action
spaces over longer time horizons.

To demonstrate that the proposed solution works well in
practice, we devise two evaluation frameworks using the
game of chess. The first is the classic two-player chess
framework where agents get to observe and plan over both
their own and their opponent’s actions. This is the frame-
work used by techniques like MuZero and its previous itera-
tions. In this setting, all four assumptions above perfectly
hold, i.e. action and time granularity is already at the right
level of abstraction, there is no stochasticity, and agents
observe the full board. Then we remove the ability to enu-
merate opponent actions, and make the opponent’s move
part of the environment dynamics. That is agents can only
observe their own states and actions. This makes the envi-
ronment stochastic, since the transition is not a deterministic
function but depends on an unknown opponent’s action from
a potentially stochastic policy. We refer to this framework
as single-player chess.

We show that MuZero’s performance drops catastrophi-
cally on single-player chess compared to two-player chess,
demonstrating that MuZero depends on access to data from
the opponent’s perspective. Our approach which only uses
player perspective data at training and playing time performs
as well on single-player chess as MuZero does on two-
player chess. This suggests that our approach is a promis-
ing way to generalize MuZero-style planning to partially-
observable and stochastic environments.

To investigate how well our approach can scale, we also
evaluate on DeepMind Lab (Beattie et al., 2016), which
has a complex observation and action space with partial
observability and stochasticity, showing that VQ planning
models capture the uncertainty and offer the best results
among all planning models we compare against.

2. Related Work
Models for Planning Oh et al. (2015); Chiappa et al.
(2017); Kaiser et al. (2019) use video prediction models
as environment simulators. However, such models are not
feasible for planning since they require observation recon-
struction which would make planning prohibitively slow.
van Hasselt et al. (2019) argue that experience replay can
be regarded as a non-parametric model and that Dyna-based

Vector Quantized Models for Planning

methods are unlikely to outperform model-free methods.
Schrittwieser et al. (2019); Oh et al. (2017) learn an implicit
deterministic sequence model by predicting future reward,
value and policy from current states and future actions. How-
ever, these models are in principle limited to deterministic
or weakly stochastic environments such as Atari (Machado
et al., 2018).

Stochastic models promise to capture uncertainty. PILCO
(Deisenroth & Rasmussen, 2011) used Gaussian processes
for transition model and achieves remarkable sample effi-
ciency by capturing model uncertainty. However, it is not
scalable to high dimensional state spaces. Depeweg et al.
(2016) model uncertainty of the transition function with
Bayesian neural networks (BNNs). Kurutach et al. (2018);
Chua et al. (2018) use model ensembles to capture epistemic
uncertainty that arise from scarcity of data. Variational au-
toencoders (VAE, Kingma & Welling (2013); Rezende et al.
(2014)) have fuelled a range of stochastic models for RL.
Moerland et al. (2017) builds models for RL with condi-
tional VAE (Sohn et al., 2015). Buesing et al. (2018) inves-
tigate stochastic state-space models. Ha & Schmidhuber
(2018) train a VAE to compress the observation into con-
tinuous latent variables and use an RNN to serve as the
predictive model. Hafner et al. (2018; 2019) learn a full
forward model using VAE framework. They incorporate
multi-step prediction (“latent overshooting”) to minimize
compounding errors, which changes the optimization ob-
jective, while our approach uses data likelihood as the only
objective. Hafner et al. (2020) propose a discrete autoen-
coders model and learn it with straight-through gradients.
This is perhaps the most similar to our approach. However,
the model is used to generate synthetic data and not used for
planning. Lastly, Rezende et al. (2020) study environment
models from a causal perspective. They propose adding
stochastic nodes using backdoors (Pearl et al., 2016). This
approach requires the backdoor variable to be observed and
recorded during data generation. Our approach doesn’t alter
the data generating process, therefore works in offline RL
setting.

Model-based policies Models can be used in different
ways to materialize a policy. Oh et al. (2015); Kaiser et al.
(2019) use environment models in the Dyna (Sutton & Barto,
2018) framework, which proposes to learn a policy with
model-free algorithms using synthetic experiences gener-
ated by models. However, the accumulated error in synthe-
sized data could hurt performance compared to an online
agent. This loss of performance has been studied by van Has-
selt et al. (2019). Ha & Schmidhuber (2018); Hafner et al.
(2018) do policy improvement through black-box optimiza-
tion such as CMA-ES, which is compatible with continuous
latent variable models. Henaff et al. (2017) extends policy
optimization to discrete action space. Following AlphaGo

(Silver et al., 2016b) and AlphaZero (Silver et al., 2017a),
Schrittwieser et al. (2019) prove that MCTS is scalable and
effective for policy improvement in model-based learning.
Our approach is a generalization of MuZero that is able to
incorporate stochasticity and abstract away planning from
agent actions. Continuous action spaces and MCTS have
also been combined with some success, e.g. (Couëtoux et al.,
2011) and (Yee et al., 2016). However, our choice of dis-
crete latent space makes it possible to leverage all the recent
advances made in MCTS. In a specific multi-agent setup,
where the focus is to find policies that are less exploitable,
models can be used with counterfactual regret minimization
(Moravcík et al., 2017) or fictitious play (Heinrich & Silver,
2016) to derive Nash equilibrium strategy.

Offline RL While our model-based approach is applicable
generally, we evaluate it in the offline RL setting. Previous
model-based offline RL approaches (Argenson & Dulac-
Arnold, 2020; Yu et al., 2020; Kidambi et al., 2020) have
focused on continuous control problems (Tassa et al., 2020;
Gulcehre et al., 2020). Our work focuses on environments
with large observation spaces and complex strategies which
require planning such as chess and DeepMind Lab (Beattie
et al., 2016).

3. Background
Vector-Quantized Variational AutoEncoders (VQVAE,
van den Oord et al. (2017)) make use of vector quantization
(VQ) to learn discrete latent variables in a variational au-
toencoder. VQVAE comprises of neural network encoder
and decoder, a vector quantization layer, and a reconstruc-
tion loss function. The encoder takes as input the data
sample x, and outputs vector zu = f(x). The vector quan-
tization layer maintains a set of embeddings {ek}Kk=1. It
outputs an index c and the corresponding embedding ec,
which is closest to the input vector zu in Euclidean dis-
tance. The decoder neural network uses the embedding ec
as its input to produce reconstructions x̂. The full loss is
Lt = Lr(x̂,x) + β‖zu − sg(ec)‖2, where sg(·) is the stop
gradient function. The second term is the commitment loss
used to regularize the encoder to output vectors close to the
embeddings so that error due to quantization is minimized.
The embeddings are updated to the exponential moving av-
erage of the minibatch average of the unquantized vectors
assigned to each latent code. In the backwards pass, the
quantization layer is treated as an identity function, referred
to as straight-through gradient estimation (Bengio et al.,
2013). For more details, see van den Oord et al. (2017).

Monte Carlo Tree Search (MCTS, Coulom (2006)) is a
tree search method for estimating the optimal action given
access to a simulator, typically used in two-player games.
MCTS builds a search tree by recursively expanding the tree

Vector Quantized Models for Planning

and assessing the value of the leaf node using Monte Carlo
(MC) simulation. Values of leaf nodes are used to estimate
the Q-values of all the actions in the root node.

The policy for child node selection during expansion is cru-
cial to the performance of MCTS. The most popular method
for this is UCT (stands for “Upper Confidence Bounds ap-
plied to trees”, Kocsis & Szepesvári (2006)), which is based
on Upper Confidence Bound (UCB, Auer et al. (2002)).
UCT suggests that this problem can be seen as a Bandit
problem where the optimal solution is to combine the value
estimation with its uncertainty.

AlphaGo (Silver et al., 2016a) combined MCTS with neural
networks by using them for value and policy estimations.
The benefits of this approach are twofold: value estima-
tion no longer incurs expensive Monte Carlo simulations,
allowing for shallow searches to be effective, and the policy
network serves as context for the tree expansion and limits
the branching factor.

At each search iteration, the MCTS algorithm used in Al-
phaGo consists of 3 steps: selection, expansion and value
backup. During selection stage, MCTS descends the search
tree from the root node by picking the action that maximizes
the following upper confidence bound:

argmax
a

[Q(s, a) + P (a|s)U(s, a)] , (1)

where

U(s, a) =

√
N(s)

1 +N(s, a)
[c1 + log(

N(s) + c2 + 1

c2
)], (2)

and N(s, a) is the visit counts of taking action a at state
s, N(s) =

∑
bN(s, b) is the number of times s has been

visited, c1 and c2 are constants that control the influence of
the policy P (a|s) relative to the value Q(s, a).

Following the action selection, the search tree receives the
next state. If the next state doesn’t already exist in the search
tree, a new leaf node is added and this results in an expansion
of the tree. The value of the new leaf node is evaluated with
the learned value function. Finally, the estimated value is
backed up to update MCTS’s value statistics of the nodes
along the descending path:

Qt+1
tree(s, a) =

Qttree(s, a)N
t(s, a) +Q(s, a)

N t(s, a) + 1
. (3)

Here Qttree(s, a) is the action value estimated by the tree
search at iteration t; N t(s, a) is the visit count at iteration t.

MuZero Schrittwieser et al. (2019) introduce further ad-
vances in MCTS, where a sequential model is learned
from trajectories {s0, a0, . . . , sT−1, aT−1, sT }. At each
timestep, the model uses the trajectory to formulate a plan-
ning path at timestep t: st, at, . . . , at+M−1, at+M with st

being the root state. To simplify the notation, we omit
the subscript and use superscript for indexing actions on
the planning path. So the same sequence is written as
s, a0, . . . , aM−1, aM . Given the starting root state s and
a sequence of actions a0:m, the model outputs a hidden state
hm and predicts action policy πm, value vm and reward rm.
The training objective is as follows:

1

M

M∑
m=1

[Lπ(am, π(hm)) + αLv(vmtarget, v(hm))

+ βLr(rmenv, r(hm))] (4)

where hm is the hidden state on the planning path.
Lπ(am, π(hm)) is the cross entropy loss between the ac-
tion and learned parametric policy π. Lv is the value loss
function, vtarget is the value target and v is the value predic-
tion. Lr is the reward loss function, renv is the environment
reward and r is the reward prediction. α and β are the
weights.

During search, π is used as the prior for action selection; r
gives the reward instead of using reward from the simulator;
v estimates the value of the leaf state rather than using
Monte Carlo rollouts.

Comparing to AlphaZero, MuZero model eliminates the
need of a simulator to generate the groundtruth state along
the planning path. In two player games, MuZero’s planning
path interleaves the player’s action and opponent’s action.
Whereas in single player version, only player’s actions are
seen by the model.

4. Model-based Planning with VQVAEs
Our approach uses a state VQVAE model and a transition
model. We refer to the full model as VQ Model (VQM), and
the resulting agent when combined with MCTS as VQM-
MCTS.

We first describe the components of VQM in detail. Then,
we explain how the model is used with MCTS.

4.1. VQ Model

Our VQ model is trained with a two-stage training process1.
We first train the state VQVAE model which encodes the ob-
servations into discrete latent variables (Figure 3a). Then we
train the transition model using the discrete latent variables
learned by the state VQVAE model (Figure 3b).

Notation We use st, at, and rt to denote the state at time
t, the action following state st, and the resulting reward,
respectively. An episode is a sequence of interleaved states,
actions, and rewards (s1, a1, ..., st, at, ..., sT).

1Training the full model end-to-end is a promising future re-
search direction.

Vector Quantized Models for Planning

Figure 2. Complete encoder/decoder architecture of the state
VQVAE. Encoder compresses s1:t+1 and a1:t to a continuous la-
tent zt+1. The quantization layer returns the nearest code et+1, as
well as the corresponding index kt+1, in its codebook E. Decoder
uses s1:t, a1:t and the code et+1 = E[kt+1] to reconstruct st+1.

State VQVAE The purpose of the state VQVAE is to en-
code a sequence of states and actions into a sequence of
discrete latent variables and actions that can reconstruct
back the original sequence. This is done by learning a con-
ditional VQVAE encoder-decoder pair. The encoder takes
in states s1, ..., st, st+1 and actions a1, ..., at, and produces
a discrete latent variable kt+1 = fenc(s1:t+1, a1:t). The de-
coder takes in the discrete latent variable and the states and
actions until time t and reconstructs the state at time t+ 1,
i.e. ŝt+1 = fdec(s1:t, a1:t, kt+1). Thus, kt+1 represents the
additional information in the state st+1 given the previous
states and actions.

The state VQVAE is trained using the VQVAE technique
introduced in van den Oord et al. (2017) (reviewed in Sec-
tion 3). The cardinality of the discrete latent variable is a
design choice. Larger values are more expressive but poten-
tially expensive at search time. Lower values would lead to
lossy compression but could potentially yield more abstract
representations. We show the effect of cardinality size on re-
construction quality in the supplementary material. Figure 2
depicts the state VQVAE.

Transition Model We obtain latent variable kt from state
st using the state VQVAE. We construct a planning path
which comprises of a state followed by a sequence of inter-
leaved actions and latent variables until a maximum depth
M is reached, i.e. s, a0, k1, a1 . . . , aM−1, kM . Thus, in-
stead of planning over only the agent’s actions, this allows
us to also plan over the outcomes of those actions.

Similar to the environment model of MuZero, our transition
model predicts reward and value function at every step. Un-
like MuZero, our model not only has a policy head π but
also a discrete latent code head τ . We alternate the predic-
tion of action and discrete latent code along the sequence.
Note that the value prediction after the discrete latent code

(a) The state VQVAE encodes a sequence of observations s and
actions a into discrete latent variables k.

(b) An autoregressive transition model outputs a policy π over
the actions, a policy τ over the discrete latent codes and a value
function v.

(c) MCTS branches over both actions and state latent variables.

Figure 3. The main components of the proposed agent.

corresponds to an estimate of the state value functions, while
value prediction after the action corresponds to an estima-
tion of the Q-function.

To train all the components, and again following MuZero,
we use teacher forcing of trajectories generated by a behav-
ior policy (human experts or other agents in all our experi-
ments) based on the observed states s, actions a, and latent
variables k. The total loss combining all the prediction
losses is

1

M

M−1∑
m=0

CE(am, π(h2m)) +
1

M

M∑
m=1

CE(km, τ(h2m−1))

+
α

2M

2M∑
m=0

Lv(vmtarget, v(hm)) +
β

2M

2M∑
m=0

Lr(rmenv, r(hm)),

Vector Quantized Models for Planning

where CE is the cross entropy loss. The total loss is similar
to MuZero loss. The main difference is that we also predict
latent variables at every odd timestep.

Throughout this Section, we explain our VQM-MCTS based
on the VQHybrid planning path (Figure 1d). However,
VQHybrid is not the only choice available. Depending on
the information encoded by the state VQVAE, the planning
path can be structured differently.

VQPure (Figure 1e) requires a factorized state VQVAE
which provides two sets of latent space: one for environment
stochasticity, same as in VQHybrid, and the other for the
agent’s actions. VQPure allows the transition model to
decouple from the action space and unroll purely in discrete
latent spaces. In contrast, VQHybrid interleaves between
state latent variables and actions. For VQJumpy (Figure 1f),
the state VQVAE makes a jumpy prediction of the state
st+m instead of predicting the immediate state st+1.

This enables “temporal abstractions” during planning and
provides a principled way to unlock planning in a stochastic
environment and decoupling the action space tied to environ-
ment both in branching and in time. Although we provide
some result for VQPure in our chess experiment, these two
planning path alternatives remain largely unexplored and
left for future works.

4.2. Monte Carlo Tree Search with VQ Planning Model

In order to use the VQ planning model, we modify Monte
Carlo Tree Search (MCTS) algorithm to incorporate the VQ
“environment action”. The main difference with the MCTS
used in MuZero (reviewed in Section 3) is that, instead of
predicting agent (or opponent) actions, our MCTS also pre-
dicts next discrete latent variables k given the past. Unlike
classical MCTS which anchors in the real action space and
imposes an explicit turn-based ordering for multi-agent en-
vironment, our MCTS leverages the abstract discrete latent
space induced by the state VQVAE.

The search tree in MCTS consists of two types of nodes:
action node and stochastic node. During selection stage,
MCTS descends the search tree from the root node: for
action nodes, Equation 1 is used to select an action; for
stochastic nodes,

argmax
k

[
Q̂(s, k) + P (k|s)U(s, k)

]
is used to select a discrete latent code. We obtain U(s, k)
by replacing a with k in U(s, a) from Equation 1. P (k|s)
is computed with the learned policy τ of the discrete la-
tent code. Q̂(s, k) can be 0 for a neutral environment,
Q(s, k) if the environment is known to be cooperative or
−Q(s, k) if the environment is known to be adversarial.
When Q̂(s, k) = 0, our algorithm is similar to Expectimax
search (Michie, 1966; Russell & Norvig, 2009) where the

expectation of children’s Q-value is computed at the stochas-
tic nodes. In zero-sum games like Chess and Go, we can
use the adversarial setting. As we will see in Section 5.1,
adding this prior knowledge improves agent performance.

5. Experiments
Our experiments aim at demonstrating all the key capa-
bilities of the VQ planning model: handling stochasticity,
scaling to large visual observations and being able to gen-
erate long rollouts, all without any performance sacrifices
when applied to environments where MCTS has shown
state-of-the-art performance.

We conducted two sets of experiments: in Section 5.1, we
use chess as a test-bed to show that we can drop some
of the assumptions and domain knowledge made in prior
work, whilst still achieving state-of-the-art performance;
in Section 5.2, with a rich 3D environment (DeepMind
Lab), we probe the ability of the model in handling large
visual observations in partially observed environment and
producing high quality rollouts without degradation.

5.1. Chess

Chess is an ancient game widely studied in artificial intelli-
gence (Shannon, 1950). Although state transitions in chess
are deterministic, the presence of the opponent makes the
process stochastic from the agent’s perspective, when the
opponent is considered part of the environment.

5.1.1. DATASETS

To evaluate our approach, we follow the two-stage training
of VQM and use MCTS evaluation steps illustrated in Sec-
tion 4. We use the offline reinforcement learning setup by
training the models with a fix dataset. We use a combination
of Million Base dataset (2.5 million games) and FICS Elo
>2000 dataset (960k games)2. The validation set consists
of 45k games from FICS Elo>2000 from 2017. The his-
togram of player ratings in the datasets is reported in the
supplementary material.

5.1.2. MODEL ARCHITECTURES

The state VQVAE uses feed-forward convolutional encoder
and decoder, along with a quantization layer in the bottle-
neck. The quantization layer has 2 codebooks, each of them
has 128 codes of 64 dimensions. The final discrete latent
is formed by concatenating the 2 codes, forming a 2-hot
encoding vector.

The transition model consists of a recurrent convolutional
model which either takes an action or a discrete latent code

2https://www.ficsgames.org/download.html

Vector Quantized Models for Planning

Figure 4. Performance of agents playing against Stockfish 10
skill level 15.

Figure 5. Performance of agents playing against each other.

as input at each unroll step. The model predicts the policies
over action and discrete latent code, as well as the value
function. We use Monte Carlo return of the game as the
target value for training.

5.1.3. EVALUATIONS

The performance of our agent is evaluated by playing
against:

1. Stockfish version 10 (T. Romstad) (44 threads, 32G
hash size and 15s per move);

2. Q-value agent: Action with the highest Q value is
picked. The Q value is computed by unrolling the
model for one step and using the learned value function
to estimate the value of the next state.

3. Imitation agent: Agent chooses the most probable ac-
tion according to the learned policy.

4. MuZeroChess agent: MuZero with the same backbone
architecture as VQ planning model.

Each agent is evaluated for 200 games playing as white and
black respectively for 100 games. We present results for
both the worst case and neutral scenario of VQM-MCTS
with VQHybrid and VQPure planning path.

5.1.4. RESULTS

Figure 4 reports our main results. Performance of Single-
player MuZeroChess (which doesn’t observe opponent ac-
tions) is considerably worse than two-player MuZeroChess.
In addition, Figure 6 shows that using more MCTS simu-
lations hurts single-player MuZeroChess performance, be-
cause the model is not correctly accounting for the stochas-
ticity introduced by the unobserved opponent’s actions.
Both VQHybrid and VQPure agents with worst case chance
nodes are able to recover the performance to the same level
as the two-player MuZeroChess agent. We then further
remove the assumption of the adversarial environment by
using neutral case chance nodes during MCTS. The result-
ing agents, VQHybrid Neutral and VQPure Neutral, don’t
perform as well as VQHybrid and VQPure. This shows that

Figure 6. Agent performance as function of Stockfish strength
and simulation budget. Left column shows win and draw rates of
the agent evaluated by playing against different levels of Stockfish
10 with a fixed simulation budget of 1200 per move. Right col-
umn shows the impact of simulation budget on agent performance
playing against level 15.

prior knowledge of the environment can indeed help the
agent perform better.

We also note that when assuming the environment is neutral,
increasing the simulation budget doesn’t seem to improve
the performance (Figure 6). This is because MCTS searches
over the expected behavior of players from a broad range
of Elo ratings as human data is used for training. This

Vector Quantized Models for Planning

expectation could deviate significantly from the Stockfish
agent, especially for higher skill levels. The full results for
the agents can be found in the supplementary material.

In Figure 5, we report win and draw rates of a VQHybrid
agent playing against other baseline agents. The results
confirm that the VQ agent’s performance is on par with
two-player MuZeroChess: VQHybrid and MuZeroChess
achieve very similar performance playing against the same
imitation agent; when playing directly against each other,
VQHybrid and MuZeroChess reach similar win rate.

5.2. DeepMind Lab

DeepMind Lab is a first-person 3D environment that features
large and complex visual observations, and stochasticity
from procedural level generation and partial observability.
Due to these properties, it makes for a good environment to
test the scalability of our VQ planning model.

5.2.1. DATASET

We used an A2C agent (Mnih et al., 2016) to col-
lect a dataset of 101, 325, 000 episodes from the
explore_rat_goal_locations_small level in
DeepMind Lab, 675, 500 of which is held out as the test
set. Each episode has 128 timesteps in which the agent
is randomly spawned in a maze-like environment, which
it observes from first-person view. The agent is rewarded
when it captures one of the apples that are randomly placed
in the environment, at which point it is transported to a new
random location in the map. The collection of episodes is
started with a randomly initialized agent and is continued as
the training of the agent progresses and it learns about the
environment. The collected dataset thus comprises a variety
of episodes corresponding to different experience level of
the A2C agent.

5.2.2. MODEL ARCHITECTURE AND TRAINING

In addition to the approach described in Section 4, we add a
frame-level VQVAE training stage at the start, which uses
feed-forward convolutional encoder and decoder trained to
map observed frames to a frame-level latent space. The
codebook has 512 codes of 64 dimensions. Then as dis-
cussed in Section 4, in the second stage, we train the state
VQVAE on top of the frame-level VQ representations. This
model captures the temporal dynamics of trajectories in
a second latent layer, consisting of a stack of 32 separate
latent variables at each timestep, each with their separate
codebook comprising of 512 codes of 64 dimensions. The
architecture for this component consists of a convolutional
encoder torso, an encoder LSTM, a quantization layer, a
decoder LSTM and finally a convolutional decoder head that
maps the transition discrete latents back to the frame-level
VQ space. Finally in the third stage, we fit the transition

model with a hybrid “planning path” using a deep, causal
Transformer (Vaswani et al., 2017).

To generate new samples from the model, we first sample
state latent variables from the prior network. These are
then fed to the state VQVAE decoder for mapping back to
the frame-level discrete latent space. The resulting frame-
level codes are mapped to the pixel space by the frame-level
VQVAE decoder.

5.2.3. BASELINES

We compare our proposed approach based on VQM with
several baselines. As the simplest baseline, we train a de-
terministic next-frame prediction model with an LSTM ar-
chitecture closely mimicking the state VQVAE architecture
except for the quantization layer. The network is trained
to reconstruct each frame given the preceding frames with
mean-squared-error (MSE). Additionally, we train several
sequential continuous VAE baselines with different posterior
and prior configurations to compare our discrete approach
with continuous latent variables. We use GECO (Jimenez
Rezende & Viola, 2018) to mitigate the well-known chal-
lenges of training variational autoencoders with flexible
decoder and prior models. In particular, we assign a target
average distortion tolerance for the decoder and minimize,
using the Lagrange multiplier method, the KL-divergence
of the posterior to the prior subject to this distortion con-
straint, as described in Jimenez Rezende & Viola (2018).
We choose two different distortion levels of 25dB and 33dB
PSNR. The former is based on our experiments with the
deterministic LSTM predictor (the first baseline described
above), which achieves reconstruction PSNR of about 24dB,
and the latter is set slightly higher than the reconstruction
PSNR of our frame-level VQVAE decoder at 32dB.

5.2.4. EVALUATION METRIC

For every trajectory in the test set we take k(= 1000) sample
episodes from the model using the initial prefix of T0(= 16)
frames from each ground-truth trajectory. For each ground-
truth trajectory, we find the sample with minimum (cumula-
tive) reconstruction error (measured as Mean Squared Error
or MSE) from the end of the prefix up to a target timestep
t(= 128), and average the error for this best-match sample
over the test trajectories. We refer to this metric as Mean
Best Reconstruction Error or MBRE defined as

MBRE(S,G, T0, T) =
1

|G|

|G|∑
i=1

min
s∈Si

T∑
t=T0

‖s(t)−Gi(t)‖2,

where G is a set of ground-truth trajectories, and S is a set
of sampled episodes–k episodes sampled using the initial
T0 frames of each ground-truth episode Gi as prefix. We
compare sampled episodes with their corresponding ground
truth episode at the target frame T . An ideal model that

Vector Quantized Models for Planning

Figure 7. Different random rollouts from the same prefix video in DeepMind Lab. The first row is a ground-truth episode from the
validation set. Each of the following rows show a sample from the model conditioned on the same 16 starting frames (not shown in the
figure). Videos of more samples can be seen in https://sites.google.com/view/vqmodels/home.

generalizes well to the test set would place a non-negligible
probability mass on the ground-truth trajectory, and thus an
episode close to the ground-truth should be sampled given a
sufficiently large number of trials.

5.2.5. RESULTS

Rollouts generated by the model can be seen in Figure 7.
Figure 8 shows the results of evaluating MBRE for our
proposed approach against the aforementioned baselines.
The LSTM baseline performs significantly worse than all
latent variable models. This is expected because the gen-
erative model is not expressive enough for stochastic and
multi-modal data, and as a result predicts the mean of all pos-
sible outcomes, which results in poor best matches against
ground-truth. Comparisons with the two sequential VAE
baselines demonstrate the trade-off between the reconstruc-
tion quality of a model and its predictive performance as
measured by MBRE. Furthermore, it shows that our VQM
approach is able to achieve competitive performance with
respect to both reconstruction quality and long range predic-
tive performance.

Figure 8. Mean Best Reconstruction Error (MBRE) for our pro-
posed VQVAE approach and baselines. X-axis is length of trajec-
tory. Top: computed over frames up to the target frame, Bottom:
computed for the target frame only.

6. Conclusion
In this work, we propose a solution to generalize model-
based planning for stochastic and partially-observed envi-
ronments. Using discrete autoencoders, we learn discrete ab-
stractions of the state and actions of an environment, which
can then be used with discrete planning algorithms such as
MCTS (Coulom, 2006). We demonstrated the efficacy of
our approach on both an environment which requires deep
tactical planning and a visually complex environment with
high-dimensional observations. Further we successfully ap-
plied our method in the offline setting. Our agent learns from
a dataset of human chess games and outperforms model-
free baselines and performs competitively against offline
MuZero and Stockfish Level 15 while being a more general
algorithm. We believe the combination of model-based RL
and offline RL has potential to unlock a variety of useful
applications in the real world.

Acknowledgements
We’d like to thank Ivo Danihelka and Nando de Freitas for
providing valuable feedback on early drafts of the paper.
We’d like to thank Julian Schrittwieser for helping with the
MuZero baselines. We’d also like to thank Sander Diel-
man, David Silver, Yoshua Bengio, Jakub Sygnowski, and
Aravind Srinivas for useful discussions and suggestions.

References
Anthony, T., Tian, Z., and Barber, D. Thinking fast and

slow with deep learning and tree search. arXiv preprint
arXiv:1705.08439, 2017.

Argenson, A. and Dulac-Arnold, G. Model-based offline
planning. arXiv preprint arXiv:2008.05556, 2020.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time

https://sites.google.com/view/vqmodels/home

Vector Quantized Models for Planning

analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Brown, N., Sandholm, T., and Machine, S. Libratus: The
superhuman ai for no-limit poker.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Buesing, L., Weber, T., Racaniere, S., Eslami, S. M. A.,
Rezende, D., Reichert, D. P., Viola, F., Besse, F., Gregor,
K., Hassabis, D., and Wierstra, D. Learning and querying
fast generative models for reinforcement learning, 2018.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed,
S. Recurrent environment simulators. arXiv preprint
arXiv:1704.02254, 2017.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models, 2018.

Couëtoux, A., Hoock, J.-B., Sokolovska, N., Teytaud, O.,
and Bonnard, N. Continuous upper confidence trees.
In International Conference on Learning and Intelligent
Optimization, pp. 433–445. Springer, 2011.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Deisenroth, M. and Rasmussen, C. Pilco: A model-based
and data-efficient approach to policy search. In Getoor,
L. and Scheffer, T. (eds.), Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML-11),
ICML ’11, pp. 465–472, New York, NY, USA, June 2011.
ACM. ISBN 978-1-4503-0619-5.

Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F.,
and Udluft, S. Learning and policy search in stochastic
dynamical systems with bayesian neural networks. arXiv
preprint arXiv:1605.07127, 2016.

Glickman, M. E. Example of the glicko-2 system.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Col-
menarejo, S. G., Zolna, K., Agarwal, R., Merel, J.,
Mankowitz, D., Paduraru, C., et al. Rl unplugged: Bench-
marks for offline reinforcement learning. arXiv preprint
arXiv:2006.13888, 2020.

Ha, D. and Schmidhuber, J. Recurrent world models facili-
tate policy evolution. In Advances in Neural Information
Processing Systems, pp. 2450–2462, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering
atari with discrete world models, 2020.

Heinrich, J. and Silver, D. Deep reinforcement learning
from self-play in imperfect-information games. CoRR,
abs/1603.01121, 2016. URL http://arxiv.org/
abs/1603.01121.

Henaff, M., Whitney, W. F., and LeCun, Y. Model-based
planning with discrete and continuous actions. arXiv
preprint arXiv:1705.07177, 2017.

Jimenez Rezende, D. and Viola, F. Taming VAEs. ArXiv
e-prints, October 2018.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning.
arXiv preprint arXiv:2005.05951, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P.
Model-ensemble trust-region policy optimization. arXiv
preprint arXiv:1802.10592, 2018.

http://arxiv.org/abs/1603.01121
http://arxiv.org/abs/1603.01121

Vector Quantized Models for Planning

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
arcade learning environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

Michie, D. Game-playing and game-learning automata.
1966.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Moerland, T. M., Broekens, J., and Jonker, C. M. Learning
multimodal transition dynamics for model-based rein-
forcement learning. arXiv preprint arXiv:1705.00470,
2017.

Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-
ing, M. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508–513,
2017.

Moravcík, M., Schmid, M., Burch, N., Lisý, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-
ing, M. H. Deepstack: Expert-level artificial intelligence
in no-limit poker. CoRR, abs/1701.01724, 2017. URL
http://arxiv.org/abs/1701.01724.

Oh, J., Guo, X., Lee, H., Lewis, R., and Singh, S. Action-
conditional video prediction using deep networks in atari
games, 2015.

Oh, J., Singh, S., and Lee, H. Value prediction network.
In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 6120–6130,
2017.

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Józe-
fowicz, R., McGrew, B., Pachocki, J. W., Pachocki, J.,
Petron, A., Plappert, M., Powell, G., Ray, A., Schnei-
der, J., Sidor, S., Tobin, J., Welinder, P., Weng, L.,
and Zaremba, W. Learning dexterous in-hand manip-
ulation. CoRR, abs/1808.00177, 2018. URL http:
//arxiv.org/abs/1808.00177.

OpenAI, :, Berner, C., Brockman, G., Chan, B., Cheung, V.,
Dębiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pa-
chocki, J., Petrov, M., de Oliveira Pinto, H. P., Raiman,
J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S.,

Sutskever, I., Tang, J., Wolski, F., and Zhang, S. Dota 2
with large scale deep reinforcement learning, 2019.

Pearl, J., Glymour, M., and Jewell, N. P. Causal inference
in statistics: A primer. John Wiley & Sons, 2016.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners.

Razavi, A., van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. In Advances
in Neural Information Processing Systems, pp. 14866–
14876, 2019.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models, 2014.

Rezende, D. J., Danihelka, I., Papamakarios, G., Ke, N. R.,
Jiang, R., Weber, T., Gregor, K., Merzic, H., Viola, F.,
Wang, J., Mitrovic, J., Besse, F., Antonoglou, I., and
Buesing, L. Causally correct partial models for reinforce-
ment learning, 2020.

Russell, S. J. and Norvig, P. Artificial Intelligence: a modern
approach. Pearson, 3 edition, 2009.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265, 2019.

Shannon, C. E. Xxii. programming a computer for playing
chess. The London, Edinburgh, and Dublin Philosophi-
cal Magazine and Journal of Science, 41(314):256–275,
1950.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–503, 2016a. URL
http://www.nature.com/nature/journal/
v529/n7587/full/nature16961.html.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016b.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. Mastering chess and shogi by self-play

http://arxiv.org/abs/1701.01724
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Vector Quantized Models for Planning

with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017a.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017b.

Sohn, K., Lee, H., and Yan, X. Learning structured output
representation using deep conditional generative models.
Advances in neural information processing systems, 28:
3483–3491, 2015.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

T. Romstad, M. Costalba, J. K. Stockfish: A strong open
source chess engine.

Tassa, Y., Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu,
S., Bohez, S., Merel, J., Erez, T., Lillicrap, T., and Heess,
N. dm_control: Software and tasks for continuous control,
2020.

van den Oord, A., Vinyals, O., et al. Neural discrete repre-
sentation learning. In Advances in Neural Information
Processing Systems, pp. 6306–6315, 2017.

van Hasselt, H., Hessel, M., and Aslanides, J. When to use
parametric models in reinforcement learning?, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, Nov 2019. ISSN 1476-4687. doi: 10.1038/
s41586-019-1724-z. URL https://doi.org/10.
1038/s41586-019-1724-z.

Yee, T., Lisỳ, V., Bowling, M. H., and Kambhampati, S.
Monte carlo tree search in continuous action spaces with
execution uncertainty. In IJCAI, pp. 690–697, 2016.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. arXiv preprint arXiv:2005.13239, 2020.

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z

Vector Quantized Models for Planning

A. Appendix
A.1. Chess datasets

The histogram of Glicko-2 ratings (Glickman) of the players
in the training set is shown in Figure 9.

Figure 9. Histogram of Elo rating for players in Million Base
dataset and FICS Elo2000 training set.

A.2. Details for Chess Experiments

A.2.1. INPUT REPRESENTATIONS

We use symbolic representation for the chess board where
each piece is represented as an integer. Following the same
protocol as Silver et al. (2017a), the action space is repre-
sented as 8× 8× 73 discrete actions.

A.2.2. BASELINE MODELS

MuZeroChess The baseline MuZeroChess model is sim-
ilar to that of the MuZero (Schrittwieser et al., 2019). In
stead of using a deep convolutional network extracting fea-
tures from the board state, we simply embed the board state
to get the initial state s. The dynamics function is consist
of 2 convolutional networks g and f . It works as follows:
set z0 = s for the initial state; zm+1 = g(zm, am), g takes
in the embedded action input am and previous state zm and
outputs the next state zm+1; hm+1 = f(zm+1), f produces
the final state for prediction heads. We have two prediction
heads v and π for value and policy respectively. Both g
and f are 20-layer residual convolution stacks with 1024
hiddens and 256 bottleneck hiddens. All the heads have a
hidden size 256. The action predictor uses kernel size 1 and
strides 1 and its output is flattened to make the prediction.

We train with sequence length 10. If the training sequence
reaches the end of the game, then after game terminates, we
pad random actions and target value, as well as mask the

action prediction loss.

We use a batch size of 2048 for training and use Adam
optimizer (Kingma & Ba, 2014) with learning rate 3e−4 and
exponential decay of with decay rate 0.9 and decay steps
100000. To stabilize the training, we apply gradient clipping
with maximum clipping value 1. The model is trained for
200k steps.

Q-value and Imitation Agents The same MuZeroChess
model as described above is used. For Q-value agent, we
unroll the dynamics function for 1 step with each legal
action. The estimated action value of the Q-value agent is
the value prediction of the next state. For imitation agent,
we use the policy prediction of the model as the imitation
agent’s policy.

A.2.3. VQ MODEL

State VQVAE The state VQVAE for chess has a encoder
and a decoder, which are both 16-layer residual convolution
stack with 256 hiddens and 64 bottleneck hiddens. The
quantization layer has 2 codebooks, each of them has 64
codes of 256 dimensions. Before feeding into the quantiza-
tion layer, we apply spatial mean pooling on the features.
The reconstruction of the board state is cast as a classifi-
cation problem where the model predicts the piece type at
each position. Therefore, the reconstruction loss is the cross
entropy loss. The training batch size is 1024. We use Adam
optimizer (Kingma & Ba, 2014) with learning rate 3e−4 and
exponential decay of with decay rate 0.9 and decay steps
100000. The model is trained for 1.2 million steps.

Transition model Our transition model for chess is sim-
ilar to the model used for MuZeroChess. In addition to
the dynamics function g which takes the action as input
at each step, we introduce another dynamics function g′

which takes the input of discrete latent codes. At alternat-
ing steps, instead of using g, we obtain the next state by
z2m+1 = g′(z2m, k2m) where m > 0. We also introduce
an additional prediction head τ to predict the discrete la-
tent codes. The additional function g′ is a 30-layer residual
convolution stack with 1024 hiddens and 256 bottleneck
hiddens. Unlike for actions, discrete latent codes after termi-
nation of the game don’t need random padding or masking.

We use the same training setup and optimizer parameters as
MuZeroChess. VQHybrid model is trained for 200k steps;
VQPure model is trained for 400k steps.

MCTS The hyperparameters used for the MCTS are
the same for baseline MuZeroChess and VQM-MCTS:
discount = 1.0, UCB parameters cbase = 19652.0 and
cinit = 1.25. No temperature is applied on the acting visit
count policy. Same as MuZero (Schrittwieser et al., 2019),

Vector Quantized Models for Planning

we limit the agent action to all legal moves. MuZeroChess
and VQHybrid agents don’t have terminal state. VQPure
agent reaches terminal state when the same VQ code is
taken for 10 consecutive steps in the search tree branch.

For experiments where VQ agent is playing against Q-value,
imitation and MuZeroChess agents, we employ similar strat-
egy used for data generation in Schrittwieser et al. (2019).
This is because both agents are deterministic, playing among
them would result in deterministic games making the eval-
uation less meaningful. Specifically, instead of selecting
the action with the highest visit count at the end of the tree
search, we use a stochastic variant. We keep a pool of pos-
sible actions which have an action count of at least 1% the
total count A = {a : N(a) > 0.01Nmax}, and sample
an action a according to the probability induced by visit
counts p(a) = N(a)∑

a
′∈AN(a′)

. This stochastic variant of the

tree policy is used for the first 30 steps of the game for all
MCTS-based agents.

A.3. Quasirandom Sampling

Figure 10. Quasirandom sampling produces empirical distributions
closer to the true distribution than random sampling. The plotted er-
ror is the Euclidean distance between the probability distributions.
For this analysis, we sampled the probabilities for the Multinomial
distrbution from a Dirichlet distribution with {αi}Ni=1 = 1 where
N = 64.

As explained in Section 4.2, our MCTS implementation
takes the following form:

argmax
k

Q̂(s, k) + P (k|s)U(s, k)

where

U(s, a) =

√
N(s)

1 +N(s, a)

[
c1 + log

(
N(s) + c2 + 1

c2

)]
,

Q̂(s, k) =

 Q(s, k) cooperative
0 neutral
−Q(s, k) adversarial

If we assume the environment to be neutral, the empirical
distribution of the selected discrete latent codes at plan-
ning time should match the estimated distribution of codes

P (k|s). A straightforward way to obtain such a distribution
is to sample i.i.d from the estimated distribution. However,
in practice, we found that using the above equation with
Q̂(s, k) = 0 works better. This corresponds to a quasi-
random Monte Carlo sample of a multinomial distribution
pi where we simply select the value which has the largest
value of pi

N(i)+1 , where N is the number of times i has been
sampled already.

A.4. Chess Agents Performance against Stockfish

Because VQ Models have a pre-training phase, a confound-
ing factor for the performance comparison is the amount of
computational resources required. We increase the computa-
tional resources for MuZeroChess baselines for 3 times. We
call the resulting agents MuZeroChess@600k and MuZe-
roChess Single@600k. This increase is more than that of
the pre-training phase since our state VQVAE is trained on a
pair of observations whereas the transition model is trained
on a sequence of 10 steps. Figure 11 reports the full results
of MuZeroChess and VQ agents playing against Stockfish.
As Figure 11 shows, with the increase of computational
budget, MuZeroChess agent does have a slight performance
improvement. However, this is not significant enough to
affect the conclusions. Most importantly, MuZeroChess
Single agent does not perform better even with significantly
more compute. In fact, we see a decrease in win rate across
all the Stockfish levels with 1200 simulations.

Vector Quantized Models for Planning

(a) Simulations=1 (b) Simulations=10

(c) Simulations=100 (d) Simulations=400

(e) Simulations=800 (f) Simulations=1200

Figure 11. Agent performances evaluated against Stockfish 10 with 1, 10, 100, 400, 800 and 1200 simulations per step. Compare
agent performance with different number of simulation budget per move. Reported for agents: two-player MuZeroChess, two-player
MuZeroChess@600k, single-player MuZeroChess, single-player MuZeroChess@600k, VQHybrid and VQPure searching over worst case
scenario, VQHybrid and VQPure searching over neutral scenario. Stockfish 10 skill levels is varied between 0, 5, 10, 15 and 20 to control
the strength of the engine.Red bar shows the win rate; blue bar shows the draw rate of the agents.

