
Supplementary Material: Inference for network
regression models with community structure

A Proof of Theorem 5.1

We first restate Theorem 5.1, then provide a complete proof.
Assume (a) the error vector satisfies the block-exchangeability assumption, with two

blocks of sizes n1 and n2, (b) X is a full rank (n(n− 1)× 2) matrix, (c) covariates {Xij} are
independent and identically distributed, (d) the fourth moment of the errors and covariates
are bounded, (e) errors Ξ and X are independent, and (f) the number of blocks B is O(1).
As n1 →∞, n2 →∞, and n1/n2 → α, where α is a constant such that 0 < α <∞,

n
(
V̂B(β̂)− V̂E(β̂)

)
p→ c(X). (1)

where c(X) is a weighted linear combination of the differences between the true block
exchangeable parameters and corresponding exchangeable parameters when the block ex-
changeable parameters are appropriately averaged within configuration type and convergence
is pointwise. Furthermore, when Xij is independent of gi and gj, c(X) = 0 and thus the
estimators are asymptotically equivalent.

We now proceed with the proof. We begin by defining c(X):

c(X) =
∑

M,q∈QM

fM,q(Mq −M)

=
∑

u,v∈{1,2}

fσ2,(u,v)(σ
2
(u,v) − σ2) +

∑
u,v∈{1,2}

fφA,{u,v}(φA,{u,v}) − φA) + ... (2)

where fM,q are functions of X. More specifically, given M and q, fM,q is a function of
elements in the set {[Xij, Xkl]|[(i, j), (k, l)] ∈ ΦM,q}. The parameter

σ2 =
n1(n1 − 1)σ2

(1,1) + n2(n2 − 1)σ2
(2,2) + n1n2(σ2

(1,2) + σ2
(2,1))

n(n− 1)
(3)
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We now present a proof of Theorem 5.1.

n
(
V̂B(β̂)− V̂E(β̂)

)
=
(
XTX

)−1
XT (Ω̂B − Ω̂E)X(XTX)−1

=
n

n2(n− 1)2

(
XTX

n(n− 1)

)−1

∑
M∈M

∑
q∈QM

∑
(j,k),(m,n)∈ΦM,q

XjkX
T
mn

(
M̂q − M̂

)
|ΦM,q|

|ΦM,q|

( XTX

n(n− 1)

)−1

=
∑
M∈M

∑
q∈QM

|ΦM,q|
n(n− 1)2

(
M̂q − M̂

)( XTX

n(n− 1)

)−1


∑

(j,k),(m,n)∈ΦM,q

XjkX
T
mn

|ΦM,q|

( XTX

n(n− 1)

)−1

=
∑
M∈M

∑
q∈QM

cM,q · |ΦM |
n(n− 1)2

(
M̂q − M̂

)
hM,q(X)

=
∑
M∈M

∑
q∈QM

c′McM,q

(
M̂q − M̂

)
hM,q(X) (4)

where c′M = |ΦM |
n(n−1)2

, cM,q is the proportion of dyad pairs with configuration M and block
specification q over all dyad pairs with configuration M , and hM,q contains the remaining
terms which are functions of X. Because we assume B is O(1), each |ΦM | is at most O(n3),
so each c′M → dM for some constant dM . Marrs et al. (2017) (Eq.27) show that

hM,q(X)
p→ h′M,q(X) ={

E[XjkX
T
jk]
−1 E[XjkX

T
jk|(j, k) ∈ Φσ2,q]E[XjkX

T
jk]
−1, for M = σ2

E[XjkX
T
jk]
−1 E[XjkX

T
mn|(j, k), (m,n) ∈ ΦM,q]E[XjkX

T
jk]
−1, for M ∈M \ σ2

We have shown cM,q and hM,q both converge in probability to constants. So the only part

left in Equation 4 is
(
M̂q − M̂

)
. Previous work (Marrs et al., 2017) has shown that

M̂q
p→Mq and M̂

p→M, (5)

where

M =

∑
q∈QM

Mq · |ΦM,q|∑
q∈QM

|ΦM,q|
=
∑
q∈QM

Mq · cM,q (6)

Thus, by Slutsky’s theorem,

n
(
V̂B(β̂)− V̂E(β̂)

)
p→
∑
M∈M

∑
q∈QM

(Mq −M) fM,q(X), (7)

where fM,q = cM,q · dM · h′M,q(X) is a constant when distribution of X is known, and Mq is
the true parameter in ΩB. When the distribution of X is independent of block membership,
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we have fM,q(X) = fM(X) ∀q. In addition,
∑

q∈QM

cM,q = 1 ∀M . Therefore,

n
(
V̂B(β̂)− V̂E(β̂)

)
p→
∑
M∈M

dMfM(X)
∑
q∈QM

cM,q (Mq −M)

=
∑
M∈M

dMfM(X)

(∑
q∈QM

cM,qMq −
∑
q∈QM

cM,qM

)
=
∑
M∈M

dMfM(X) (M −M) = 0 (8)

Therefore, we have shown that when X is independent of g, n
(
V̂B(β̂)− V̂E(β̂)

)
p→ 0.

In the case of two blocks,

n
(
V̂B(β̂)− V̂E(β̂)

)
=

∑
u,v∈{1,2}

(
σ2

(u,v) − σ2
)
fσ2,(u,v)(X)

+
∑

u,v∈{1,2}

(
φA,{u,v} − φA

)
fφA,(u,v)(X) +

∑
u,v,w∈{1,2}

(
φB,(u,{v,w}) − φB

)
fφB ,(u,{v,w})(X)

+
∑

u,v,w∈{1,2}

(
φC,(u,{v,w}) − φC

)
fφC ,(u,{v,w})(X) +

∑
u,v,w∈{1,2}

(
φD,(uv,w) − φD

)
fφD,(u,v,w)(X),

where

• σ2 =
n1(n1 − 1)σ2

(1,1) + n2(n2 − 1)σ2
(2,2) + n1n2(σ2

(1,2) + σ2
(2,1))

n(n− 1)

• φA =
n1(n1 − 1)φA,{1,1} + n2(n2 − 1)φA,{2,2} + 2n1n2φA,{1,2}

n(n− 1)

• φB =
n1(n1 − 1)(n1 − 2)φB(1,{1,1}) + 2n1(n1 − 1)n2φB(1,{1,2}) + n1n2(n2 − 1)φB(1,{2,2})

n(n− 1)(n− 2)

+
+n2(n2 − 1)(n2 − 2)φB(2,{2,2}) + 2n2n1(n2 − 1)φB(2,{1,2}) + n2n1(n1 − 1)φB(2,{1,1})

n(n− 1)(n− 2)

• φC =
n1(n1 − 1)(n1 − 2)φC(1,{1,1}) + 2n1(n1 − 1)n2φC(1,{1,2}) + n1n2(n2 − 1)φC(1,{2,2})

n(n− 1)(n− 2)

+
+n2(n2 − 1)(n2 − 2)φC(2,{2,2}) + 2n2n1(n2 − 1)φC(2,{1,2}) + n2n1(n1 − 1)φC(2,{1,1})

n(n− 1)(n− 2)

• φD =
n1(n1 − 1)(n1 − 2)φD(1,1,1) + n1(n1 − 1)n2φD(1,1,2) + n1(n1 − 1)n2φD(1,2,1)

n(n− 1)(n− 2)

+
n1n2(n2 − 1)φD(1,2,2) + n2(n2 − 1)(n2 − 2)φD(2,2,2) + n2n1(n2 − 1)φD(2,1,2)

n(n− 1)(n− 2)

+
n2n1(n2 − 1)φD(2,2,1) + n2n1(n1 − 1)φD(2,1,1)

n(n− 1)(n− 2)
.
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B Additional simulation details

In this section, we provide additional details about the simulation presented in Section 6 of
the manuscript. To begin, take the generative model as:

yij = β0 + β1Xij + ξij, ξij = ai + bj + zTi zj + γ(ij) + εij, (ai, bi)|gi ∼ N2(0,Σab,gi);

Σab,gi =

(
σ2
a,gi

ρabσa,giσb,gi
ρabσa,giσb,gi σ2

b,gi

)
;

zi|gi ∼ Nd

(
0, σ2

z,gi
Id
)
; εij ∼ N(0, σ2

ε );
γ(ij) = γ(ji)|gi, gj ∼ (0, σ2

γ,{gi,gj}).

Under the generative model, the variance and covariances are:

• Var(ξij) = σ2
a,gi

+ σ2
b,gj

+ dσ2
z,gi
σ2
z,gj

+ σ2
γ,{gi,gj} + σ2

ε;

• Cov(ξij, ξji) = ρabσa,giσb,gi + ρabσa,gjσb,gj + dσ2
z,gi
σ2
z,gj

+ σ2
γ,{gi,gj};

• Cov(ξij, ξil) = σ2
a,gi;

• Cov(ξij, ξkj) = σ2
b,gj ;

• Cov(ξij, ξki) = ρabσa,giσb,gi.

We recognize that the error vector satisfies the block-exchangeability by making the obser-
vation that Cov(ξij, ξkl) = Cov(ξπ(i)π(j), ξπ(k)π(l)) with gi = gπ(i), gj = gπ(j), gk = gπ(k), and gl =
gπ(l). However, this does not correspond to the most general form of the covariance ma-
trix ΩB that satisfy block-exchangeability. For example, under the error generating model,
Cov(ξij, ξil) takes B parameters, compared to B2(B+1)/2 in the most general form in Table
1 in the main document.

Figure B.1 shows a visualization of the covariance matrix ΩB under the error generating
model. Entries shaded with the same color and symbol share the same covariance value.
Compared to Figure 1 in the main text, the error generative model does not correspond to
the most general formulation of block-exchangeability covariance structure. For example,
cov(ξij, ξik) can take B values under the error generating model, but on the order of B3 with
the most general formulation.

We generate three types of covariates, each having three sub-cases regarding the correla-
tion between the covariate and block membership:

1. Xij,1 = 1Xi=Xj
, where Xi ∼ Bernoulli(pgi) and

(a) pgi is uncorrelated with gi, i.e., pgi is a fixed number

(b) pgi |gi = 2 > pgj |gj = 1 > 0.5, which suggests that high Var(Xij,1) is associated
with high Var(ξij)

(c) pgi |gi = 1 > pgj |gj = 2 > 0.5 , which suggests that high Var(Xij,1) is associated
with low Var(ξij)

2. Xij,2 = |Xi −Xj|, where Xi ∼ N(0, σgi) and
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Figure B.1: Visualization of covariance matrix Ω under the error generating model used in
simulation. Entries shaded with the same color and symbol share the same parameter value,
and a white box indicates a covariance of zero.

(a) σgi is uncorrelated with gi, i.e., σgi is a fixed number

(b) σgi |gi = 1 > σgi |gi = 2, which suggests that high Var(Xij,2) is associated with
high Var(ξij).

(c) σgi |gi = 1 < σgi|gi = 2, which suggests that high Var(Xij,2) is associated with low
Var(ξij).

3. Xij,3 ∼ N(0, σ2
gi,gj

) and

(a) σgi,gj is uncorrelated with gi, gj, i.e., σgi,gj is a fixed number

(b) σgi,gj |gi = 1, gj = 1 > σgi,gj |gi = 2, gj = 2, which suggests that high Var(Xij,3) is
associated with high Var(ξij,3)

(c) σgi,gj |gi = 1, gj = 1 < σgi,gj |gi = 2, gj = 2, which suggests that high Var(Xij,3) is
associated with low Var(ξij,3).

We set the parameters for generating covariates such that the noise to signal ratio, which
is defined as the ratio of sum of squared errors over total sum of squares, is consistent across
all three scenarios. Let NTS denote the noise-to-signal ratio, then
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NTSij =
Var(ξij)

Var(Yij)
, where Var(ξij) = σ2

(gi,gj) and

Var(Yij) = E(Var(Yij|Xij)) + Var(E(Yij|Xij)) = σ2
(gi,gj) + β2

1Var(Xij).

Therefore, for all three types of covariates:

1. Xij,1 = 1Xi=Xj
, where Xi ∼ Bernoulli(pgi).

NTSij | gi, gj =
σ2
gi,gj

σ2
gi,gj

+β2
1pij(1−pij)

, where pij = pipj + (1− pi)(1− pj)

2. Xij,2 = |Xi −Xj|, where Xi ∼ N(0, a2
gi

).

NTSij | gi, gj =
σ2
gi,gj

σ2
gi,gj

+β2
1(a2gi+a

2
gj

)(1−2/π)

3. Xij,3 ∼ N(0, a2
gi,gj

).

NTSij | gi, gj =
σ2
gi,gj

σ2
gi,gj

+β2
1a

2
gi,gj

With two blocks and equal block size, we set the equations (
∑

(u,v)∈{(1,1),(1,2),(2,1),(2,2)}NTSij |
gi = u, gj = v)/4 = 0.45 and solve for the parameters.

C Additional simulations: Evaluating Block Member-

ship Estimation

This section aims to show how well we recover block labels (Step 2-4 in Algorithm) as well
as graphical proof of concept for why we construct the similarity metric between a pair of
nodes as in Step 2 of the Algorithm. We consider a simple linear regression model with two
blocks:

yij = β0 + β1Xij + ξij,

where Xij
i.i.d∼ N (0, 1) and gi ∈ {1, 2}. We vary the strength of block structure in errors and

show how the algorithm recovers block membership.
Based on the error generating model in Section 6 of the main text, we set parameters as

follows:

• [σa,1 σa,2] = [
√

2α1

√
2rα1]

• [σb,1 σb,2] = [α1 rα1]

• [σz,1 σz,2] = [α1 rα1]

• [σγ,{1,1} σγ,{1,2} σγ,{2,2}] = [α1

√
rα1 rα1]

• σε = α1, ρ = 0.5, and d = 2.
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We immediately see that r quantifies the strength of block structure in errors. A trivial
r = 1 suggests that there is no block structure, while an r value far away from one suggests
a strong block structure. As functions of r and α1, the variance and covariances are:

Var(ξij) =


5α2

1 + 2α4
1 if gi = 1, gj = 1

(r2 + r + 3)α2
1 + 2r2α4

1 if gi = 1, gj = 2

(2r2 + r + 2)α2
1 + 2r2α4

1 if gi = 2, gj = 1

(4r2 + 1)α2
1 + 2r4α4

1 if gi = 2, gj = 2

Cov(ξij, ξji) =


(
√

2 + 1)α2
1 + 2α4

1 if gi = 1, gj = 1

(1/
√

2 + r + 1/
√

2r2)α2
1 + 2r2α4

1 if gi = 1, gj = 2

(1/
√

2 + r + 1/
√

2r2)α2
1 + 2r2α4

1 if gi = 2, gj = 1

(
√

2 + 1)r2α2
1 + 2r4α4

1 if gi = 2, gj = 2

Cov(ξij, ξil) =

{
2α2

1 if gi = 1

2r2α2
1 if gi = 2

Cov(ξij, ξkj) =

{
α2

1 if gj = 1

r2α2
1 if gj = 2

Cov(ξij, ξki) =

{
1/
√

2α2
1 if gi = 1

1/
√

2r2α2
1 if gi = 2

We perform simulation study on three values of r: r = 1/4, r = 1/2, and r = 3/4.
Again we see that r = 1/4 has the strongest block structure in errors, as the differences in
variance and covariances between different blocks are largest. For example, Cov(ξij, ξil|gi =
1) − Cov(ξij, ξil|gi = 2) = 2(1 − r2)α2

1, and (1 − r2) is a decreasing function in r ∈ (0, 1].
Because all three values of r are between 0 and 1, We also observe that:

• Var(ξij)|gi = 1, gj = 1 > Var(ξij)|gi = 1, gj = 2 > var(ξij)|gi = 2, gj = 1 >
Var(ξij)|gi = 2, gj = 2

• Cov(ξij, ξji)|gi = 1, gj = 1 > Cov(ξij, ξji)|gi = 1, gj = 2 = Cov(ξij, ξji)|gi = 2, gj = 1 >
Cov(ξij, ξji)|gi = 2, gj = 2

• Cov(ξij, ξil)|gi = 1 > Cov(ξij, ξil)|gi = 2

• Cov(ξij, ξkj)|gj = 1 > Cov(ξij, ξkj)|gj = 2

• Cov(ξij, ξki)|gi = 1 > Cov(ξij, ξki)|gi = 2.
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C.1 Simulation Results

In this section, we provide simulation evidence for Step 2 and 3 in Algorithm 2, as well as
how well we recover the block membership. Step 2 calculates the set of residual products
for a specific actor and dyad configuration, and step 3 calculates the Kolmogorov-Smirnov
statistic of the residual products between a pair of actors. Using simulated data, we show
that the distributions of residual products for actors i and i′ (gi 6= gi′) are more similar as
block strength decreases, which is evidence why using the KS statistic between them is a
reasonable way to construct a similarity matrix.

Figure C.1 shows the distribution of residual products calculated in Algorithm 2 Step 2
on each of the five cases at different values of r. Each column represents one of the five cases
M ∈ {σ2, φA, φB, φC , φD}, and each row represents a given r value. The red and blue curves
represent the distribution in Block 1 and Block 2, respectively. The densities are constructed
on all actors from 10 simulations of a network of size 80. The KS statistic on each plot is
calculated between the distribution of residual products. At r = 1/4, all five plots show that
the red curve is more spread out. This is because we set the simulation parameters such that
variance and covariances involving actors in Block 1 is always larger than those involving
Block 2. Since residual products are estimators of variance and covariances, we observe
that ∀M ∈ {σ2, φA, φB, φC , φD}, the distribution of RM,i|gi = 1 is more spread out. As r
decreases, the strength of block in errors decreases, so we observe a smaller difference between
the two densities on all five cases. At r = 3/4, the two densities coincide on M ∈ {φC , φD}.
This shows that as we have stronger block structure in errors, we have a larger difference
between the distribution of residual products.

Figure C.2 shows the distribution of KS statistic KSi,j,M calculated in Algorithm 2 Step
3 on each of the five cases at different values of r. Each column represents one of the five
cases M ∈ {σ2, φA, φB, φC , φD}, and each row represents a given r value. The red curves
represent the distribution where the two actors share the same block membership (gi = gj),
while the blue curves represent the distribution where the two actors are in different blocks
(gi 6= gj). The densities are constructed on all actors from 10 simulations of a network of
size 80. The KS statistic on each plot is calculated between the distribution of KS statistics.
At r = 1/4, we observe that the blue curve is more spread out. This is expected because the
difference in distributions of residual products involving actors i and that involving actor j
is larger when gi 6= gj, which leads to larger KS statistic between the two distributions. We
also observe that when M = σ2, the KS statistic between two distributions of KS statistic
is largest, which is evidence that the distribution of Rσ2,i is most effective in identifying
whether two actors belong to the same block. At r = 3/4, we observe that the two curves
are similar. Since the block structure is not strong in errors, the distribution of RM,i and
RM,j are not too different even when gi 6= gj.

Figure C.3 shows the number of misclustered nodes at different values of r. The number
of misclustered nodes is defined as min(Πgi

∑n
i=1 |gi − ĝi|), which is the minimum number

of nodes in the wrong block under permutation of the block labels. In the network of
size n, the number of misclustered nodes ranges from 0 to n/2. The boxplots in Figure
C.3 shows the distribution of the proportion of misclustered nodes, which is defined as the
number of misclustered nodes over n, where the red, blue, yellow color represent network size
n = 20, 40, 80, 160 respectively. The line in the box is the median proportion, the boundaries
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of the box is 10 and 90 percentile, and the whiskers are 2.5 and 97.5 percentile. We observe
that the proportion decreases with increasing n and increases with increasing r, which shows
that we recover block membership well at large network size and strong block structure in
errors.
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Figure C.1: Residual products of five dyads from 10 simulation of n = 80. Each column
represents one of the five cases M ∈ {σ2, φA, φB, φC , φD}, and each row represents a given r
value. The red and blue curves represent the distribution in Block 1 and Block 2, respectively.
The KS statistic on each plot is calculated between the distribution of residual products.
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Figure C.2: Distribution of KS statistic between residual products of five dyads from 10
simulation of n = 80. Each column represents one of the five cases M ∈ {σ2, φA, φB, φC , φD},
and each row represents a given r value. The red curves represent the distribution where
the two actors share the same block membership (gi = gj), while the blue curves represent
the distribution where the two actors are in different blocks (gi 6= gj). The KS statistic on
each plot is calculated between the distribution of KS statistics.
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D Additional details on the air traffic data

In this section, we provide more details about fitting the proposed model in the context of
our illustrative data example. A challenge posed by these data is the large number of zeros
that arise when there are no passenger seats from one airport to another. Figure D.1 shows
the distribution of passenger seats and the log number of seats between a destination for
cases where the number is greater than zero. We develop a pseudolikelihood approach to
address the structure of these data. Besag (1975) introduces pseudo-likelihood methodology
using an objective function that maximizes a product of conditional densities instead of
the joint likelihood, and Arnold & Strauss (1991) shows that when using pseudo-likelihood
as the objective, the parameter estimates are asymptotically normal with mean as the true
parameter and covariance matrix as the sandwich estimator. In the field of network analysis,
pseudo-likelihood approach has been widely used to make inference for exponential family
random graph models (ERGM) (Strauss & Ikeda (1990)), due to the fact that computation
of conditional densities are easier. Assume we have n independent, identically distributed
observed vectors Y (i), researchers have also used pseudo-likelihood approach as maximizing
a sum of pairwise marginal log likelihoods:

l(θ;Y (1), ..., Y (n)) =
∑
i

l(θ;Y (i)) ,where l(θ;Y (i)) =
∑
s>t

logL(Y (i)
s , Y

(i)
t ;θ), (9)

where L(Y
(i)
s , Y

(i)
t ;θ) is the likelihood of observing a pair of values Y

(i)
s and Y

(i)
t given pa-

rameter θ. Cox & Reid (2004) presents conditions for obtaining consistent estimates when
using such approach. Fieuws & Verbeke (2006) apply this method to the case of longitudinal
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observations, where individual random effects lead to non-zero covariance between multiple
observations on the same individual. Solomon & Weissfeld (2017) extend this application
to a case where observations are left-censored. Other applications of pairwise likelihood
approach include Kuk & Nott (2000) and Renard et al. (2004).

We first present the likelihood for a pair of observations (yij, ykl) when one or both
observations mat be censored. We consider a setting of relational observations left-censored
at zero for the regression model below:

yij =

{
y∗ij, if y∗ij ≥ 0

0, if y∗ij < 0

where y∗ij = βTX ij+ξij, i, j ∈ {1, ..., n}, i 6= j. Let θ denote the parameter vector containing

β and covariance terms. Let ρ(εij ,εkl) = Cov(εij, εkl)/
√

Var(εij)Var(εkl) denote the correlation
coefficient between εij and εkl. The likelihood of a pair of relational observations L(yij, ykl;θ)
takes one of the four following values.

• If yij > 0 and ykl > 0, then L(yij, ykl;θ) = fYij ,Ykl(yij, ykl),

where

(
Yij
Ykl

)
∼ N

([
βTX ij

βTXkl

]
,

[
Var(εij) Cov(εij, εkl)

Cov(εij, εkl) Var(εkl)

])
.

• If yij > 0 and ykl = 0, then L(yij, ykl;θ) = fYij(yij) · FYkl|Yij(0),

where Yij ∼ N (βTX ij,Var(εij))
and Ykl | Yij ∼ N (βTXkl+Cov(εij, εkl)/Var(εij) · (yij−βTX ij), (1−ρ2

(εij ,εkl)
) ·Var(εkl))

• if yij = 0 and ykl > 0, then L(yij, ykl;θ) = fYkl(ykl) · FYij |Ykl(0),

where Ykl ∼ N (βTXkl,Var(εkl))
and Yij | Ykl ∼ N (βTX ij +Cov(εij, εkl)/Var(εkl) · (ykl−βTXkl), (1−ρ2

(εij ,εkl)
) ·Var(εij))

• if yij = 0 and ykl = 0, then L(yij, ykl;θ) = FYij ,Ykl(0, 0)

where

(
Yij
Ykl

)
∼ N

([
βTX ij

βTXkl

]
,

[
Var(εij) Cov(εij, εkl)

Cov(εij, εkl) Var(εkl)

])
.

The likelihood we present above applies to one pair of observations. To calculate the
pseudo log likelihood of all pairs of observations, we have

l(θ;Y ) =
∑

i,j,k,l∈[n],i 6=j,k 6=l

logL(yij, ykl;θ). (10)

In Equation 10, θ contains β and all variance and covariance terms. With B blocks and
p − 1 covariates, the total number of parameters is on the order of p or B3, depending on
which one is larger. Estimating all parameters at the same time is too difficult for state
of art optimization algorithms. The covariance between yij and ykl depends on the dyad
configuration of [(i, j), (k, l)] and their block memberships. Therefore, in order to decrease
the number of parameters in each numerical optimization, we decompose the likelihood into
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a sum of sub-likelihoods involving pairs of observations that share the same covariance. The
parameter vector in each sub-likelihood contains β, Var(εij), Var(εij), and Cov(εij, εkl). The
number of parameters in each sub-likelihood is on the order p, which greatly reduces the
difficulties for numerical optimization.

The likelihood formula is

l(θ;Y ) =
∑

M,q∈QM

∑
[(i,j),(k,l)]∈ΦM,q

logL(yij, ykl;θM,q)

=
∑

M,q∈QM

l(θM,q, Y )

where l(θM,q, Y ) =
∑

[(i,j),(k,l)]∈ΦM,q

logL(yij, ykl;θM,q). Instead of finding the set of parameters

that maximize l(θ;Y ), we now find the set of parameters that maximize l(θM,q, Y ).
Let s denote the index of optimization. For example, θ1 = θφA,{1,1}, θ2 = θφA,{1,2},θ3 =

θφA,{2,2}, θ4 = θφB ,(1,{1,1}).... Let Θ = [θ1,θ2,θ3,θ4, ...]. The asymptotic distribution of Θ̂ is

√
n(Θ̂−Θ)

d→MVN(0, A(Θ)−1B(Θ)A(Θ)−1), (11)

where A(Θ) = E

[
−
∂2
∑

s l(θs, Y )

∂Θ∂Θ′

]
and B(Θ) = E

[
∂
∑

s l(θs, Y )

∂Θ

(
∂
∑

s l(θs, Y )

∂Θ

)′]
.

Because ls(θs, Y ) only involves θs, A(Θ) is a block-diagonal matrix with blocks

A(Θ)ss = E

[
−∂

2ls(θs, Y )

∂θs∂θ
′
s

]
,

and B(Θ) is a symmetric matrix where B(Θ)st = E

[
∂ls(θs, Y )

∂θs

(
∂lt(θt, Y )

∂θt

)′]
.
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Figure D.1: Distribution of number of passenger seats from departure airport to arrival
airport. The right figure shows the log of the number of seats when the number exceeds
zero.

In Fieuws & Verbeke (2006) and Solomon & Weissfeld (2017), independent observations
are drawn from a multivariate distribution and longitudinal observations on the same in-
dividual are correlated. Since we deal with network data, we can not simply calculate the
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empirical version of B(Θ) by taking averages with Θ̂ substituted. Therefore, we make
the modification that observations used in maximizing ls(θs, Y ) and lt(θt, Y ) are distinct.
Then B̂(Θ)st = 0 and we can get Â(Θ)ss and B̂(Θ)ss by taking averages with θ̂s and θ̂t
substituted.

The last step in getting β̂ and SE(β̂) is to take weighted averages of θs ∀s. Let θ̂ = AΘ̂,
where A is the matrix that calculates the weighted averages, with weights proportional to
the sample size used in each optimization. Then

√
n(θ̂ − θ)

d→MVN(0,AΣ(Θ̂)A
′
), (12)

where Σ(Θ̂) is the covariance matrix for Θ̂ obtained by using Equation (11).

E Definitions and notation

In this section, we formally define the notation defined conceptually in the paper. QM ,
which is the the set of block pairs/triplets for dyad configuration M given [B] (Section 4.1)
is defined as:

• Qσ2 = {(u, v) : u, v ∈ [B]}

• QφA = {{u, v} : u, v ∈ [B]}

• QφB = {(u, {v, w}) : u, v, w ∈ [B]}

• QφC = {(u, {v, w}) : u, v, w ∈ [B]}

• QφD = {(u, v, w) : u, v, w ∈ [B]}

ΦM,q is defined as:

• Φσ2,(u,v) = {[(i, j), (i, j)] : i, j ∈ [n], i 6= j, gi = u, gj = v}

• ΦφA,{u,v} = {[(i, j), (j, i)] : i, j ∈ [n], i 6= j, gi = u, gj = v}

• ΦφB ,(u,{v,w}) = {[(i, j), (i, k)] : i, j, k ∈ [n], i 6= j 6= k, gi = u, gj = v, gk = w}

• ΦφC ,(u,{v,w}) = {[(j, i), (k, i)] : i, j, k ∈ [n], i 6= j 6= k, gi = u, gj = v, gk = w}

• ΦφD,(u,v,w) = {[(i, j), (k, i)] : i, j, k ∈ [n], i 6= j 6= k, gi = u, gj = v, gk = w}

ΦM,i is defined as:

• Φσ2,i = {[(i, j), (i, j)] : j ∈ [n], i 6= j} ∪ {[(j, i), (j, i)] : j ∈ [n], i 6= j}

• ΦφA,i = {[(i, j), (j, i)] : j ∈ [n], i 6= j}

• ΦφB ,i = {[(i, j), (i, k)] : j ∈ [n], k ∈ [n], i 6= j 6= k}

• ΦφC ,i = {[(j, i), (k, i)] : j ∈ [n], k ∈ [n], i 6= j 6= k}

• ΦφD,i = {[(i, j), (k, i)] : j ∈ [n], k ∈ [n], i 6= j 6= k}
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