
Supplementary Materials for “Training Adversarially Robust Sparse
Networks via Bayesian Connectivity Sampling”

Ozan Özdenizci 1 2 Robert Legenstein 1

A. Details on the Experimental Settings
A.1. Datasets and Preprocessing

We used CIFAR-10, CIFAR-100 and SVHN datasets for our
experiments. CIFAR-10 and CIFAR-100 datasets both con-
sist of 50, 000 training and 10, 000 test images (Krizhevsky,
2009). SVHN dataset consists of 73, 257 training and
26, 032 test samples (Netzer et al., 2011).

We follow the conventional data augmentation scheme for
training the models (He et al., 2016). This data augmen-
tation scheme involves shifting images randomly to left
or right (with a maximum shift range proportion of 10%
with respect to the total image width and height) followed
by cropping the image back to its original dimensionality,
and a random horizontal flip. We normalize all images into
[0, 1] pixel values. At test time we evaluate the images using
only the original 32× 32 single view. All clean and robust
accuracies are evaluated using the complete test sets.

A.2. Optimization Hyper-parameter Choices

We trained all models using a momentum stochastic gradi-
ent descent (SGD) optimizer with decoupled weight decay
regularization (Loshchilov & Hutter, 2019) for 200 epochs
with a batch size of 128. While training models with RST
on CIFAR-10, since 500K additional pseudo-labeled data
samples alongside original training images are exploited,
we used batches of size 256 while keeping the total num-
ber of iterations the same, similar to (Carmon et al., 2019).
Momentum parameter for the optimizer was set to 0.9 and
the initial learning rate was set to 0.1. We used synchronous
piecewise constant decay learning rate and weight decay
schedulers. Both learning rate and weight decay factors
were divided by 10 at the 100th and 150th epochs.

Due to the variability in their respective robust regulariza-
tion schemes, the initial weight decay factor was determined

1Graz University of Technology, Institute of Theoretical Com-
puter Science, Graz, Austria 2Silicon Austria Labs, TU Graz - SAL
Dependable Embedded Systems Lab, Graz, Austria. Correspon-
dence to: Ozan Özdenizci <ozan.ozdenizci@igi.tugraz.at>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

differently for particular robust training objectives. Specif-
ically we chose the initial weight decay factors as 0.001
for standard AT and mixed-batch AT, 0.0005 for TRADES,
MART and RST, and 0.0001 for natural training. We de-
termined these initial weight decay factors from a possi-
ble set of options: {0.005, 0.001, 0.0005, 0.0001} based on
clean/robust accuracies. Especially for models trained with
RST on CIFAR-10, and TRADES on SVHN, we tended to
choose the weight decay factor that yielded similar clean
and robust accuracy values in fully-connected dense models
with respect to the dense models reported in (Sehwag et al.,
2020). Only for WideResNet-28-4 models at 99% sparsity
that were trained with TRADES, we used a higher initial
weight decay factor of 0.001 which performed better.

We set the noise scaling factor to σ = 10−6. We did not
observe a significant difference by varying this parameter,
except at very low values which led to comparably low
performance (see Section B.1). All code and software were
implemented with Tensorflow 2.3.0 (Abadi et al., 2016), and
experiments were performed using GPU hardware of types
NVIDIA GeForce GTX 2080Ti, NVIDIA Quadro P6000
and NVIDIA Tesla P100.

A.3. Initialization of Network Connectivities

We perform robust training for all networks starting from a
sparse initialization by dynamically changing the connec-
tivity. In order to promote a faster robust training warm-
up at early epochs and eventually yield faster convergence
across 200 epochs, we use an unbalanced sparse connectiv-
ity initialization scheme for network weights. Consistently
staying within the boundaries of the global sparsity con-
straint for all networks, we initialize the parameters of the
input convolutional blocks and output classification dense
layers of the networks with a higher sparse connectivity
then all remaining intermediate layers. More specifically,
we initialize (assign a non-zero connection weight wk by
setting θk > 0) approximately 60% of connections in the
layers of the first convolutional block and output dense
layer, 20% of connections in the layers of the second convo-
lutional/residual blocks (for WideResNet models this was
chosen to be 10% due to the larger extent of the second
block), and pc/2 of connections in all remaining interme-

Supplementary Materials for “Training Adversarially Robust Sparse Networks via Bayesian Connectivity Sampling”

Table 1. Number and proportions of active connections (non-zero parameters) at each convolutional block after robust training of VGG-16
models with RST on CIFAR-10. Models with 90% and 99% sparsity are illustrated.

VGG-16
CIFAR-10

ConvBlock-1 ConvBlock-2 ConvBlock-3 ConvBlock-4 ConvBlock-5 Dense Layers

parameters 38,592 221,184 1,474,560 5,898,240 7,077,888 592,384

Ours (10%) 9,180 36,231 154,074 547,296 692,846 90,657
(23.78%) (16.38%) (10.45%) (9.28%) (9.79%) (15.30%)

Ours (1%) 4,722 8,667 17,481 53,307 64,351 4,500
(12.24%) (3.92%) (1.19%) (0.90%) (0.90%) (0.76%)

Table 2. Number and proportion of active connections (non-zero parameters) at each convolutional residual block after robust training of
ResNet-18 models with TRADES on CIFAR-100. Models with 90% and 99% sparsity are illustrated.

ResNet-18
CIFAR-100

ConvBlock-1 ResBlock-1 ResBlock-2 ResBlock-3 ResBlock-4 Dense Layers

parameters 1,728 147,456 524,288 2,097,152 8,388,608 51,200

Ours (10%) 371 27,581 73,792 194,611 808,796 15,892
(21.47%) (18.70%) (14.07%) (9.28%) (9.64%) (31.04%)

Ours (1%) 240 5,367 7,402 16,949 74,600 7,546
(13.89%) (3.64%) (1.41%) (0.81%) (0.89%) (14.74%)

diate layers of the network, with pc being the pre-defined
global connectivity constraint (e.g., pc = 1% for 99% sparse
models). Consistently with these proportions, we determine
which connections to be initialized at each layer randomly
by uniform sampling. In all experiments we make sure that
the global connectivity becomes strictly bounded with pc
following this initialization scheme.

Number of parameters in the fully connected models and
distributions of parameters across convolutional/residual
blocks of the sparse models after training are illustrated in
Tables 1, 2 and 3. For simpler visualization purposes in
these tables, we present the number of parameters that relate
to subsequent convolution operations in groups of convo-
lutional/residual blocks, consistently with the definitions
of these architectures (Simonyan & Zisserman, 2015; He
et al., 2016; Zagoruyko & Komodakis, 2016). However our
models indeed have varying connectivity levels for each
convolution/dense kernel within these blocks, and considers
each layer individually (cf. our code repository and model
checkpoints for details). Note that the parameters related to
batch normalization layers are ignored in these tables. Our
implementations of VGG-16 and WideResNet-28-4 archi-
tectures are specifically compared to be identical in terms
of the precise number of parameters per layer as in (Sehwag
et al., 2020) to enable a fair comparison of sparsity and
robustness. In all models that we adversarially trained via
Bayesian connectivity sampling, resulting per-layer sparsity
distributions were significantly different then the connectivi-
ties at initialization. In Tables 1, 2 and 3, we illustrate these
resulting differences as we let the robust training process
guide the sparse connectivity search.

B. Additional Experimental Analyses
B.1. Impact of the Noise Scaling Factor in Bayesian

Connectivity Sampling

Our approach relies on a posterior sampling principle, which
necessitates a sufficient amount of noise added to the nega-
tive log-posterior objective such that the trajectory of sam-
pled network parameters converge to sampling connectiv-
ities from the posterior with a high probability. Here we
examine the impact of the noise scaling factor choice for
connectivity sampling. Figure 1 depicts clean and robust
test accuracies of models trained with various choices of
the noise scaling factor σ, illustrated for a VGG-16 at 99%
sparsity trained on CIFAR-10 via TRADES loss and mixed-
batch AT. Our investigations consistently indicated that a
sufficient amount of noise is important for convergence
towards sampling posterior network configurations with
better benign and robust accuracies under given sparsity
constraints (cf. Figure 1 drop in performances at σ = 10−9).
However we also observed that the precise value of the noise
scaling factor did not influence the final model performance
to a significant extent except the number of converged con-
nections at each layer. Hence we determined σ = 10−6 in
all our further experimentations.

B.2. Impact of Decoupled Weight Decay Regularization

We investigate the use of decoupled weight decay reg-
ularization to promote Bayesian connectivity sampling.
(Loshchilov & Hutter, 2019) studied the inequivalence of
adding an l2-regularization term to the loss function versus

Supplementary Materials for “Training Adversarially Robust Sparse Networks via Bayesian Connectivity Sampling”

Table 3. Number and proportion of active connections (non-zero parameters) at each convolutional residual block after robust training of
WideResNet-28-4 models with TRADES on SVHN. Models with 90% and 99% sparsity are illustrated.

WideResNet-28-4
SVHN

ConvBlock-1 NetworkBlock-1 NetworkBlock-2 NetworkBlock-3 Dense Layers

parameters 432 268,288 1,114,112 4,456,448 2,560

Ours (10%) 71 37,762 124,866 420,827 658
(16.44%) (14.07%) (11.21%) (9.44%) (25.70%)

Ours (1%) 28 7,371 14,264 36,585 170
(6.48%) (2.75%) (1.28%) (0.82%) (6.64%)

10−9 10−8 10−7 10−6 10−5 10−4

Noise Scaling Factor (σ)

70

72

74

76

78

80

C
le

an
A

cc
u

ra
cy

(%
)

TRADES

Mixed-batch AT

(a)

10−9 10−8 10−7 10−6 10−5 10−4

Noise Scaling Factor (σ)

36

38

40

42

44

R
ob

u
st

A
cc

u
ra

cy
(%

)

TRADES

Mixed-batch AT

(b)

Figure 1. Illustration of the impact of varying the noise scale factor
for a VGG-16 trained on CIFAR-10 with 99% sparsity. Each
marker on plot (a) represents a different model trained with its
respective robust training objective (TRADES or mixed-batch AT)
and noise scaling factor σ. Markers on plot (b) represents the
robust accuracies of the models in part (a) under PGD50 attacks.

specifically decaying the weights of network parameters,
for traditional adaptive gradient update methods such as
momentum SGD. Decoupled weight decay was shown to
yield stronger regularization of variables and better gen-
eralization. We follow their lead to promote novel robust
connectivity sampling through regularization by pushing the
network weights towards zero during optimization. Here,
we compare this choice with respect to a standard sparsity-
promoting l1-regularization approach (Bellec et al., 2018;
Rakin et al., 2019), including a respective parameter search
for the l1-penalty weight constant, while keeping our mo-
mentum SGD optimization scheme same. Note that this
also alters the training approach from a pipeline that one
would use to train a fully-connected counterpart of this net-
work. Table 4 illustrates our comparisons against models
trained via l1-regularization. We show these comparisons
with VGG-16 models trained on CIFAR-10, and ResNet-18
models trained on CIFAR-100, both with TRADES loss
under a 90% sparsity constraint. Overall, we observe that
an l1-regularization choice yields significantly lower ac-
curacies with the state-of-the-art robust training objective
TRADES, especially for the CIFAR-100 dataset.

Table 4. Clean/robust accuracy (%) comparisons with models
trained via l1-regularization. All models (VGG-16 for CIFAR-
10, ResNet-18 for CIFAR-100) are trained with TRADES loss
under a 90% sparsity constraint. Robust accuracies are evaluated
by PGD50 attacks. λr denotes the l1-regularization weight.

CIFAR-10 CIFAR-100

l1-Regularization
λr = 10−3 70.9/40.4 48.5/23.2
λr = 10−4 77.9/45.2 49.8/23.4
λr = 10−5 75.5/41.6 48.6/22.0

Decoupled
Weight Decay Ours 78.2/45.7 55.2/27.2

B.3. Varying the Number of Iterations in PGD Attacks

We discuss our choice of the white box adversarial robust-
ness evaluation scheme with PGD50 attacks (i.e., PGD at-
tacks with 50 iterations and 10 restarts). While adversarial
training with different robust objectives is harnessing ex-
amples obtained via PGD with 10 iterations and a step size
of 2/255 for ε = 8/255, we evaluate all models on ad-
versarial examples crafted with a stronger attack PGD50.
To present and justify our explorations for this choice, we
illustrate in Table 5 the robustness as number of PGD itera-
tions vary for CIFAR-10 experiments with VGG-16 trained
via RST, and SVHN experiments with WideResNet-28-4
trained via TRADES loss. Consistently with all our experi-
mental analyses, we evaluate clean and robust accuracies on
the complete test sets. All attacks in Table 5 are evaluated
with an ε = 8/255 and 10 restarts. PGD step sizes were
determined by the 2.5∗ε/#steps rule of thumb (Madry et al.,
2018). We did not observe major robust accuracy drops with
increasing PGD steps. Due to the overall robust accuracy
stability, we evaluated the main results with PGD50 in our
assessments to quantify white box adversarial robustness.

B.4. Assessing Scalability with Increasing Category
and Feature Dimensionality

We performed additional experiments to assess the scalabil-
ity of our method to adapt to larger datasets. Our ResNet-18
models trained on CIFAR-100 with TRADES previously

Supplementary Materials for “Training Adversarially Robust Sparse Networks via Bayesian Connectivity Sampling”

Table 5. Robust accuracies as the number of PGD attack iterations
vary. Attacks were performed with 10 random restarts, perturbation
strength was ε = 8/255, and step sizes were determined by 2.5 ∗
ε/#steps. CIFAR-10 experiments are shown with VGG-16 trained
via RST, and SVHN with WideResNet-28-4 trained via TRADES.

#steps Standard 90% Sparsity 99% Sparsity

C
IF

A
R

-1
0 10 52.31 49.98 42.41

20 52.14 49.77 42.29
50 52.09 49.64 42.25

250 52.04 49.64 42.24
500 52.01 49.64 42.17

SV
H

N

10 57.42 56.42 53.24
20 56.93 55.88 52.93
50 56.59 55.58 52.74

100 56.48 55.47 52.70
250 56.35 55.38 52.62

yielded clean/robust accuracies (%) of 55.2/27.2 at 90%
and 47.7/22.2 at 99% sparsity. We additionally evaluated
HYDRA (Sehwag et al., 2020) with a similar training setup
based on the authors’ implementation and obtained inferior
models with accuracies of 50.1/25.0 at 90% and 44.4/20.1
at 99% sparsity for this 100-class classification problem.

To illustrate the time cost of our algorithm, we timed end-
to-end robust training of a ResNet-18 at 99% sparsity with
TRADES on CIFAR-100, which necessitated approximately
26 hours on a single NVIDIA Tesla P100. Note that at
this stage we also did not use any sparse-matrix optimized
implementations for these experiments, which would reduce
wall-clock time drastically. Obtaining a sparse model with
HYDRA however necessitates several stages: robust dense
training, accumulating importance scores for all network
weights, one-shot pruning and weight fine-tuning. Using the
authors’ implementation (Sehwag et al., 2020), obtaining a
99% sparse ResNet-18 on CIFAR-100 took approximately
32 hours on two NVIDIA Tesla P100s.

Furthermore, we also performed experiments on the Tiny-
ImageNet dataset which consists of 200 ImageNet classes
with images at 64×64 resolution, to test our algorithm’s scal-
ability to increased category- and feature-dimensionalities.
We trained ResNet-34 models with the TRADES loss (train-
ing with 10 PGD iterations and a step size of 2/255 for
ε = 8/255, TRADES β = 6) using Tiny-ImageNet. A
standard dense ResNet-34 model yielded accuracies of
35.0/10.5, while our approach can obtain 90% sparse mod-
els with 33.8/11.8 and 99% sparse ResNet-34 models with
30.6/9.5 clean/robust accuracies, showing scalability.

References
Abadi, M. et al. Tensorflow: A system for large-scale ma-

chine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation, pp. 265–283, 2016.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep networks. In Interna-
tional Conference on Learning Representations (ICLR),
2018.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C.,
and Liang, P. S. Unlabeled data improves adversarial ro-
bustness. In Advances in Neural Information Processing
Systems, pp. 11192–11203, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical Report, University of Toronto,
2009.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations (ICLR), 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations (ICLR), 2018.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning, 2011.

Rakin, A. S., He, Z., Yang, L., Wang, Y., Wang, L., and
Fan, D. Robust sparse regularization: Simultaneously
optimizing neural network robustness and compactness.
arXiv preprint arXiv:1905.13074, 2019.

Sehwag, V., Wang, S., Mittal, P., and Jana, S. HYDRA:
Pruning adversarially robust neural networks. Advances
in Neural Information Processing Systems, 7, 2020.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations (ICLR),
2015.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In British Machine Vision Conference, 2016.

