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Abstract
Spatio-temporal forecasting has numerous appli-
cations in analyzing wireless, traffic, and finan-
cial networks. Many classical statistical models
often fall short in handling the complexity and
high non-linearity present in time-series data. Re-
cent advances in deep learning allow for better
modelling of spatial and temporal dependencies.
While most of these models focus on obtaining
accurate point forecasts, they do not character-
ize the prediction uncertainty. In this work, we
consider the time-series data as a random realiza-
tion from a nonlinear state-space model and target
Bayesian inference of the hidden states for prob-
abilistic forecasting. We use particle flow as the
tool for approximating the posterior distribution
of the states, as it is shown to be highly effective
in complex, high-dimensional settings. Thorough
experimentation on several real world time-series
datasets demonstrates that our approach provides
better characterization of uncertainty while main-
taining comparable accuracy to the state-of-the-
art point forecasting methods.

1. Introduction
Spatio-temporal forecasting has many applications in in-
telligent traffic management, computational biology and
finance, wireless networks and demand forecasting. In-
spired by the surge of novel learning methods for graph
structured data, many deep learning based spatio-temporal
forecasting techniques have been proposed recently (Li et al.,
2018; Bai et al., 2020). In addition to the temporal patterns
present in the data, these approaches can effectively learn
and exploit spatial relationships among the time-series using
various Graph Neural Networks (GNNs) (Defferrard et al.,
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2016; Kipf & Welling, 2017). Recent works establish that
graph-based spatio-temporal models outperform the graph-
agnostic baselines (Li et al., 2018; Wu et al., 2020). In spite
of their accuracy in providing point forecasts, these models
have a serious drawback as they cannot gauge the uncer-
tainty in their predictions. When decisions are made based
on forecasts, the availability of a confidence or prediction
interval can be vital.

There are numerous probabilistic forecasting techniques
for multivariate time-series, for example, DeepAR (Salinas
et al., 2020), DeepState (Rangapuram et al., 2018), Deep-
Factors (Wang et al., 2019), and the normalizing flow-based
algorithms in (Kurle et al., 2020; Rasul et al., 2021). Al-
though these algorithms can characterize uncertainty via
confidence intervals, they are not designed to incorporate
side-knowledge provided in the form of a graph.

In this work, we model multivariate time-series as random
realizations from a nonlinear state-space model, and target
Bayesian inference of the hidden states for probabilistic fore-
casting. The general framework we propose can be applied
to univariate or multivariate forecasting problems, can incor-
porate additional covariates, can process an observed graph,
and can be combined with data-adaptive graph learning pro-
cedures. For the concrete example algorithm deployed in
experiments, we build the dynamics of the state-space model
using graph convolutional recurrent architectures. We de-
velop an inference procedure that employs particle flow, an
alternative to particle filters, that can conduct more effective
inference for high-dimensional states.

The novel contributions in this paper are as follows:
1) we propose a graph-aware stochastic recurrent network
architecture and inference procedure that combine graph
convolutional learning, a probabilistic state-space model,
and particle flow;
2) we demonstrate via experiments on graph-based traffic
datasets that a specific instantiation of the proposed frame-
work can provide point forecasts that are as accurate as the
state-of-the-art deep learning based spatio-temporal models.
The prediction error is also comparable to the existing deep
learning based techniques for benchmark non-graph multi-
variate time-series datasets;
3) we show that the proposed method provides a superior
characterization of the prediction uncertainty compared to
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existing probabilistic multivariate time-series forecasting
methods, both for datasets where a graph is available and
for settings where no graph is available.

2. Related Work
Our work is related to (i) multivariate and spatio-temporal
forecasting using deep learning and graph neural networks;
(ii) stochastic/probabilistic modelling, prediction and fore-
casting for multivariate time-series; and (iii) neural (ordi-
nary) differential equations. Recently, neural network-based
techniques have started to offer the best predictive perfor-
mance for multivariate time-series prediction (Bao et al.,
2017; Qin et al., 2017; Lai et al., 2018; Guo & Lin, 2018;
Chang et al., 2018; Li et al., 2019; Sen et al., 2019; Oreshkin
et al., 2020; Smyl, 2020). In some settings, a graph is avail-
able that specifies spatial or causal relationships between
the time-series. Numerous algorithms have been proposed
that combine GNNs with temporal neural network architec-
tures (Li et al., 2018; Yu et al., 2018; Huang et al., 2019;
Bai et al., 2019; Chen et al., 2019a; Guo et al., 2019; Wu
et al., 2019; Yu et al., 2019; Zhao et al., 2019; Bai et al.,
2020; Huang et al., 2020; Park et al., 2020; Shi et al., 2020;
Song et al., 2020; Xu et al., 2020; Wu et al., 2020; Zheng
et al., 2020; Oreshkin et al., 2021). Algorithms that take into
account the graph provide superior forecasts, if the graph
is accurate and the indicated relationships have predictive
power. However, none of these algorithms is capable of
characterizing the uncertainty of the provided predictions;
all are constructed as deterministic algorithms.

Recently, powerful multivariate forecasting algorithms that
are capable of providing uncertainty characterization have
been proposed. These include DeepAR (Salinas et al., 2020),
DeepState (Rangapuram et al., 2018), the Multi-horizon
Quantile RNN (MQRNN) (Wen et al., 2017), the Gaussian
copula process approach of (Salinas et al., 2019), and Deep-
Factors (Wang et al., 2019). Normalizing flow has also been
combined with temporal NN architectures (Kumar et al.,
2019; de Bézenac et al., 2020; Gammelli & Rodrigues,
2020; Rasul et al., 2021). Various flavours of stochastic
recurrent networks have also been introduced (Boulanger-
Lewandowski et al., 2012; Bayer & Osendorfer, 2014;
Chung et al., 2015; Fraccaro et al., 2016; 2017; Karl et al.,
2016; Mattos et al., 2016; Doerr et al., 2018). In most cases,
variational inference is applied to learn model parameters, al-
though sequential Monte Carlo has also been employed (Gu
et al., 2015; Le et al., 2017; Maddison et al., 2017; Zheng
et al., 2017; Karkus et al., 2018; Naesseth et al., 2018; Ma
et al., 2020). These are related to methods that determine
the parameters of sequential Monte Carlo models via op-
timizing Monte Carlo objectives (Maddison et al., 2017;
Naesseth et al., 2018; Le et al., 2017).

Our proposed method is different from this body of work in

two important ways. First, we design a probabilistic state-
space modeling framework that can incorporate information
about predictive relationships that is provided in the form of
a graph. Second, our inference procedure employs particle
flow, which avoids the need for some of the approxima-
tions required by a variational inference framework and is
much better suited to high-dimensional states than particle
filtering. Our particle flow method has connections to nor-
malizing flows (Kobyzev et al., 2020) and to neural ordinary
differential equations (Chen et al., 2018; 2019b). In particu-
lar, Chen et al. (2019b) address a Bayesian inference task by
solving a differential equation to transport particles from the
prior to the posterior distribution. However, such flow-based
methods were first introduced by Daum & Huang (2007) in
the sequential inference research literature.

3. Problem Statement
We address the task of discrete-time multivariate time-series
prediction, with the goal of forecasting multiple time-steps
ahead. We assume that there is access to a historical dataset
for training, but after training the model must perform pre-
diction based on a limited window of historical data. Let
yt ∈ RN×1 be an observed multivariate signal at time t and
Zt ∈ RN×dz be an associated set of covariates. The i-th
element of yt is the observation associated with time-series
i at time-step t.

We also allow for the possibility that there is access to a
graph G = (V, E), where V is the set of N nodes and
E ⊂ V × V denotes the set of edges. In this case, each
node corresponds to one time-series. The edges indicate
probable predictive relationships between the variables, i.e.,
the presence of an edge (i, j) suggests that the historical
data for time-series i is likely to be useful in predicting
time-series j. The graph may be directed or undirected.

The goal is to construct a model that is capable of processing,
for some time offset t0, the data Yt0+1:t0+P , Zt0+1:t0+P+Q

and (possibly) the graph G, to estimate Yt0+P+1:t0+P+Q.
The prediction algorithm should produce both point esti-
mates and prediction intervals. The performance metrics
for the point estimates include mean absolute error (MAE),
mean absolute percentage error (MAPE), and root mean
squared error (RMSE). For the prediction intervals, the per-
formance metrics include the Continuous Ranked Probabil-
ity Score (CRPS) (Gneiting & Raftery, 2007), and the P10,
P50, and P90 Quantile Losses (QL) (Salinas et al., 2020;
Wang et al., 2019). Expressions for these performance met-
rics are provided in the supplementary material.

4. Background: Particle Flow
Particle flow is an alternative to particle filtering for
Bayesian filtering (and prediction) in a state-space model.
The filtering task is to approximate the posterior distribu-
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Figure 1. Probabilistic forecasting from the state-space model using particle flow. Migration of particles from a 2-d Gaussian prior to a
2-d Gaussian posterior distribution is illustrated as an example.

tion of the state trajectory pΘ(xt|y1:t) recursively, where
xt denotes the state at time t and y1:t are observations from
times 1 to t. A particle filter (Gordon et al., 1993; Doucet
& Johansen, 2009) maintains a population of Np samples
(particles) and associated weights {xjt , w

j
t}
Np

j=1 that it uses
to approximate the marginal posterior distribution of xt:

pΘ(xt|y1:t) ≈
1

Np

Np∑
j=1

w
(j)
t δ(xt − xjt ) . (1)

Here, δ(·) denotes the Dirac-delta function. Particles are
propagated by the application of importance sampling using
a proposal distribution; the weights are updated accord-
ingly. When the disparity in the weights becomes too great,
resampling is applied, with particles being sampled pro-
portionally to their weights and the weights being reset to
1. Constructing well-matched proposal distributions to the
posterior distribution in high-dimensional state-spaces is
extremely challenging. A mismatch between the proposal
and the posterior leads to weight degeneracy after resam-
pling, which results in poor performance of particle filters
in high-dimensional problems (Bengtsson et al., 2008; Sny-
der et al., 2008; Beskos et al., 2014). Instead of sampling,
particle flow filters offer a significantly better solution by
transporting particles continuously from the prior to the
posterior (Daum & Huang, 2007; Ding & Coates, 2012).

For a given time step t, particle flow algorithms solve dif-
ferential equations to gradually migrate particles from the
predictive distribution so that they represent the posterior
distribution after the flow. A particle flow can be modelled
by a background stochastic process ηλ in a pseudo-time
interval λ ∈ [0, 1], such that the distribution of η0 is the
predictive distribution pΘ(xt|y1:t−1) and the distribution of
η1 is the posterior distribution pΘ(xt|y1:t).

One approach (Daum et al., 2010), is to use an ordinary
differential equation (ODE) with zero diffusion to govern

the flow of ηλ:
dηλ
dλ

= ϕ(ηλ, λ) . (2)

For linear Gaussian state-space models, the flow can be
expressed in the form:

ϕ(ηλ, λ) = A(λ)ηλ + b(λ) , (3)

and we can derive analytical expressions for A(λ) and b(λ)
(see supplementary material for details). For non-linear and
non-Gaussian models, we employ Gaussian approximations
and repeated local linearizations.

5. Methodology
5.1. State-space model
We postulate that yt ∈ RN×1 is the observation from
a Markovian state space model with hidden state Xt ∈
RN×dx . We denote by xt and zt the vectorizations of Xt

and Zt, respectively. The state space model is:

x1 ∼ p1(·, z1, ρ) , (4)
xt = gG,ψ(xt−1,yt−1, zt,vt), for t > 1 , (5)
yt = hG,φ(xt, zt,wt), for t > 1 . (6)

Here vt ∼ pv(·|xt−1, σ) and wt ∼ pw(·|xt, γ) are the
noises in the dynamic and measurement models respectively.
ρ, σ and γ are the parameters of the distribution of the initial
state x1, process noise vt and measurement noise wt respec-
tively. g and h denote the state transition and measurement
functions, possibly linear or nonlinear, with parameters ψ
and φ respectively. The subscript G in g and h indicates
that the functions are potentially dependent on the graph
topology. We assume that hG,φ(xt, zt, 0) is a C1 function
in xt, i.e., hG,φ(xt, zt,0) is a differentiable function whose
first derivative w.r.t. xt is continuous. The complete set of
the unknown parameters is formed as: Θ = {ρ, ψ, σ, φ, γ}.
Figure 2 depicts the graphical model relating the observed
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Figure 2. The graphical model representation of the state-space
model in Section 5.1

variables (yt and zt) to the latent variables (vt, wt) and the
graph (G).

With the proposed formulation, we can modify recurrent
graph convolutional architectures when designing the func-
tion g. When a meaningful graph is available, such architec-
tures significantly outperform models that ignore the graph.
For example, we conduct experiments by incorporating into
our general model the Adaptive Graph Convolutional Gated
Recurrent Units (AGCGRU) presented in (Bai et al., 2020).
The AGCGRU combines (i) a module that adapts the pro-
vided graph based on observed data, (ii) graph convolution
to capture spatial relations, and (iii) a GRU to capture evolu-
tion in time. The example model used for experiments thus
employs an L-layer AGCRU with additive Gaussian noise
to model the system dynamics g:

xt = AGCGRU
(L)
G,ψ(xt−1,yt−1, zt) + vt , (7)

yt = Wφxt + wt . (8)

In this model, we have pv(vt) = N (0, σ2I), i.e., the la-
tent variables for the dynamics are independent. The initial
state distribution is also chosen to be isotropic Gaussian,
i.e., p1(x1, z1, ρ) = N (0, ρ2I). The parameters ρ and σ
are learnable variance parameters. The observation model
g incorporates a linear projection matrix Wφ. The latent
variable wt for the emission model is modelled as Gaus-
sian with variance dependent on xt via a learnable softplus
function:

pw(wt|xt) = N
(
0, diag

(
softplus(Cγxt)

)2)
. (9)

5.2. Inference
We assume that a dataset Dtrn is available for training. Al-
though this data may be derived from a single time-series,
because our task is to predict yt0+P+1:t0+P+Q using a lim-
ited historical window yt0+1:t0+P , we splice the time-series
and thus construct multiple training examples, denoted by
(y

(m)
1:P ,y

(m)
P+1:P+Q). In the training set, all of these obser-

vations are available; in the test set yP+1:P+Q are not. In
addition, the associated covariates z1:P+Q are known for
both training and test sets.

Inference involves an iterative process. We randomly initial-
ize the parameters of the model to obtain Θ0. Subsequently,

at the k-th iteration of the algorithm (processing the k-th
training batch), we first draw samples {yiP+1:P+Q}

Np

i=1 from
the distribution pΘk−1

(yP+1:P+Q|y1:P , z1:P+Q). With this
set of samples, we can subsequently apply a gradient de-
scent procedure to obtain the updated model parameters Θk.
We discuss each of these steps in turn as follows.

5.2.1. SAMPLING

In a Bayesian setting with known model parameters Θ =
Θk−1, we would aim to form a prediction by approx-
imating the posterior distribution of the forecasts, i.e.,
pΘ(yP+1:P+Q|y1:P ). (For conciseness we drop the time-
offset t0).

pΘ(yP+1:P+Q|y1:P , z1:P+Q) =

∫ P+Q∏
t=P+1

(
pφ,γ(yt|xt, zt)

pψ,σ(xt|xt−1,yt−1, zt)
)
pΘ(xP |y1:P , z1:P )dxP :P+Q .

(10)

Since the integral in eq. (10) is analytically intractable for a
general nonlinear state-space model, we take a Monte Carlo
approach as follows:

Step 1: For 1 6 t 6 P , we apply a particle flow algorithm
(details in Sec. 4) withNp particles for the state-space model
specified by eqs. (4), (5) and (6) to recursively approximate
the posterior distribution of the states:

pΘ(xt|y1:t, z1:t) ≈
1

Np

Np∑
j=1

δ(xt − xit) . (11)

Here {xjt}
Np

j=1 are approximately distributed according to
the posterior distribution of xt. The generation of each
sample xjt involves an associated sampling of the latent
variables v1:t and implies a sampling of w1:t, but these
samples are not required since the proposed model only
needs xP to construct the forecast,

Step 2: For P + 1 6 t 6 P +Q, we iterate between the
following two steps:

a. We sample xjt from pψ,σ(xt|xjt−1,y
j
t−1, zt) (for t >

P + 1) or from pψ,σ(xt|xjt−1,yt−1, zt) (for t = P + 1)
for 1 6 j 6 Np. This amounts to a state transition at
time t to obtain the current state xjt from the previous
state xjt−1, using eq. (5).

b. We sample yjt from pφ,γ(yt|xjt , zt) for 1 6 j 6 Np,
i.e., we use xjt in the measurement model, specified by
eq. (6), to sample yjt .

A Monte Carlo (MC) approximation of the integral in
eq. (10) is then formed as:

pΘ(yP+1:P+Q|y1:P , z1:P+Q) ≈
P+Q∏
t=P+1

1

Np

Np∑
j=1

δ(yt−yjt ) .

(12)
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Each yjP+1:P+Q is approximately distributed according to
the joint posterior distribution of yP+1:P+Q. The resulting
algorithm is summarized in Algorithm 1. A block diagram
of the probabilistic forecasting procedure is shown in Fig-
ure 1.

Algorithm 1 Sequence to sequence prediction
1: Input: y1:P , z1:P+Q, and Θ

2: Output: {yjP+1:P+Q}
Np

j=1

3: Initialization: Sample ηj0 ∼ p1(x1, z1, ρ), j = 1 : Np.
4: for t = 1, 2, ..., P do
5: if t > 1 then
6: Sample ηj0 ∼ pψ,σ(xt|xjt−1,yt−1, zt), j = 1 : Np as:

ηj0 = gG,ψ(xjt−1,yt−1, zt,vt).
7: end if
8: Use particle flow (details in supplementary material) to

obtain {ηj1}
Np

j=1 from {ηj0}
Np

j=1, zt, and yt.
9: Set xjt = ηj1.

10: end for
11: for t = P + 1, P + 2, ..., P +Q do
12: if t = P + 1 then
13: Sample xjP+1 ∼ pψ,σ(xP+1|xjP ,yP , zP+1), j = 1 :

Np as: xjP+1 = gG,ψ(xjP ,yP , zP+1,vP+1).
14: else
15: Sample xjt ∼ pψ,σ(xt|xjt−1,y

j
t−1, zt), j = 1 : Np as:

xjt = gG,ψ(xjt−1,y
j
t−1, zt,vt).

16: end if
17: Sample yjt ∼ pφ,γ(yt|xjt , zt), j = 1 : Np as: yjt =

hG,φ(xjt , zt,wt).
18: end for
19: Form the Monte Carlo estimate using eq. (12).

5.2.2. PARAMETER UPDATE

With the predictive samples {yjP+1:P+Q}
Np

j=1, we can up-
date the model parameters via Stochastic Gradient Descent
(SGD) to obtain Θ = Θk.

If our focus is on obtaining a point estimate, then we can
perform optimization on the training set with respect to a
loss function derived from Mean Absolute Error (MAE) or
Mean Square Error (MSE). The point forecast ŷ(m)

P+1:P+Q is
obtained based on a statistic such as the mean or median of
the samples {yj,(m)

P+1:P+Q}
Np

j=1. The MAE loss function on a
dataset indexed by D can then be expressed as:

LMAE(Θ,D) =
1

NQ|D|
∑
m∈D

P+Q∑
t=P+1

||y(m)
t − ŷ

(m)
t ||1 .

(13)
In an alternate approach, we could consider the maximiza-
tion of the marginal log-likelihood over the training set. In
that case, a suitable loss function is:

Lprob(Θ,D) = − 1

|D|
∑
m∈D

log pΘ(y
(m)
P+1:P+Q|y

(m)
1:P , z

(m)
1:P+Q) ,

(14)where we approximate the posterior probability as:

p̂Θ(yP+1:P+Q|y1:P , z1:P+Q) =

P+Q∏
t=P+1

[
1

Np

Np∑
j=1

pφ,γ(yt|xjt , zt)

]
,

using eq. (10). This loss formulation is similar to the
MC variational objectives in (Maddison et al., 2017;
Naesseth et al., 2018; Le et al., 2017). If we use
the particle flow particle filter (Li & Coates, 2017),
then the sampled particles and the propagated fore-
casts form an unbiased approximation of the distribution
pΘ(yP+1:P+Q|y1:P , z1:P+Q). By Jensen’s inequality, the
summation over the log terms in (14) is thus a lower bound
for the desired E[log pΘ(yP+1:P+Q|y1:P , z1:P+Q)] that
converges as Np →∞.

In each training mini-batch, for each training example, we
perform a forward pass through the model using Algorithm 1
to obtain approximate forecast posteriors and then update
all the model parameters using SGD via backpropagation.

Figure 3. Boxplot of ranks of the top 10 algorithms across the four
traffic datasets. The means of the ranks are shown by the black
triangles; whiskers extend to the minimum and maximum ranks.

6. Experiments
We perform experiments on four graph-based and four non-
graph based public datasets to evaluate proposed methods.

6.1. Datasets
We evaluate our proposed algorithm on four publicly avail-
able traffic datasets, namely PeMSD3, PeMSD4, PeMSD7
and PeMSD8. These are obtained from the Caltrans Perfor-
mance Measurement System (PeMS) (Chen et al., 2000) and
have been used in multiple previous works (Yu et al., 2018;
Guo et al., 2019; Song et al., 2020; Bai et al., 2020; Huang
et al., 2020). Each of these datasets consists of the traffic
speed records, collected from loop detectors, and aggregated
over 5 minute intervals, resulting in 288 data points per de-
tector per day. In non-graph setting, we use Electricity (Dua
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Table 1. Average MAE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons. The best and the second best
results in each column are shown in bold and marked with underline respectively. Lower numbers are better.

Algorithm MAE (15/ 30/ 45/ 60 min)
PeMSD3 PeMSD4 PeMSD7 PeMSD8

DCRNN 14.42/15.87/17.10/18.29 1.38/1.78/2.06/2.29 2.23/3.06/3.67/4.18 1.16/1.49/1.70/1.87
STGCN 15.22/17.54/19.74/21.59 1.42/1.85/2.14/2.39 2.21/2.96/3.47/3.90 1.22/1.56/1.79/1.98
GWN 14.63/16.56/18.34/20.08 1.37/1.76/2.03/2.24 2.23/3.03/3.56/3.98 1.11/1.40/1.59/1.73

GMAN 14.73/15.44/16.15/16.96 1.38/1.61/1.76/1.88 2.40/2.76/2.98/3.16 1.23/1.36/1.46/1.55
AGCRN 14.20/15.34/16.28/17.38 1.41/1.67/1.84/2.01 2.19/2.81/3.15/3.42 1.16/1.39/1.53/1.67
LSGCN 14.28/16.08/17.77/19.23 1.40/1.78/2.03/2.20 2.23/2.99/3.50/3.95 1.21/1.54/1.75/1.89

FC-GAGA 14.68/15.85/16.40/17.04 1.43/1.78/1.95/2.06 2.22/2.85/3.18/3.36 1.18/1.47/1.62/1.72
DeepAR 15.84/18.15/20.30/22.64 1.51/2.01/2.38/2.68 2.53/3.61/4.48/5.20 1.25/1.61/1.87/2.10

DeepFactors 17.53/20.17/22.78/24.87 1.54/2.01/2.34/2.61 2.51/3.47/4.17/4.71 1.26/1.63/1.88/2.07
MQRNN 14.60/16.55/18.34/20.12 1.37/1.76/2.03/2.25 2.22/3.03/3.58/4.00 1.13/1.43/1.62/1.77

AGCGRU+flow 13.79/14.84/15.58/16.06 1.35/1.63/1.78/1.88 2.15/2.70/2.99/3.19 1.13/1.37/1.49/1.57

Table 2. Average MAE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for the proposed flow based
approach and deterministic encoder-decoder models. Lower numbers are better.

Algorithm MAE (15/ 30/ 45/ 60 min)
PeMSD3 PeMSD4 PeMSD7 PeMSD8

AGCGRU+flow 13.79/14.84/15.58/16.06 1.35/1.63/1.78/1.88 2.15/2.70/2.99/3.19 1.13/1.37/1.49/1.57
FC-AGCGRU 13.96/15.37/16.52/17.45 1.37/1.74/2.00/2.20 2.21/2.99/3.56/4.05 1.16/1.48/1.70/1.87
DCGRU+flow 14.48/15.67/16.52/17.36 1.38/1.71/1.92/2.08 2.19/2.87/3.29/3.61 1.17/1.44/1.58/1.70
FC-DCGRU 14.42/15.87/17.10/18.29 1.38/1.78/2.06/2.29 2.23/3.06/3.67/4.18 1.16/1.49/1.70/1.87
GRU+flow 14.40/16.10/17.63/19.18 1.37/1.76/2.02/2.23 2.24/3.02/3.55/3.96 1.12/1.41/1.59/1.74
FC-GRU 15.82/18.37/20.61/22.93 1.46/1.91/2.25/2.54 2.41/3.40/4.17/4.84 1.20/1.56/1.81/2.02

Figure 4. 15 minutes ahead predictions from the probabilistic forecasting algorithms with confidence intervals at node 4 of PeMSD7
dataset for the first day in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval than its competitors,
which leads to lower quantile error.

& Graff, 2017) (hourly time-series of the electricity con-
sumption), Traffic (Dua & Graff, 2017) (hourly occupancy
rate, of different car lanes in San Francisco), Taxi (Salinas
et al., 2019), and Wikipedia (Salinas et al., 2019) (count of
clicks to different web links) datasets. The detailed statis-
tics of these datasets are summarized in the supplementary
material.

6.2. Preprocessing
For the PeMS datasets, missing values are filled by the last
known value in the same series. The training, validation and

test split is set at 70/10/20% chronologically and standard
normalization of the data is used as in (Li et al., 2018). We
use one hour of historical data (P = 12) to predict the
traffic for the next hour (Q = 12). Graphs associated with
the datasets are constructed using the procedure in (Huang
et al., 2020).

6.3. Baselines
To demonstrate the effectiveness of our model, we compare
to the following forecasting methods. A detailed description
of each baseline is provided in the supplementary material.
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Spatio-temporal point forecast models: DCRNN (Li et al.,
2018), STGCN (Yu et al., 2018), ASTGCN (Guo et al.,
2019), GWN (Wu et al., 2019), GMAN (Zheng et al., 2020),
AGCRN (Bai et al., 2020), LSGCN (Huang et al., 2020).
Deep-learning based point forecasting methods:
DeepGLO (Sen et al., 2019), N-BEATS (Oreshkin et al.,
2020), and FC-GAGA (Oreshkin et al., 2021).
Deep-learning based probabilistic forecasting methods:
DeepAR (Salinas et al., 2020), DeepFactors (Wang et al.,
2019), and MQRNN (Wen et al., 2017).

The detailed comparison of our approach with all of these
models is provided in the supplementary material for space
constraints. Here, we show results of a subset, focusing on
those with the most competitive performance (Figure 3).

6.4. Hyperparameters and training setup
For our model, we use an L = 2 layer AGCGRU (Bai et al.,
2020) as the state-transition function. The dimension of the
learnable node embedding is de = 10, and the number of
RNN units is dx = 64. We treat ρ and σ as fixed hyper-
parameters and set ρ = 1 and σ = 0 (no process noise).
We train for 100 epochs using the Adam optimizer, with
a batch size of 64. The initial learning rate is set to 0.01
and we follow a decaying schedule as in (Li et al., 2018).
Hyperparameters associated with scheduled sampling (Ben-
gio et al., 2015), gradient clipping, and early stoppng are
borrowed from (Li et al., 2018). We set the number of
particles Np = 1 during training and Np = 10 for vali-
dation and testing. The number of exponentially spaced
discrete steps (Li & Coates, 2017) for integrating the flow
is Nλ = 29. For each dataset, we conduct two separate ex-
periments minimizing the training MAE (results are used to
report MAE, MAPE, RMSE, and P50QL) and the training
negative log posterior probability (results are used to report
CRPS, P10QL, and P90QL). We also experiment with alter-
native state transition functions, including the DCGRU (Li
et al., 2018) and GRU (Chung et al., 2014). For these, the
hyperparameters are fixed to the same values as presented
above.

6.5. Results and Discussion
Comparison with baselines : Results for the point fore-
casting task are summarized in Table 1. We observe that
most of the spatio-temporal models perform better than
graph agnostic baselines in most cases. Moreover, the pro-

Some of the recent spatio-temporal models such as (Chen
et al., 2020; Zhang et al., 2020; Park et al., 2020) do not have pub-
licly available code. Although the codes for (Wu et al., 2020; Song
et al., 2020; Pan et al., 2019) are available, these works use differ-
ent datasets for evaluation. We could not obtain sensible results
from these models for our datasets, even with considerable hyper-
parameter tuning. The code for (Kurle et al., 2020; de Bézenac
et al., 2020) is not publicly available.

posed AGCGRU+flow algorithm achieves on par or better
performance with the best-performing spatio-temporal mod-
els, such as GWN, GMAN and AGCRN. We present a com-
parison of the average rankings across datasets in Figure 3.
Our proposed method achieves the best average ranking
and significantly outperforms the baseline methods. Table 3
summarizes the results for probabilistic forecasting. We
observe that in most cases, the proposed flow based algo-
rithms outperform the competitors. MQRNN also shows
impressive performance in predicting the forecast quantiles,
as it is explicitly trained to minimise the quantile losses.
In particular, comparison of GRU+flow with the DeepAR
model reveals that even without a sophisticated RNN ar-
chitecture, the particle flow based approach shows better
characterization of prediction uncertainty in most cases. Fig-
ure 4 provides a qualitative comparison of the uncertainty
characterization, showing example confidence intervals for
15-minute ahead prediction for the PeMSD7 dataset. We see
that the proposed algorithm provides considerably tighter
intervals, while still achieving coverage of the observed
values.

Generalization of particle flow inference across archi-
tectures : Table 2 shows that in comparison to determinis-
tic encoder-decoder based sequence to sequence prediction
models, the proposed flow based approaches perform better
in almost all cases for three different architectures of the
RNN. In each case, both of the encoder-decoder model and
our approach use a 2-layer architecture with 64 RNN units.

Comparison to the particle filter : Table 4 demonstrates
the effectiveness of particle flow (Daum & Huang, 2007),
comparing it to a Bootstrap Particle Filter (BPF) (Gordon
et al., 1993) with the same number of particles. The use of
the bootstrap particle filter leads to a computationally faster
algorithm (requiring approximately 60% of the training time
of the particle flow-based method).

Comparison to ensembles : We compare the proposed
approach with an ensemble of competitive deterministic
forecasting techniques. We choose the size of the ensemble
so that the algorithms have an approximately equal execu-
tion time. We use AGCRN and GMAN to form the ensem-
bles, as they are the best point-forecast baseline algorithms.
From Table 5, we observe that the proposed AGCGRU+flow
achieves lower average CRPS compared to the ensembles
in all cases.

Point forecasting results on non-graph datasets : We
evaluate our proposed flow-based RNN on the Electricity
and Traffic datasets, following the setting described in Ap-
pendix C.4 in (Oreshkin et al., 2020). We augment the
results table in (Oreshkin et al., 2020) with the results from
an FC-GRU (a fully connected GRU encoder-decoder) and
GRU+flow. We use a 2 layer GRU with 64 RNN units in
both cases. We follow the preprocessing steps in (Oreshkin
et al., 2020). In the literature, four different data splits have
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Table 3. Average CRPS, P10QL, P50QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons.
The best and the second best results in each column are shown in bold and marked with underline respectively. Lower numbers are better.

Dataset PeMSD3 PeMSD4 PeMSD7 PeMSD8
Algorithm CRPS (15/ 30/ 45/ 60 min)
DeepAR 11.41/13.11/14.62/16.27 1.13/1.52/1.82/2.07 1.92/2.78/3.44/3.99 0.94/1.24/1.46/1.64

DeepFactors 14.16/15.87/17.59/18.99 1.52/1.84/2.07/2.26 2.35/3.00/3.48/3.87 1.26/1.51/1.69/1.83
GRU+flow 11.23/12.70/13.98/15.25 1.14/1.50/1.75/1.95 1.88/2.61/3.09/3.46 0.95/1.23/1.42/1.57

DCGRU+flow 11.21/12.14/12.87/13.64 1.13/1.43/1.63/1.79 1.85/2.51/2.95/3.27 0.94/1.18/1.35/1.47
AGCGRU+flow 10.53/11.39/12.03/12.47 1.08/1.32/1.46/1.56 1.73/2.18/2.43/2.58 0.90/1.10/1.20/1.28

Algorithm P10QL(%) (15/ 30/ 45/ 60 min)
DeepAR 4.11/4.69/5.21/5.69 1.37/1.96/2.45/2.86 2.56/3.90/4.92/5.78 1.14/1.59/1.93/2.24

DeepFactors 5.85/6.33/6.91/7.51 2.13/2.61/3.01/3.34 3.49/4.53/5.46/6.26 1.77/2.17/2.49/2.76
MQRNN 4.03/4.60/5.13/5.68 0.95/1.18/1.31/1.40 1.70/2.20/2.47/2.66 0.77/0.94/1.04/1.10

GRU+flow 4.19/4.71/5.14/5.55 1.36/1.87/2.25/2.56 2.50/3.57/4.29/4.85 1.12/1.52/1.80/2.04
DCGRU+flow 4.28/4.69/4.99/5.28 1.33/1.75/2.06/2.30 2.41/3.35/3.97/4.43 1.10/1.43/1.67/1.87

AGCGRU+flow 4.01/4.44/4.76/4.97 1.28/1.62/1.82/1.97 2.27/2.97/3.36/3.60 1.10/1.43/1.61/1.73
Algorithm P50QL(%) (15/ 30/ 45/ 60 min)
DeepAR 9.11/10.44/11.68/13.03 2.37/3.15/3.73/4.20 4.35/6.21/7.70/8.95 1.97/2.52/2.94/3.30

DeepFactors 10.08/11.60/13.11/14.31 2.42/3.15/3.68/4.10 4.31/5.97/7.16/8.10 1.97/2.55/2.95/3.25
MQRNN 8.40/9.52/10.55/11.58 2.15/2.77/3.19/3.53 3.82/5.21/6.16/6.88 1.77/2.24/2.54/2.77

GRU+flow 8.28/9.26/10.15/11.04 2.16/2.76/3.17/3.50 3.84/5.19/6.10/6.81 1.76/2.21/2.49/2.72
DCGRU+flow 8.33/9.01/9.50/9.99 2.16/2.69/3.01/3.26 3.77/4.94/5.66/6.20 1.83/2.25/2.49/2.66

AGCGRU+flow 7.93/8.54/8.96/9.24 2.11/2.55/2.79/2.94 3.70/4.65/5.14/5.49 1.78/2.15/2.34/2.46
Algorithm P90QL(%) (15/ 30/ 45/ 60 min)
DeepAR 4.40/5.13/5.70/6.40 1.10/1.45/1.67/1.84 2.13/3.03/3.65/4.08 0.93/1.22/1.40/1.53

DeepFactors 6.19/6.95/7.61/8.04 1.98/2.24/2.39/2.50 3.22/3.70/3.97/4.14 1.62/1.82/1.93/1.99
MQRNN 3.75/4.27/4.70/5.09 1.22/1.68/2.03/2.32 2.19/3.12/3.78/4.30 0.99/1.34/1.59/1.80

GRU+flow 4.33/4.94/5.48/6.04 1.11/1.43/1.63/1.77 2.02/2.74/3.16/3.44 0.93/1.18/1.33/1.44
DCGRU+flow 4.30/4.67/4.97/5.31 1.10/1.34/1.50/1.61 2.00/2.62/3.01/3.28 0.93/1.13/1.25/1.34

AGCGRU+flow 4.06/4.38/4.63/4.82 1.05/1.26/1.37/1.45 1.83/2.25/2.48/2.62 0.87/1.01/1.09/1.14

Table 4. Average MAE and average CRPS for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow and AGCGRU+BPF. Lower numbers are better.

Dataset PeMSD3 PeMSD4 PeMSD7 PeMSD8
Algorithm MAE (15/ 30/ 45/ 60 min)

AGCGRU+flow 13.79/14.84/15.58/16.06 1.35/1.63/1.78/1.88 2.15/2.70/2.99/3.19 1.13/1.37/1.49/1.57
AGCGRU+BPF 14.19/15.13/15.85/16.35 1.36/1.65/1.80/1.90 2.19/2.73/2.99/3.17 1.18/1.41/1.52/1.59

Algorithm CRPS (15/ 30/ 45/ 60 min)
AGCGRU+flow 10.53/11.39/12.03/12.47 1.08/1.32/1.46/1.56 1.73/2.18/2.43/2.58 0.90/1.10/1.20/1.28
AGCGRU+BPF 11.32/11.94/12.55/12.92 1.10/1.32/1.45/1.54 1.79/2.24/2.49/2.66 0.96/1.13/1.22/1.28

been used for the Electricity dataset, and three different
splits have been used for the Traffic dataset. The evaluation
metric is P50QL (Normalized Deviation).

In Table 6, we observe that the flow based approach per-
forms comparably or better than the state-of-the-art N-
BEATS algorithm for the Electricity dataset, even with a
simple GRU as the state transition function. The better
performance of the univariate N-BEATS compared to the
multivariate models suggests that most time-series in these
datasets do not provide valuable additional information for
predicting other datasets. This is in contrast to the graph-
based datasets, where the performance of N-BEATS was
considerably worse than the multivariate algorithms. The
proposed flow-based algorithm achieves prediction perfor-
mance on the Traffic dataset that is comparable to N-BEATS
except for one split with limited training data. Across all
datasets and split settings, our flow-based approach signifi-

cantly outperforms the FC-GRU. The proposed algorithm
outperforms TRMF, DeepAR, DeepState and DeepGLO. It
outperforms DeepFactors for the Electricity dataset, but is
worse for the Traffic dataset (for the same split with limited
available training data).

Probabilistic forecasting results on non-graph datasets :
For comparison with state-of-the-art deep learning based
probabilistic forecasting methods on standard non-graph
time-series datasets, we evaluate the proposed GRU+flow
algorithm following the setting in (Rasul et al., 2021). The
results reported in Table 1 of (Rasul et al., 2021) are aug-
mented with the results of the GRU+flow algorithm. We
use a 2 layer GRU with 64 RNN units in each case. We
follow the preprocessing steps as in (Salinas et al., 2019;
Rasul et al., 2021). The evaluation metric is (normalized)
CRPSsum (defined in the supplementary material), which is
obtained by first summing across the different time-series,
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Table 5. Average CRPS for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for AGCRN-ensemble,
GMAN-ensemble, and AGCGRU+flow. The best result in each column is shown in bold. Lower numbers are better.

Algorithm CRPS (15/ 30/ 45/ 60 min)
PeMSD3 PeMSD4 PeMSD7 PeMSD8

AGCRN-ensemble 12.64/13.44/13.96/14.27 1.20/1.44/1.56/1.68 1.90/2.39/2.60/2.81 1.03/1.20/1.28/1.38
GMAN-ensemble 12.79/13.49/14.13/14.77 1.16/1.38/1.51/1.62 1.96/2.31/2.53/2.73 0.95/1.10/1.19/1.28
AGCGRU+flow 10.53/11.39/12.03/12.47 1.08/1.32/1.46/1.56 1.73/2.18/2.43/2.58 0.90/1.10/1.20/1.28

Table 6. Normalized Deviation on Electricity and Traffic datasets. The best and the second best results in each column are shown in bold
and marked with underline respectively. Lower numbers are better.

Algorithm Electricity Traffic
2014-09-01 2014-03-31 2014-12-18 last 7 days 2008-06-15 2008-01-14 last 7 days

TRMF 0.160 n/a 0.104 0.255 0.200 n/a 0.187
DeepAR 0.070 0.272 0.086 n/a 0.170 0.296 0.140

DeepState 0.083 n/a n/a n/a 0.167 n/a n/a
DeepFactors n/a 0.112 n/a n/a n/a 0.225 n/a
DeepGLO n/a n/a 0.082 n/a n/a n/a 0.148
N-BEATS 0.064 0.065 n/a 0.171 0.114 0.230 0.110
FC-GRU 0.102 0.118 0.098 0.203 0.259 0.528 0.233

GRU+flow 0.070 0.071 0.069 0.140 0.133 0.322 0.125

Table 7. Average CRPSsum for Electricity, Traffic, Taxi, and Wikipedia datasets. The best and the second best results in each column are
shown in bold and marked with underline respectively. Lower numbers are better

Dataset Vec-LSTM
ind-scaling

Vec-LSTM
lowrank-Copula

GP
scaling

GP
Copula

LSTM
Real-NVP

LSTM
MAF

Transformer
MAE

GRU+
flow

Electricity 0.025 0.064 0.022 0.024 0.024 0.021 0.021 0.013
Traffic 0.087 0.103 0.079 0.078 0.078 0.069 0.056 0.028
Taxi 0.506 0.326 0.183 0.208 0.175 0.161 0.179 0.140

Wikipedia 0.133 0.241 1.483 0.086 0.078 0.067 0.063 0.054

both for the ground-truth test data, and samples of forecasts,
and then computing the (normalized) CRPS on the summed
data. The results are summarized in Table 7. We observe
that the proposed GRU+flow achieves the lowest CRPSsum
for all datasets.

Computational complexity : For simplicity, we consider
a GRU instead of a graph convolution based RNN and
we only focus on one sequence instead of a batch. Our
model has to perform both GRU computation and particle
flow for the first P time steps and then apply the GRU
and the linear projection for the next Q steps to generate
the predictions. For an L-layer GRU with dx RNN units
and N -dimensional input, the complexity of the GRU op-
eration for Np particles is O((P + Q)NpLNd

2
x) (Chung

et al., 2014). The total complexity of the EDH particle
flow (Choi et al., 2011) is O(PNλN

3) for computing the
flow parameters and O(PNpNλNd

2
x) for applying the par-

ticle flow (more details in the supplementary material). The
total complexity of the measurement model for Np parti-
cles is O(QNpNd

2
x). Since in most cases N � dx and

N � Np, the complexity of our algorithm for forecasting
of one sequence is O(PNλN

3). Many of the other algo-
rithms exhibit a similar O(N3) complexity, e.g. TRMF,
GMAN. We specify the execution time and memory us-
age in the supplementary material. Scaling the proposed
methodology to extremely high dimensional settings is of
significant importance and can be addressed in several ways.

For spatio-temporal predictions using the graph-based recur-
rent architectures, this can be done if the graph can be parti-
tioned meaningfully. For non-graph datasets, we can use the
cross-correlation among different time-series to group them
into several lower-dimensional problems. Alternatively, we
can train a univariate model based on all the time-series as
in (Rangapuram et al., 2018).

7. Conclusion
In this paper, we propose a state-space probabilistic model-
ing framework for multivariate time-series prediction that
can process information provided in the form of a graph that
specifies (probable) predictive or causal relationships. We
develop a probabilistic forecasting algorithm based on the
Bayesian inference of hidden states via particle flow. For
spatio-temporal forecasting, we use GNN based architec-
tures to instantiate the framework. Our method demonstrates
comparable or better performance in point forecasting and
considerably better performance in uncertainty characteriza-
tion compared to existing techniques.
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