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Abstract
Democratization of machine learning requires ar-
chitectures that automatically adapt to new prob-
lems. Neural Differential Equations (NDEs) have
emerged as a popular modeling framework by re-
moving the need for ML practitioners to choose
the number of layers in a recurrent model. While
we can control the computational cost by choos-
ing the number of layers in standard architectures,
in NDEs the number of neural network evalua-
tions for a forward pass can depend on the num-
ber of steps of the adaptive ODE solver. But, can
we force the NDE to learn the version with the
least steps while not increasing the training cost?
Current strategies to overcome slow prediction re-
quire high order automatic differentiation, leading
to significantly higher training time. We describe
a novel regularization method that uses the inter-
nal cost heuristics of adaptive differential equation
solvers combined with discrete adjoint sensitivi-
ties to guide the training process towards learning
NDEs that are easier to solve. This approach
opens up the blackbox numerical analysis behind
the differential equation solver’s algorithm and
directly uses its local error estimates and stiffness
heuristics as cheap and accurate cost estimates.
We incorporate our method without any change
in the underlying NDE framework and show that
our method extends beyond Ordinary Differen-
tial Equations to accommodate Neural Stochastic
Differential Equations. We demonstrate how our
approach can halve the prediction time and, un-
like other methods which can increase the training
time by an order of magnitude, we demonstrate
similar reduction in training times. Together this
showcases how the knowledge embedded within
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Figure 1. Training and Prediction Performance of Regularized
NDEs We obtain an average training and prediction speedup of
1.45x and 1.84x respectively for our best model on supervised
classification and time series problems.

state-of-the-art equation solvers can be used to
enhance machine learning.

1. Introduction
How many hidden layers should you choose in your recur-
rent neural network? Chen et al. (2018) showed that the
answer could be found automatically by using a continuous
reformulation, the neural ordinary differential equation, and
allowing an adaptive ODE solver to effectively choose the
number of steps to take. Since then the idea was generalized
to other domains such as stochastic differential equations
(Liu et al., 2019; Rackauckas et al., 2020) but one fact re-
mained: solving a neural differential equation is expensive,
and training a neural differential equation is even more so.
In this manuscript we show a generally applicable method
to force the neural differential equation training process to
choose the least expensive option. We open the blackbox
and show how using the numerical heuristics baked inside of
these sophisticated differential equation solver codes allows
for identifying the cheapest equations without requiring
extra computation.

Our main contributions include:

• We introduce a novel regularization scheme for neu-
ral differential equations based on the local error es-
timates and stiffness estimates. We observe that by
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Figure 2. Error and Stiffness Regularization Keeps Accuracy.
We show the fits of the unregularized/regularized Neural ODE
variants on the Sprial equation. However, the unregularized variant
requires 1083.0± 57.55 NFEs while the one regularized using the
stiffness and error estimates requires only 676.2 ± 68.20 NFEs,
reducing prediction time by nearly 50%.

white-boxing differential equation solvers to leverage
pre-computed statistics about the neural differential
equations, we can obtain faster training and prediction
time while having a minimal effect on testing metrics.

• We compare our method with various regularization
schemes (Kelly et al., 2020; Behl et al., 2020), which
often use higher order derivatives and are difficult to
incorporate within existing systems. We empirically
show that regularization using cheap statistics can lead
to as efficient predictions as the ones requiring higher
order automatic differentiation (Kelly et al., 2020; Fin-
lay et al., 2020) without the increased training time.

• We release our code1, implemented using the Julia
Programming Language (Bezanson et al., 2017) and
SciML Software Suite (Rackauckas et al., 2019), with
the intention of wider adoption of the proposed meth-
ods in the community.

2. Background
2.1. Neural Ordinary Differential Equations

Ordinary Differential Equations (ODEs) are used to model
the instantaneous rate of change (dz(t)dt ) of a state z(t). Ini-
tial Value Problems (IVPs) are a class of ODEs that involve
finding the state at a later time t1, given the value z0 at time
t0. This state, z(t1) = z0 +

∫ t1
t0
fθ(z(t), t)dt, generally

cannot be computed analytically and requires numerical
solvers. Lu et al. (2018) observed the similarity between
fixed time-step discretization of ODEs and Residual Neural
Networks (He et al., 2015). Chen et al. (2018) proposed
the Neural ODE framework which use neural networks to

1https://github.com/avik-pal/RegNeuralODE.
jl

model the ODE dynamics dz(t)
dt = fθ(z(t), t). Using adap-

tive time stepping allows the model to operate at a variable
continuous depth depending on the inputs. Removal of
the fixed depth constraint of Residual Networks provides a
more expressive framework and offer several advantages in
problems like density estimation (Grathwohl et al., 2018),
irregularly spaced time series problems (Rubanova et al.,
2019), etc.

2.2. Neural Stochastic Differential Equations

Stochastic Differential Equations (SDEs) couple the effect
of noise to a deterministic system of equations. SDEs are
popularly used to model fluctuating stock prices, thermal
fluctuations in physical systems, etc. In this paper, we only
discuss SDEs with Diagonal Multiplicative Noise, though
our method trivially extends to all other forms of SDEs.
Liu et al. (2019) propose an extension to Neural ODEs by
stochastic noise injection in the form of Neural SDEs. Neu-
ral SDEs jointly train two neural networks fθ and gφ, such
that, the dynamics dz(t) = fθ(z(t), t)dt+ gφ(z(t), t)dW .
Stochastic Noise Injection regularize the training of contin-
uous neural models and achieves significantly better robust-
ness and generalization performance.

2.3. Regularizing Neural ODEs for Speed

Given the map z(0) → z(1) does not uniquely define the
dynamics, it is possible to regularize the training process to
learn differential equations that can be solved using fewer
evaluations of fθ. In the case of continuous normalizing
flows (CNF), the ordinary differential equation:

dz(t)

dt
= fθ(z(t), t) (1)

dy(t)

dt
= −tr

(
dfθ
dz

)
(2)

where y(t) evolves a log-density (Chen et al., 2018). The
FFJORD method improves the speed of CNF evaluations
by approximating tr(dfθdz ) via the Hutcheson trace estimator,
i.e. tr(dfθdz ) = E[εT dfθdz ε] where ε ∼ N (0, 1) (Hutchinson,
1989; Grathwohl et al., 2018). Subsequent research showed
that this trace estimator could be used to regularize the
Frobenius norm of the Jacobian ‖dfθdz ‖ = εT dfθdz (Finlay
et al., 2020). While εT dfθdz is computationally expensive as it
requires a reverse mode automatic differentiation evaluation
in the model (leading to higher order differentiation), in the
specific case of FFJORD this term is already required and
thus this estimate is a computationally-free regularizer.

It was later shown that this form of regularization can be
extended beyond FFJORD by using higher order automatic
differentiation (Kelly et al., 2020). This was done by reg-
ularizing a heuristic for the local error estimate, namely
RK(θ) =

∫ tf
t0
‖d

Kz(t)
dtK

‖22dt. The authors showed Taylor-

https://github.com/avik-pal/RegNeuralODE.jl
https://github.com/avik-pal/RegNeuralODE.jl
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mode automatic differentiation improves the efficiency of
calculating this estimator to a O(k2) cost where k is the
order of derivative that is required, though this still implies
that obtaining the 5 derivatives requires is a significant com-
putational increase. In fact, the authors noted that “when
we train with adaptive solvers we do not improve overall
training time”, and in fact giving a 1.7x slower training time.
In this manuscript we show that this is all the way up to 10x
on the PhysioNet challenge problem.

Here we show how to arrive at a similar regularization
heuristic that is applicable to all neural ODE applications
with suitable adaptive ODE solvers and requires no higher
order automatic differentiation. We will show that this
form of regularization is able to significantly improve train-
ing times and generalizes to other architectures like neural
SDEs.

2.4. Adaptive Time Stepping using Local Error
Estimates

Runge-Kutta Methods (Runge, 1895; Kutta, 1901) are
widely used for numerically approximating the solutions of
ordinary differential equations. They are given by a tableau
of coefficients {A, c, b} where the stages s are combined to
produce an estimate for the update at t+ h:

ks = f

(
t+ csh, z(t) +

s∑
i=1

asiki

)

z(t+ h) = z(t) + h

s∑
i=1

biki

(3)

For adaptivity, many Runge-Kutta methods include an al-
ternative linear combiner b̃i such that z̃(t + h) = z(t) +
h
∑s
i=1 b̃iki gives rise to an alternative solution, typically

with one order less convergence (Wanner & Hairer, 1996;
Fehlberg, 1968; Dormand & Prince, 1980; Tsitouras, 2011).
A classic result from Richardson extrapolation shows that
E = ‖z̃(t+h)−z(t+h)‖ is an estimate of the local trunca-
tion error (Ascher & Petzold, 1998; Hairer et al., 1993). The
goal of adaptive step size methods is to choose a maximal
step size h for which this error estimate is below user re-
quested error tolerances. Given the absolute tolerance atol
and relative tolerance rtol, the solver satisfies the following
constraint for determining the time stepping:

E ≤ atol +max(|z(t)|, |z(t+ h)|) · rtol (4)

The proportion of the error against the tolerance is thus:

q =

∥∥∥∥ E

atol +max(|zn|, |zn+1|) · rtol

∥∥∥∥ (5)

If q < 1 then the proposed time step h is accepted, else it
is rejected and reduced. In either case, a proportional error

control scheme (P-control) proposes hnew = ηqh, while
a standard PI-controller of explicit adaptive Runge-Kutta
methods can be shown to be equivalent to using:

hnew = ηqαn−1q
β
nh (6)

where η is the safety factor, qn−1 denotes the error pro-
portion of the previous step, and (α, β) are the tunable
PI gain hyperparameters (Wanner & Hairer, 1996). Simi-
lar embedded methods error estimation schemes have also
been derived for stochastic Runge-Kutta integrators of SDEs
(Rackauckas & Nie, 2017; 2020).

2.5. Stiffness Estimation

While there is no precise definition of stiffness, the defini-
tion used in practice is “stiff equations are problems for
which explicit methods don’t work” (Wanner & Hairer,
1996; Shampine & Gear, 1979). A simplified stiffness index
is given by:

S = max‖Re(λi)‖ (7)

where λi are the eigenvalues of the local Jacobian matrix.
We note that various measures of stiffness have been intro-
duced over the years, all being variations of conditioning of
the pseudospectra (Shampine & Thompson, 2007; Higham
& Trefethen, 1993). The difficulty in defining a stiffness
metric is that in each case, some stiff systems like the classic
Robertson chemical kinetics or excited Van der Pol equa-
tion may violate the definition, meaning all such definitions
are (useful) heuristics. In particular, it was shown that for
explicit Runge-Kutta methods satisfying cx = cy for some
internal step, the term

‖λ‖ ≈
∥∥∥∥f(t+ cxh,

∑s
i=1 axi)− f(t+ cyh,

∑s
i=1 ayi)∑s

i=1 axi −
∑s
i=1 ayi

∥∥∥∥
(8)

serves as an estimate to S (Shampine, 1977). Since each of
these terms are already required in the Runge-Kutta updates
of Equation 3, this gives a computationally-free estimate.
This estimate is thus found throughout widely used explicit
Runge-Kutta implementations, such as by the dopri method
(found in suites like SciPy and Octave) to automatically exit
when stiffness is detected (Wanner & Hairer, 1996), and
by switching methods which automatically change explicit
Runge-Kutta methods to methods more suitable for stiff
equations (Rackauckas & Nie, 2019).

3. Method
3.1. Regularizing Local Error and Stiffness Estimates

Section 2.4 describes how larger local error estimates E
lead to reduced step sizes and thus a higher overall cost in
the neural ODE training and predictions. Given this, we
propose regularizing the neural ODE training process by the
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total local error in order to learn neural ODEs with as large
step sizes as possible. Thus we define the regularizing term:

RE =
∑
j

Ej |hj | (9)

summing over j the time steps of the solution. This was
done by accumulating the Ej from the internals of the time
stepping process at the end of each step. We note that this is
similar to the regularization proposed in (Kelly et al., 2020),
namely:

RK =

∫ t1

t0

∥∥∥∥dKz(t)dtK

∥∥∥∥ dt (10)

where integrating over the Kth derivatives is proportional
to the principle (largest) truncation error term of the Runge-
Kutta method (Hairer et al., 1993). However, this formu-
lation requires high order automatic differentiation (which
then is layered with reverse-mode automatic differentiation)
which can be an expensive computation (Zhang et al., 2008)
while Equation 9 requires no differentiation.

Similarly, the stiffness estimates at each step can be summed
as:

RS =
∑
j

Sj (11)

giving a computational heuristic for the total stiffness of the
equation. Notably, both of these estimates Ej and Sj are
already computed during the course of a standard explicit
Runge-Kutta solution, making the forward pass calculation
of the regularization term computationally free.

3.2. Adjoints of Internal Solver Estimates

Notice that Ej =
∑s
i=1(bi− b̃i)ki cannot be constructed di-

rectly from the z(tj) trajectory of the ODE’s solution. More
precisely, the ki terms are not defined by the continuous
ODE but instead by the chosen steps of the solver method.
Continuous adjoint methods for neural ODEs (Chen et al.,
2018; Zhuang et al., 2021) only define derivatives in terms
of the ODE quantities. This is required in order exploit
properties such as allowing different steps in reverse and re-
versibility for reduced memory, and in constructing solvers
requiring fewer NFEs (Kidger et al., 2020). Indeed, com-
puting the adjoint of each stage variable ki can be done,
but is known as discrete sensitivity analysis and is known
to be equivalent to automatic differentiation of the solver
(Zhang & Sandu, 2014). Thus to calculate the derivative of
the solution simultaneously to the derivatives of the solver
states, we used direct automatic differentiation of the dif-
ferential equation solvers for performing the experiments
(Innes, 2018). We note that discrete adjoints are known to
be more stable than continuous adjoints (Zhang & Sandu,
2014) and in the context of neural ODEs have been shown to
stabilize the training process leading to better fits (Gholami
et al., 2019; Onken & Ruthotto, 2020). While more memory

intensive than some forms of the continuous adjoint, we
note that checkpointing methods can be used to reduce the
peak memory (Dauvergne & Hascoët, 2006). We note that
this is equivalent to backpropagation of a fixed time step
discretization if the step sizes are chosen in advance, and
verify in the example code that no additional overhead is
introduced.

4. Experiments
In this section, we consider the effectiveness of regularizing
Neural Differential Equations (NDEs) on their training and
prediction timings. We consider the following baselines
while evaluating our models:

1. Vanilla Neural (O/S)DE with discrete sensitivities.

2. STEER: Temporal Regularization for Neural ODE
models by stochastic sampling of the end time during
training (Behl et al., 2020).

3. TayNODE: Regularizing the Kth order derivatives of
the Neural ODEs (Kelly et al., 2020)2.

We test our regularization on four tasks – supervised image
classification (Section 4.1.1) and time series interpolation
(Section 4.1.2) using Neural ODE, and fitting Neural SDE
(Section 4.2.1) and supervised image classification using
Neural SDE (Section 4.2.2). We use DiffEqFlux (Rack-
auckas et al., 2019) and Flux (Innes et al., 2018) for our
experiments.

4.1. Neural Ordinary Differential Equations

In the following experiments, we use a Runge Kutta 5(4)
solver (Tsitouras, 2011) with absolute and relative toler-
ances of 1.4 × 10−8 to solve the ODEs. To measure the
prediction time, we use a test batch size equal to the training
batch size.

4.1.1. SUPERVISED CLASSIFICATION

Training Details We train a Neural ODE and a Linear Clas-
sifier to map flattened MNIST Images to their corresponding
labels. Our model uses a two layered neural network fθ1 ,
as the ODE dynamics, followed by a linear classifier gθ2 ,
identical to the architecture used in Kelly et al. (2020).

zθ1(x, t) = tanh(W1[x; t] +B1) (12)

2We use the original code formulation of the TayNODE in order
to ensure usage of the specially-optimized Taylor-mode automatic
differentiation technique (Bettencourt et al., 2019) in the training
process. Given the large size of the neural networks, most of the
compute time lies in optimized BLAS kernels which are the same
in both implementations, meaning we do not suspect library to be
a major factor in timing differences beyond the AD specifics.
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Method Train Accuracy (%) Test Accuracy (%) Train Time (hr) Prediction Time (s) NFE

Vanilla NODE 100.0 ± 0.00 97.94 ± 0.02 0.98 ± 0.03 0.094 ± 0.010 253.0 ± 3.46
STEER 100.0 ± 0.00 97.94 ± 0.03 1.31 ± 0.07 0.092 ± 0.002 265.0 ± 3.46
TayNODE 98.98 ± 0.06 97.89 ± 0.00 1.19 ± 0.07 0.079 ± 0.007 080.3 ± 0.43
SRNODE (Ours) 100.0 ± 0.00 98.08 ± 0.15 1.24 ± 0.06 0.094 ± 0.003 259.0 ± 3.46
ERNODE (Ours) 99.71 ± 0.28 97.32 ± 0.06 0.82 ± 0.02 0.060 ± 0.001 177.0 ± 0.00
STEER + SRNODE 100.0 ± 0.00 97.88 ± 0.06 1.55 ± 0.27 0.101 ± 0.009 275.0 ± 12.5
STEER + ERNODE 99.91 ± 0.02 97.61 ± 0.11 1.37 ± 0.11 0.086 ± 0.018 197.0 ± 9.17
SRNODE + ERNODE 99.98 ± 0.03 97.77 ± 0.05 1.37 ± 0.04 0.081 ± 0.006 221.0 ± 17.3

Table 1. MNIST Image Classification using Neural ODE Using ERNODE obtains a training and prediction speedup of 16.33% and
37.78% respectively, at only 0.6% reduced prediction accuracy. SRNODE doesn’t help in isolation but is effective when combined with
ERNODE to reduce the prediction time by 14.44% while incurring a reduced test accuracy of only 0.17%.

Figure 3. Number of Function Evaluations and Training Accu-
racy for Supervised MNIST Classification Regularizing using
ERNODE is the most consistent way to reduce the overall number
of function evaluations. Using SRNODE alongside ERNODE
stabilizes the training at the cost of increased prediction time.

fθ1(x, t) = tanh(W2[zθ1(x, t); t] +B2) (13)
gθ2(x, t) = σ(W3x+B3) (14)

where the parameters W1 ∈ R100×785, B1 ∈ R100, W2 ∈
R784×101, B2 ∈ R784, W3 ∈ R10×784, and B3 ∈ R10. We
use a batch size of 512 and train the model for 75 epochs
using Momentum (Qian, 1999) with learning rate of 0.1 and
mass of 0.9, and a learning rate inverse decay of 10−5 per
iteration. For Error Estimate Regularization, we perform
exponential annealing of the regularization coefficient from
100.0 to 10.0 over 75 epochs. For Stiffness Regularization,
we use a constant coefficient of 0.0285.

Baselines For the STEER baseline, we train the models
by stochastically sampling the end time point from U(T −
b, T + b) where T = 1.0 and b = 0.53. We observe no

3b = 0.25 was also considered but final results were compara-
ble

training improvement but there is a minor improvement in
prediction time. For the TayNODE baseline, we train the
model with a reduced batch size of 1004, λ = 3.02× 10−3,
and regularizing 3rd order derivatives.

Results Figure 3 visualizes the training accuracy and num-
ber of function evaluations over training. Table 1 summa-
rizes the metrics from the trained baseline and proposed
models – Error Estimate Regularized Neural ODE (ERN-
ODE) and Stiffness Regularized Neural ODE (SRNODE).
Additionally, we perform ablation studies by composing
various regularization strategies.

4.1.2. TIME SERIES INTERPOLATION

Training Details We use the Latent ODE (Chen et al., 2018)
model with RNN encoder to learn the trajectories for ICU
Patients for Physionet Challenge 2012 Dataset (Silva et al.,
2012). We use the preprocessed data provided by Kelly
et al. (2020) to ensure consistency in results. For every
independent run, we perform an 80 : 20 split of the data for
training and evaluation.

Our model architecture is similar to the encoder-decoder
models used in Rubanova et al. (2019). We use a 20-
dimensional latent state and a 40-dimensional hidden state
for the recognition model. Our ODE dynamics is given by a
4-layered neural network with 50 units and tanh activation.
We train our models for 300 epochs with a batchsize of 512
and using Adamax (Kingma & Ba, 2014) with a learning
rate of 0.01 and an inverse decay of 10−5. We minimize the
negative log likelihood of the predictions and perform KL
annealing with a coefficient of 0.99.

For Error Estimate Regularization, we perform exponential
annealing of the regularization coefficient from 1000.0 to
100.0 over 300 epochs. We note that using RE =

∑
j E

2
j ,

instead of RE =
∑
j Ej |hj |, yields similar results with a

constant regularization coefficient of 100.0. For Stiffness
Regularization, we use a constant coefficient of 0.285.

4Batch Size was reduced to ensure we reach a comparable
train/test accuracy as the other trained models.
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Method Train Loss (×10−3) Test Loss (×10−3) Train Time (hr) Prediction Time (s) NFE

Vanilla NODE 3.48 ± 0.00 3.55 ± 0.00 1.75 ± 0.39 0.53 ± 0.12 733.0 ± 84.29
STEER 3.43 ± 0.02 3.48 ± 0.01 1.62 ± 0.26 0.54 ± 0.06 699.0 ± 141.1
TayNODE 4.21 ± 0.02 4.21 ± 0.01 12.3 ± 0.32 0.22 ± 0.02 167.3 ± 11.93
SRNODE (Ours) 3.52 ± 1.44 3.58 ± 0.05 0.87 ± 0.09 0.20 ± 0.01 273.0 ± 0.000
ERNODE (Ours) 3.51 ± 0.00 3.57 ± 0.00 0.94 ± 0.13 0.21 ± 0.02 287.0 ± 17.32
STEER + SRNODE 3.67 ± 0.02 3.73 ± 0.02 0.89 ± 0.08 0.20 ± 0.01 271.0 ± 12.49
STEER + ERNODE 3.41 ± 0.02 3.48 ± 0.01 1.03 ± 0.25 0.24 ± 0.05 269.0 ± 33.05
SRNODE + ERNODE 3.48 ± 0.11 3.56 ± 0.03 1.12 ± 0.08 0.21 ± 0.01 263.0 ± 12.49

Table 2. Physionet Time Series Interpolation All the regularized variants of Latent ODE (except STEER) have comparable prediction
times. Additionally, the training time is reduced by 36%− 50% on using one of our proposed regularizers, while TayNODE increases the
training time by 7x. Overall, SRNODE has the best training and prediction timings while incurring an increased 0.85% test loss.

Figure 4. Number of Function Evaluations and Training Loss
for Physionet Time Series Interpolation Regularized and Un-
regularized variants of the model have very similar trajectories
for the training loss. We do notice a significant difference in the
NFE plot. Using either Error Estimate Regularization or Stiffness
Regularization is able to bound the NFE to < 300, compared to
∼ 700 for STEER or unregularized Latent ODE.

Baselines For STEER Baseline, we stochastically sample
the timestep to evaluate the difference between interpolated
and ground truth data. Essentially for the interval (ti, ti+1),
we evaluate the model at U(ti+1 − ti+1−ti

2 , ti+1 +
ti+1−ti

2 )
and compare with the truth at ti+1. We sample end points
after every iteration of the model. STEER reduces the train-
ing time but has no significant effect on the prediction time.
TayNODE was trained by regularizing the 2nd order deriva-
tives and a coefficient of 0.01 for 300 epochs and a batchsize
of 512. TayNODE had an exceptionally high training time
∼ 7× compared to the unregularized baseline.

Results Figure 4 shows the training MSE loss and the NFE
counts for the considered models. Table 2 summarizes the
metrics and wall clock timings for the baselines, proposed
regularizers and their compositions with previously pro-

posed regularizers. We observe that SRNODE provides the
most significant speedup while ERNODE attains similar
losses at slightly higher training and prediction times.

4.2. Neural Stochastic Differential Equations

In these experiments, we use SOSRI/SOSRI2 (Rackauckas
& Nie, 2020) to solve the Neural SDEs. The wall clock
timings represent runs on a CPU.

4.2.1. FITTING SPIRAL DIFFERENTIAL EQUATION

Training Details In this experiment, we consider training a
Neural SDE to mimic the dynamics of the Spiral Stochastic
Differential Equation with Diagonal Noise (DSDE). Spiral
DSDE is prescribed by the following equations:

du1 = −αu31dt+ βu32dt+ γu1dW

du2 = −βu31dt− αu32dt+ γu2dW
(15)

where α = 0.1, β = 2.0, and γ = 0.2. We generate
data across 10000 trajectories at 30 uniformly spaced points
between t ∈ [0, 1] (Figure 5). We parameterize our drift and
diffusion functions using neural networks fθ and gφ via:

fθ(x, t) =W2 tanh(W1x
3 +B1) +B2

gφ(x, t) =W3x+B3

(16)

where the parameters W1 ∈ R50×2, B1 ∈ R50, W2 ∈
R2×50, B2 ∈ R2, W3 ∈ R2×2, and B3 ∈ R2. For fitting
the drift and diffusion functions to the simulated data, we
used a generalized method of moments loss function (Lück
& Wolf, 2016; Jeisman, 2006). Our objective is to train
these parameters to minimize the L2 distance between the
mean (µ) and variance (σ2) of predicted and real data. Let,
µ̂i’s and σ̂2

i ’s denote the means and variances respectively
of the multiple predicted trajectories.

L(u0; θ, φ) =
30∑
i=1

[
(µi − µ̂i)2 + (σ2

i − σ̂2
i )

2
]
+ λrRE

(17)
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Method Mean Squared Loss Train Time (s) Prediction Time (s) NFE

Vanilla NSDE 0.0217 ± 0.0088 178.95 ± 20.22 0.07553 ± 0.0186 528.67 ± 6.11
SRNSDE (Ours) 0.0204 ± 0.0091 166.42 ± 14.51 0.07250 ± 0.0017 502.00 ± 4.00
ERNSDE (Ours) 0.0227 ± 0.0090 173.43 ± 04.18 0.07552 ± 0.0008 502.00 ± 4.00

Table 3. Spiral SDE The ERNSDE attains a relative loss of 4% compared to vanilla Neural SDE while reducing the training time and
number of function evaluations. Using SRNSDE reduces both the training and prediction times by 7% and 4% respectively.

Figure 5. Fitting a Neural SDE on Spiral SDE Data. Regular-
izing has minimal effect on the learned dynamics with reduced
training and prediction cost.

The models were trained using AdaBelief Opti-
mizer (Zhuang et al., 2020) with a learning rate of
0.01 for 250 iterations. We generate 100 trajectories for
each iteration to compute the µ̂is and σ̂2

i s.

Results Table 3 summarizes the final results for the trained
models for 3 different random seeds. We notice that even
for this “toy” problem, we can marginally improve training
time while incurring a minimal penalty on the final loss.

4.2.2. SUPERVISED CLASSIFICATION

Training Details We train a Neural SDE model to map
flattened MNIST Images to their corresponding labels. Our
diffusion function uses a two layered neural network fθ2 and
the drift function is a linear map gθ3 . We use two additional
linear maps – aθ1 mapping the flattened image to the hidden
dimension and bθ4 mapping the output of the Neural SDE
to the logits.

aθ1(x, t) =W1x+B1 (18)
fθ2(x, t) =W3 tanh(W2 x+B2) +B3 (19)
gθ3(x, t) =W4 x+B4 (20)
bθ4(x, t) =W5 x+B5 (21)

where the parameters W1 ∈ R32×784, B1 ∈ R32, W2 ∈
R32×64, B2 ∈ R64, W3 ∈ R32×64, B3 ∈ R32, W4 ∈
R10×32, and B3 ∈ R10. We use a batch size of 512 and
train the model for 40 epochs using Adam (Kingma & Ba,
2014) with learning rate of 0.01, and an inverse decay of
10−5 per iteration. While making predictions we use the

Figure 6. Number of Function Evaluations and Training Er-
ror for Supervised MNIST Classification using Neural SDE
ERNSDE reduces the NFE below 300 with minimal error change
while the unregularized version has NFE ∼ 400.

mean logits across 10 trajectories. For Error Estimate and
Stiffness Regularization, we use constant coefficients 10.0
and 0.1 respectively.

Results Figure 6 shows the variation in NFE and Training
Error during training. Table 4 summarizes the final met-
rics and timings for all the trained models. We observe
that SRNSDE doesn’t improve the training/prediction time,
similar to the MNIST Neural ODE Experiment 4.1.1. How-
ever, ERNSDE gives us a training and prediction speedup of
33.7% and 52.02% respectively, at the cost of 0.7% reduced
test accuracy.

5. Discussion
Numerical analysis has had over a century of theoretical
developments leading to efficient adaptive methods for solv-
ing many common nonlinear equations such as differential
equations. Here we demonstrate that by using the knowl-
edge embedded within the heuristics of these methods we
can accelerate the training process of neural ODEs.

We note that on the larger sized PhysioNet and MNIST ex-
amples we saw significant speedups while on the smaller
differential equation examples we saw only minor perfor-
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Method Train Accuracy (%) Test Accuracy (%) Train Time (hr) Prediction Time (s) NFE

Vanilla NSDE 98.97 ± 0.11 96.95 ± 0.11 6.32 ± 0.19 15.07 ± 0.93 411.33 ± 6.11
SRNSDE (Ours) 98.79 ± 0.12 96.80 ± 0.07 8.54 ± 0.37 14.50 ± 0.40 382.00 ± 4.00
ERNSDE (Ours) 98.16 ± 0.11 96.27 ± 0.35 4.19 ± 0.04 07.23 ± 0.14 184.67 ± 2.31

Table 4. MNIST Image Classification using Neural SDE ERNSDE obtains a training and prediction speedup of 33.7% and 52.02%
respectively, at only 0.7% reduced prediction accuracy.

mance improvements. This showcases how the NFE be-
comes a better estimate of the total compute time as the cost
of the ODE f (and SDE g) increase when the model size
increases.

This result motivates efforts in differentiable programming
(Wang et al., 2018; Abadi & Plotkin, 2019; Rackauckas
et al.) which enables direct differentiation of solvers since
utilizing the solver’s heuristics may be crucial in the de-
velopment of advanced techniques. This idea could be
straightforwardly extended not only to other forms of differ-
ential equations, but also to other “implicit layer” machine
learning methods. For example, Deep Equilibrium Models
(DEQ) (Bai et al., 2019) model the system as the solution to
an implicit function via a nonlinear solver like Bryoden or
Newton’s method. Heuristics like the ratio of the residuals
have commonly been used as a convergence criterion and
as a work estimate for the difficulty of solving a particular
nonlinear equation (Wanner & Hairer, 1996), and thus could
similarly be used to regularize for learning DEQs whose
forward passes are faster to solve. Similarly, optimization
techniques such as BFGS (Kelley, 1999) contain internal
estimates of the Hessian which can be used to regularize
the stiffness of “optimization as layers” machine learning
architectures like OptNet (Amos & Kolter, 2017). However,
in these cases we note that continuous adjoint techniques
have a significant computational advantage over discrete ad-
joint methods because the continuous adjoint method can be
computed directly at the point of the solution while discrete
adjoints would require differentiating through the iteration
process. Thus while a similar regularization would exist in
these contexts, in the case of differential equations the con-
tinuous and discrete adjoints share the same computational
complexity which is not the case in methods which iterate
to convergence. Further study of these applications would
be required in order to ascertain the effectiveness in acceler-
ating the training process, though by extrapolation one may
guess that at least the forward pass would be accelerated.

6. Limitations
While these experiments have demonstrated major perfor-
mance improvements, it is pertinent to point out the limi-
tations of the method. One major point to note is that this
only applies to learning neural ODEs for maps z(0) 7→ z(1)
as is used in machine learning applications of the archi-
tecture (Chen et al., 2018). Indeed, a neural ODE as an
“implicit layer” for predictions in machine learning does not

require identification of dynamical mechanisms. However,
if the purpose is to learn the true governing dynamics a
physical system from timeseries data, this form of regular-
ization would bias the result, dampening higher frequency
responses leading to an incorrect system identification. Ap-
proaches which embed neural networks into solvers could
be used in such cases (Shen et al., 2020; Poli et al., 2020).
Indeed we note that such Hypereuler approaches could be
combined with the ERNODE regularization on machine
learning prediction problems, which could be a fruitful av-
enue of research. Lastly, we note that while either the local
error and stiffness regularization was effective on each cho-
sen equation, neither was effective on all equations and at
this time there does not seem to be a clear a priori indicator
as to which regularization is necessary for a given problem.
While it seems the error regularization was more effective
on the image classification tasks while the stiffness regu-
larization was more effective on the time series task, we
believe more experiments will be required in order to ascer-
tain whether this is a common phenomena, possibly worthy
of theoretical investigation.

7. Conclusion
Our studies reveal that error estimate regularization provides
a consistent way to improve the training/prediction time of
neural differential equations. In our experiments, we see an
average improvement of 1.4x training time and 1.8x predic-
tion time on using error estimate regularization. Overall we
provide conclusive evidence that cheap and accurate cost
estimates obtained by white-boxing differential equation
solvers can be as effective as expensive higher-order regu-
larization strategies. Together these results demonstrate a
generalizable idea for how to combine differentiable pro-
gramming with algorithm heuristics to improve training
speeds in a way that cannot be done with continuous adjoint
techniques. Thus, even if a derivative can be defined for a
given piece of code, our approach shows that differentiating
the solver can still have major advantages because the solver
internal details in terms of stability and performance.
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