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Abstract
The linear contextual bandit literature is mostly
focused on the design of efficient learning algo-
rithms for a given representation. However, a
contextual bandit problem may admit multiple lin-
ear representations, each one with different char-
acteristics that directly impact the regret of the
learning algorithm. In particular, recent works
showed that there exist “good” representations
for which constant problem-dependent regret can
be achieved. In this paper, we first provide a
systematic analysis of the different definitions of
“good” representations proposed in the literature.
We then propose a novel selection algorithm able
to adapt to the best representation in a set of M
candidates. We show that the regret is indeed
never worse than the regret obtained by running
LINUCB on the best representation (up to a lnM
factor). As a result, our algorithm achieves con-
stant regret whenever a “good” representation is
available in the set. Furthermore, we show that
the algorithm may still achieve constant regret by
implicitly constructing a “good” representation,
even when none of the initial representations is
“good”. Finally, we empirically validate our theo-
retical findings in a number of standard contextual
bandit problems.

1. Introduction
The stochastic contextual bandit is a general framework to
formalize sequential decision-making problems in which
at each step the learner observes a context drawn from a
fixed distribution, it plays an action, and it receives a noisy
reward. The goal of the learner is to maximize the reward
accumulated over n rounds, and the performance is typically
measured by the regret w.r.t. playing the optimal action in
each context. This paradigm has found application in a large
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range of domains, including recommendation systems, on-
line advertising, and clinical trials (e.g., Bouneffouf & Rish,
2019). Linear contextual bandit (Lattimore & Szepesvári,
2020) is one of the most studied instances of contextual ban-
dit due to its efficiency and strong theoretical guarantees. In
this setting, the reward for each context x and action a is as-
sumed to be representable as the linear combination between
d-dimensional features φ(x, a) ∈ Rd and an unknown pa-
rameter θ? ∈ Rd. In this case, we refer to φ as a realizable
representation. Algorithms based on the optimism-in-the-
face-of-uncertainty principle such as LINUCB (Chu et al.,
2011) and OFUL (Abbasi-Yadkori et al., 2011), have been
proved to achieve minimax regret bound O

(
Sd
√
n ln(nL)

)
and problem-dependent regret O

(
S2d2

∆ ln2(nL)
)
, where ∆

is the minimum gap between the reward of the best and
second-best action across contexts, and L and S are upper
bounds to the `2-norm of the features φ and θ?, respectively.

Unfortunately, the dimension d, and the norm upper bounds
L and S, are not the only characteristics of a representation
to have an effect on the regret and existing bounds may fail
at capturing the impact of the context-action features on the
performance of the algorithm. In fact, as illustrated in Fig. 1,
running LINUCB with different realizable representations
with same parameters d and S may lead to significantly
different performance. Notably, there are “good” represen-
tations for which LINUCB achieves constant regret, i.e., not
scaling with the horizon n. Recent works identified differ-
ent conditions on the representation that can be exploited to
achieve constant regret for LINUCB (Hao et al., 2020; Wu
et al., 2020). Similar conditions have also been leveraged
to prove other interesting learning properties, such as sub-
linear regret for greedy algorithms (Bastani et al., 2020), or
regret guarantees for model selection between linear and
multi-arm representations (Chatterji et al., 2020; Ghosh
et al., 2020). While all these conditions, often referred to
as diversity conditions, depend on how certain context-arm
features span the full Rd space, there is no systematic analy-
sis of their connections and of which ones can be leveraged
to achieve constant regret in linear contextual bandits.

In this paper, we further investigate the concept of “good”
representations in linear bandit and we provide the follow-
ing contributions: 1) We review the diversity conditions
available in the literature, clarify their relationships, and
discuss how they are used. We then focus on our primary
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Figure 1. Regret of LINUCB with different realizable representa-
tions with same dimension d and parameter bound S. The dashed
blue line is LEADER, our proposed representation selection algo-
rithm. Details in App. G.1.

goal, which is to characterize the assumptions needed to
achieve constant regret for LINUCB. 2) We introduce a novel
algorithm that effectively selects the best representation in a
given set, thus achieving constant regret whenever at least
one “good” representation is provided. 3) Furthermore, we
show that, in certain problems, the algorithm is able to
combine given representations to implicitly form a “good”
one, thus achieving constant problem-dependent regret even
when running LINUCB on any of the representations would
not. 4) Finally, we empirically validate our theoretical find-
ings on a number of contextual bandit problems.

Related work. The problem of selecting the best represen-
tation in a given set can be seen as a specific instance of
the problem of model selection in bandits. In model selec-
tion, the objective is to choose the best candidate in a set
of base learning algorithms. At each step, a master algo-
rithm is responsible for selecting a base algorithm, which
in turn prescribes the action to play and the reward is then
provided as feedback to the base algorithms. Examples of
model selection methods include adversarial masters –e.g.,
EXP4 (Auer et al., 2002; Maillard & Munos, 2011) and
CORRAL (Agarwal et al., 2017; Pacchiano et al., 2020b)–
and stochastic masters (Abbasi-Yadkori et al., 2020; Lee
et al., 2020; Bibaut et al., 2020; Pacchiano et al., 2020a).
For a broader discussion refer to App. A or (Pacchiano et al.,
2020a, Sec. 2). Most of these algorithms achieve the regret
of the best base algorithm up to a polynomial dependence
on the number M of base algorithms (Agarwal et al., 2017).
While existing model selection methods are general and can
be applied to any type of base algorithms, 1 they may not be
effective in problems with a specific structure.

An alternative approach is to design the master algorithm
for a specific category of base algorithms. An instance of

1Most of existing methods only require prior knowledge of the
regret of the optimal base algorithm or a bound on the regret of
all base algorithms. CORRAL also requires the base algorithms to
satisfy certain stability conditions.

this case is the representation-selection problem, where the
base algorithms only differ by the representation used to
estimate the reward. Foster et al. (2019) and Ghosh et al.
(2020) consider a set of nested representations, where the
best representation is the one with the smallest dimensional-
ity for which the reward is realizable. Finally, Chatterji et al.
(2020) focus on the problem of selecting between a linear
and a multi-armed bandit representation. In this paper, we
consider an alternative representation-selection problem in
linear contextual bandits, where the objective is to exploit
constant-regret “good” representations. Differently from
our work, Lattimore et al. (2020) say that a linear repre-
sentation is “good” if it has a low misspecification (i.e., it
represents the reward up to a small approximation error),
while we focus on realizable representations for which LIN-
UCB achieves constant-regret.

2. Preliminaries
We consider the stochastic contextual bandit problem (con-
textual problem for short) with context space X and finite
action set A = [K] = {1, . . . ,K}. At each round t ≥ 1,
the learner observes a context xt sampled i.i.d. from a distri-
bution ρ over X , it selects an arm at ∈ [K] and it receives
a reward yt = µ(xt, at) + ηt where ηt is a σ-subgaussian
noise. The learner’s objective is to minimize the pseudo-
regretRn =

∑n
t=1 µ

?(xt)−µ(xt, at) for any n > 0, where
µ?(xt) := maxa∈[K] µ(xt, a). We define the minimum
gap as ∆ = infx∈X :ρ(x)>0,a∈[K],∆(x,a)>0{∆(x, a)} where
∆(x, a) = µ?(x) − µ(x, a). A realizable dφ-dimensional
linear representation is a feature map φ : X × [K] →
Rdφ for which there exists an unknown parameter vector
θ?φ ∈ Rdφ such that µ(x, a) = 〈φ(x, a), θ?φ〉. When a realiz-
able linear representation is available, the problem is called
(stochastic) linear contextual bandit and can be solved us-
ing, among others, optimistic algorithms like LINUCB (Chu
et al., 2011) or OFUL (Abbasi-Yadkori et al., 2011).

Given a realizable representation φ, at each round t, LIN-
UCB builds an estimate θtφ of θ?φ by ridge regression
using the observed data. Denote by Vtφ = λIdφ +∑t−1
k=1 φ(xk, ak)φ(xk, ak)T the (λ > 0)-regularized design

matrix at round t, then θtφ = V −1
tφ

∑t−1
k=1 φ(xk, ak)yk. As-

suming that ‖θ?φ‖2 ≤ Sφ and supx,a ‖φ(x, a)‖2 ≤ Lφ,
LINUCB builds a confidence ellipsoid Ctφ(δ) =

{
θ ∈ Rdφ :∥∥θtφ − θ∥∥Vtφ ≤ βtφ(δ)

}
. As shown in (Abbasi-Yadkori

et al., 2011, Thm. 1), when

βtφ(δ) := σ

√
2 ln

(
det(Vtφ)1/2 det(λIdφ)−1/2

δ

)
+
√
λSφ,

then P(∀t ≥ 1, θ?φ ∈ Ctφ(δ)) ≥ 1 − δ. At each step t,
LINUCB plays the action with the highest upper-confidence
bound at = argmaxa∈[K] maxθ∈Ctφ(δ)〈φ(xt, a), θ〉, and it
is shown to achieve a regret bounded as reported in the
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following proposition.

Proposition 1 (Abbasi-Yadkori et al., 2011, Thm. 3, 4). For
any linear contextual bandit problem with dφ-dimensional
features, supx,a ‖φ(x, a)‖2 ≤ Lφ, an unknown parameter
vector ‖θ?φ‖2 ≤ Sφ, with probability at least 1− δ, LINUCB

suffers regretRn = O
(
Sφdφ

√
n ln(nLφ/δ)

)
. Furthermore,

if the problem has a minimum gap ∆ > 0, then the regret is

bounded as2 Rn = O

(
S2
φd

2
φ

∆ ln2(nLφ/δ)

)
.

In the rest of the paper, we assume w.l.o.g. that all terms λ,
∆max = maxx,a ∆(x, a), Sφ, σ are larger than 1 to simplify
the expression of the bounds.

3. Diversity Conditions
Several assumptions, usually referred to as diversity condi-
tions, have been proposed to define linear bandit problems
with specific properties that can be leveraged to derive im-
proved learning results. While only a few of them were
actually leveraged to derive constant regret guarantees for
LINUCB (others have been used to prove e.g., sub-linear re-
gret for the greedy algorithm, or regret guarantees for model
selection algorithms), they all rely on very similar condi-
tions on how certain context-action features span the full
Rdφ space. In this section, we provide a thorough review
of these assumptions, their connections, and how they are
used in the literature. As diversity conditions are getting
more widely used in bandit literature, we believe this review
may be of independent interest. Sect. 4 will then specifically
focus on the notion of good representation for LINUCB.

We first introduce additional notation. For a realizable
representation φ, let φ?(x) := φ(x, a?x), where a?x ∈
argmaxa∈[K] µ(x, a) is an optimal action, be the vector
of optimal features for context x. In the following we
make the assumption that φ?(x) is unique. Also, let
X ?(a) = {x ∈ X : µ(x, a) = µ?(x)} denote the set of
contexts where a is optimal. Finally, for any matrix A, we
denote by λmin(A) its minimum eigenvalue. For any con-
textual problem with reward µ and context distribution ρ,
the diversity conditions introduced in the literature are sum-
marized in Tab. 2 together with how they were leveraged to
obtain regret bounds in different settings.3

We first notice that all conditions refer to the smallest eigen-
value of a design matrix constructed on specific context-
action features. In other words, diversity conditions re-
quire certain features to span the full Rdφ space. The

2The logarithmic bound reported in Prop. 1 is slightly different
than the one in (Abbasi-Yadkori et al., 2011) since we do not
assume that the optimal feature is unique.

3In some cases, we adapted conditions originally defined in
the disjoint-parameter setting, where features only depend on the
context (i.e., φ(x)) and the unknown parameter θ?a is different for
each action a, to the shared-parameter setting (i.e., where features
are functions of both contexts and actions) introduced in Sect. 2.

non-redundancy condition is a common technical assump-
tion (e.g., Foster et al., 2019) and it simply defines a prob-
lem whose dimensionality cannot be reduced without losing
information. Assuming the context distribution ρ is full
support, BBK and CMB are structural properties of the
representation that are independent from the reward. For
example, BBK requires that, for each action, there must be
feature vectors lying in all orthants of Rdφ . In the case of fi-
nite contexts, this implies there must be at least 2dφ contexts.
WYS and HLS involve the notion of reward optimality. In
particular, WYS requires that all actions are optimal for at
least a context (in the continuous case, for a non-negligible
set of contexts), while HLS only focuses on optimal actions.

We now review how these conditions (or variations thereof)
were applied in the literature. CMB is a rather strong con-
dition that requires the features associated with each in-
dividual action to span the whole Rdφ space. Chatterji
et al. (2020) leverage a CMB-like assumption to prove re-
gret bounds for OSOM, a model-selection algorithm that
unifies multi-armed and linear contextual bandits. More pre-
cisely, they consider a variation of CMB, where the context
distribution induces stochastic feature vectors for each ac-
tion that are independent and centered. The same condition
was adopted by Ghosh et al. (2020) to study representation-
selection problems and derive algorithms able to adapt to
the (unknown) norm of θ?φ or select the smallest realizable
representation in a set of nested representations. Bastani
et al. (2020, Assumption 3) introduced a condition simi-
lar to BBK for the disjoint-parameter case. In their set-
ting, they prove that a non-explorative greedy algorithm
achieves O(ln(n)) problem-dependent regret in linear con-
textual bandits (with 2 actions).4 Hao et al. (2020, Theorem
3.9) showed that HLS representations can be leveraged to
prove constant problem-dependent regret for LINUCB in
the shared-parameter case. Concurrently, Wu et al. (2020)
showed that, under WYS, LINUCB achieves constant ex-
pected regret in the disjoint-parameter case. A WYS-like
condition was also used by Bastani et al. (2020, Assumption
4) to extend the result of sublinear regret for the greedy al-
gorithm to more than two actions. The relationship between
all these conditions is derived in the following lemma.

Lemma 1. For any contextual problem with reward µ and
context distribution ρ, let φ be a realizable linear represen-
tation. The relationship between the diversity conditions in
Tab. 2 is summarized in Fig. 3, where each inclusion is in a
strict sense and each intersection is non-empty.

This lemma reveals non-trivial connections between the
diversity conditions, better understood through the exam-
ples provided in the proof (see App. B.1). BBK is indeed

4Whether this is enough for the optimality of the greedy algo-
rithm in the shared-parameter setting is an interesting problem, but
it is beyond the scope of this paper.
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Name Definition Application

Non-
redundant λmin

(
1/K

∑
a∈[K] Ex∼ρ

[
φ(x, a)φ(x, a)T

])
> 0

CMB ∀a, λmin

(
Ex∼ρ

[
φ(x, a)φ(x, a)T

])
> 0 Model selection

BBK
∀a,u ∈ Rd,

λmin

(
Ex
[
φ(x, a)φ(x, a)T1

{
φ(x, a)Tu ≥ 0

}] )
> 0

Logarithmic regret
for greedy

HLS λmin

(
Ex∼ρ

[
φ?(x)φ?(x)T

])
> 0

Constant regret for
LINUCB

WYS ∀a, λmin

(
Ex∼ρ

[
φ(x, a)φ(x, a)T1 {x ∈ X ?(a)}

])
> 0

Constant regret for
LINUCB

Figure 2. Diversity conditions proposed in the literature adapted to the shared-parameter setting. The
names refer to the authors who first introduced similar conditions.

HLS

CMB

BBK

WYS

Non-redundant

Figure 3. Categorization of
diversity conditions.

stronger than CMB, and thus it is sufficient for the model
selection results by Chatterji et al. (2020). By superficially
examining their definitions, CMB may appear stronger than
HLS, but the two properties are actually non-comparable,
as there are representations that satisfy one condition but
not the other. The implications of Fig. 3 on constant-regret
guarantees are particularly relevant for our purposes. There
are representations that satisfy BBK or CMB and are nei-
ther HLS nor WYS and thus may not enable constant regret
for LINUCB. We notice that WYS is a stronger condition
than HLS. Although WYS may be necessary for LINUCB to
achieve constant regret in the disjoint-parameter case, HLS
is sufficient for the shared-parameter case we consider in
this paper. For this reason, in the following section we adopt
HLS to define good representations for LINUCB and provide
a more complete characterization.

4. Good Representations for Constant Regret
The HLS condition was introduced by Hao et al. (2020), who
provided a first analysis of its properties. In this section, we
complement those results by providing a complete proof of a
constant regret bound, a proof of the fact that HLS is actually
necessary for constant regret, and a novel characterization
of the existence of HLS representations. In the following
we define λφ,HLS := λmin

(
Ex∼ρ

[
φ?(x)φ?(x)T

])
, which is

strictly positive for HLS representations.

4.1. Constant Regret Bound

We begin by deriving a constant problem-dependent regret
bound for LINUCB under the HLS condition.

Lemma 2. Consider a contextual bandit problem with real-
izable linear representation φ satisfying the HLS condition
(see Tab. 2). Assume ∆ > 0, maxx,a ‖φ(x, a)‖2 ≤ L and
‖θ?φ‖2 ≤ S. Then, with probability at least 1−2δ, the regret
of OFUL after n ≥ 1 steps is at most

Rn ≤
32λ∆2

maxS
2
φσ

2

∆

(
2 ln

(
1

δ

)
+ dφ ln

(
1 +

τφL
2
φ

λdφ

))2

,

where ∆max = maxx,a ∆(x, a) is the maximum gap and

τφ ≤ max

{
3842d2

φL
2
φS

2
φσ

2λ

λφ,HLS∆2
ln2

(
64d2

φL
3
φσSφ

√
λ√

λφ,HLS∆δ

)
,

768L4
φ

λ2
φ,HLS

ln

(
512dφL

4
φ

δλ2
φ,HLS

)}
.

We first notice that τφ is independent from the horizon n,
thus making the previous bound a constant only depending
on the problem formulation (i.e., gap ∆, norms Lφ and
Sφ) and the value λφ,HLS which measures “how much” the
representation φ satisfies the HLS condition. Furthermore,
one can always take the minimum between the constant
regret in Lem. 2 and any other valid regret bound for OFUL
(e.g.,O(log(n)/∆))), which may be tighter for small values
of n. While Lem. 2 provides high-probability guarantees,
we can easily derive a constant expected-regret bound by
running LINUCB with a decreasing schedule for δ (e.g.,
δt ∝ 1/t3) and with a slightly different proof (see App. C
and the proof sketch below).

Proof sketch (full proof in App. C). Following Hao et al.
(2020), the idea is to show that the instantaneous regret
rt+1 = 〈θ?, φ?(xt+1) − φ(xt+1, at+1)〉 is zero for suffi-
ciently large (but constant) time t. By using the standard
regret analysis, we have

rt+1 ≤ 2βt+1(δ) ‖φ(xt+1, at+1)‖V −1
t+1
≤ 2Lβt+1(δ)√

λmin(Vt+1)
.

Given the minimum-gap assumption, a sufficient condition
for rt+1 = 0 is that the previous upper bound is smaller
than ∆, which gives λmin(Vt+1) > 4L2β2

t+1(δ)/∆2. Since
∆ > 0, the problem-dependent regret bound in Prop. 1
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holds, and the number of pulls to suboptimal arms up to
time t is bounded by gt(δ) = O

(
(d ln(t/δ)/∆)2

)
. Hence,

the optimal arms are pulled linearly often and, by leveraging
the HLS assumption, we are able to show that the minimum
eigenvalue of the design matrix grows linearly in time as

λmin(Vt+1) ≥ λ+ tλHLS − 8L2

√
t ln

(
2dt

δ

)
− L2gt(δ).

By relating the last two equations, we obtain an inequality
of the form tλHLS − o(t) > o(t). If we define τ < ∞ as
the smallest (deterministic) time such that this inequality
holds, we have that after τ the immediate regret is zero, thus
concluding the proof. Note that, if we wanted to bound
the expected regret, we could set δt ∝ 1/t3 and the above
inequality would still be of the same form (although the
resulting τ would be slightly different).

Comparison with existing bounds. Hao et al. (2020,
Theorem 3.9) prove that LINUCB with HLS representations
achieves lim supn→∞Rn <∞, without characterizing the
time at which the regret vanishes. Instead, our Lem. 2 pro-
vides an explicit problem-dependent constant regret bound.
Wu et al. (2020, Theorem 2) consider the disjoint-parameter
setting and rely on the WYS condition. While they indeed
prove a constant regret result, their bound depends on the
the minimum probability of observing a context (or, in the
continuous case, a properly defined meta-context). This
reflects the general tendency, in previous works, to frame
diversity conditions simply as a property of the context dis-
tribution ρ. On the other hand, our characterization of τ in
terms of λφ,HLS (Lem. 2) allows relating the regret to the
“goodness” of the representation φ for the problem at hand.

4.2. Removing the Minimum-Gap Assumption

Constant-regret bounds for LINUCB rely on a minimum-
gap assumption (∆ > 0). In this section we show that
LINUCB can still benefit from HLS representations when
∆ = 0, but a margin condition holds (e.g., Rigollet & Zeevi,
2010; Reeve et al., 2018). Intuitively, we require that the
probability of observing a context x decays proportionally
to its minimum gap ∆(x) = mina ∆(x, a).
Assumption 1 (Margin condition). There exists C,α > 2
such that for all ε > 0: ρ

(
{x ∈ X : ∆(x) ≤ ε}

)
≤ Cεα.

The following theorem provides a problem-dependent regret
bound for LINUCB under this margin assumption.
Theorem 1. Consider a linear contextual bandit prob-
lem satisfying the margin condition (Asm. 1). Assume
maxx,a ‖φ(x, a)‖2 ≤ Lφ and ‖θ?φ‖2 ≤ Sφ. Then, given
a representation φ, with probability at least 1 − 3δ, the
regret of OFUL after n ≥ 1 steps is at most

Rn ≤ O
((

λ(∆maxSφσdφ)2n1/α +
√
Cdφ

)
ln2(Lφn/δ)

)
.

When φ is HLS (λφ,HLS > 0), let τφ ∝ (λφ,HLS)
α

2−α , then

Rn ≤ O
(

∆maxτφ +
√
Cdφ ln2(Lφn/δ)

)
.

We first notice that in general, LINUCB suffers Õ(n1/α) re-
gret, which can be significantly larger than in the minimum-
gap case. On the other hand, with HLS representations,
LINUCB achieves logarithmic regret, regardless of the value
of α. The intuition is that, when the HLS condition holds,
the algorithm collects sufficient information about θ?φ by
pulling the optimal arms in rounds with large minimum
gap, which occur with high probability by the margin condi-
tion. This yields at most constant regret in such rounds (first
term above), while it can be shown that the regret in steps
when the minimum gap is very small is at most logarithmic
(second term above).

4.3. Further Analysis of the HLS Condition

While Lem. 2 shows that HLS is sufficient for achieving
constant regret, the following proposition shows that it is
also necessary. While this property was first mentioned
by Hao et al. (2020) as a remark in a footnote, we provide a
formal proof in App. C.5.
Proposition 2. For any contextual problem with finite con-
texts, full-support context distribution, and given a non-
redundant realizable representation φ, LINUCB achieves
sub-logarithmic regret if and only if φ satisfies the HLS
condition.

As already observed in Section 4, the HLS condition can be
equivalently expressed as:5

span{φ?(x) | x ∈ X} = Rd,

i.e., optimal features must span the whole d-dimensional
Euclidean space, where d is the dimension of φ. If we admit
redundant representations, a weaker condition is sufficient
to achieve constant regret:

span{φ?(x) | x ∈ X} = span{φ(x, a) | x ∈ X , a ∈ A},
i.e., optimal features must span the whole feature space,
which may be a subspace of Rd in general. We prove that
this weak HLS condition is sufficient for LINUCB to achieve
constant regret as Corollary 1 in App. E.2. This also shows
that constant-regret guarantees are preserved by adding re-
dundant features to an HLS representation.

Finally, we derive the following important existence result.
Lemma 3. For any contextual bandit problem with optimal
reward 6 µ?(x) 6= 0 for all x ∈ X , that has either i) a

5That is assuming the context distribution is full-support. Oth-
erwise, it is enough to replace X with the support of the context
distribution supp(ρ).

6This condition is technical and it can be easily relaxed.
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finite context set with at least d contexts with nonzero prob-
ability, or ii) a Borel context space and a non-degenerate
context distribution7, for any dimension d ≥ 1, there ex-
ists an infinite number of d-dimensional realizable HLS
representations.

This result crucially shows that the HLS condition is “ro-
bust”, since in any contextual problem, it is possible to
construct an infinite number of representations satisfying
the HLS condition. In App. B.2, we indeed provide an ora-
cle procedure for constructing an HLS representation. This
result also supports the starting point of next section, where
we assume that a learner is provided with a set of representa-
tions that may contain at least a “good” representation, i.e.,
an HLS representation.

5. Representation Selection
In this section, we study the problem of representation selec-
tion in linear bandits. We consider a linear contextual prob-
lem with reward µ and context distribution ρ. Given a set of
M realizable linear representations {φi : X × [K]→ Rdi},
the objective is to design a learning algorithm able to per-
form as well as the best representation, and thus achieve
constant regret when a “good” representation is available.
As usual, we assume θ?i ∈ Rdi is unknown, but the algo-
rithm is provided with a bound on the parameter and feature
norms of the different representations.

5.1. The LEADER Algorithm

We introduce LEADER (Linear rEpresentation bAnDit
mixER), see Alg. 1. At each round t, LEADER builds an
estimate θti of the unknown parameter θ?i of each repre-
sentation φi.8 These estimates are by nature off-policy,
and thus all the samples (xl, al, yl)l<t can be used to
solve all ridge regression problems. For each φi, define
Vti = λIdi +

∑t−1
l=1 φi(xl, al)φi(xl, al)

T, θti and Cti(δ/M)
as in Sec. 2. Since all the representations are realizable, we
have that P (∀i ∈ [M ], θ?i ∈ Cti(δ/M)) ≥ 1− δ. As a con-
sequence, for each representation φi we can build an upper-
confidence bound to the reward such that, ∀x ∈ X , a ∈ A,
with high probability

µ(x, a) ≤ max
θ∈Cti(δ/M)

〈φi(x, a), θ〉 := Uti(x, a). (1)

Given this, LEADER uses the tightest available upper-
confidence bound to evaluate each action and then it selects
the one with the largest value, i.e.,

at ∈ argmax
a∈[K]

min
i∈[M ]

{Uti(xt, a)}. (2)

7For instance, if X = Rm and the context distribution must
have positive variance in all directions.

8We use the subscript i ∈ [M ] instead of φi to denote quantities
related to representation φi.

Let it = argmini∈[M ]{Uti(xt, at)} be the representa-
tion associated to the pulled arm at. Interestingly, de-
spite at being optimistic, in general it may not corre-
spond to the optimistic action of representation φit , i.e.,
at /∈ argmaxa{Ut,it(xt, a)}. If a representation provides
an estimate that is good along the direction associated to
a context-action pair, but possibly very uncertain on other
actions, LEADER is able to leverage this key feature to re-
duce the overall uncertainty and achieve a tighter optimism.
Space and time complexity of LEADER scales linearly in
the number of representations, although the updates for each
representation could be carried out in parallel.

Regret bound. For ease of presentation, we assume a
non-zero minimum gap (∆ > 0). The analysis can be
generalized to ∆ = 0 as done in Sec. 4.2. Thm. 2 establishes
the regret guarantee of LEADER (Alg. 1).
Theorem 2. Consider a contextual bandit problem with
reward µ, context distribution ρ and ∆ > 0. Let (φi) be
a set of M linearly realizable representations such that
maxx,a ‖φi(x, a)‖2 ≤ Li and ‖θ?i ‖i ≤ Si. Then, for any
n ≥ 1, with probability 1− 2δ, LEADER suffers a regret

Rn ≤ min
i∈[M ]

{
32λ∆2

maxS
2
i σ

2

∆
×

×
(

2 ln

(
M

δ

)
+ di ln

(
1 +

min{τi, n}L2
i

λdi

))2}
where τi ∝ (λi,HLS∆)−2 if φi is HLS and τi = +∞ other-
wise.

This shows that the problem-dependent regret bound of
LEADER is not worse than the one of the best representa-
tion (see Prop. 1), up to a lnM factor. This means that the
cost of representation selection is almost negligible. Fur-
thermore, Thm. 2 shows that LEADER not only achieves a
constant regret bound when an HLS representation is avail-
able, but this bound scales as the one of the best HLS rep-
resentation. In fact, notice that the “quality” of an HLS
representation does not depend only on known quantities
such as di, Li, Si, but crucially on HLS eigenvalue λi,HLS,
which is usually not known in advance, as it depends on the
features of the optimal arms.

5.2. Combining Representations

In the previous section, we have shown that LEADER
can perform as well as the best representation in the set.
However, by inspecting the action selection rule (Eq. 2),
we notice that, to evaluate the reward of an action in the
current context, LEADER selects the representation with
the smallest uncertainty, thus potentially using different
representations for different context-action pairs. This leads
to the question: can LEADER do better than the best
representation in the set?
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Algorithm 1 LEADER Algorithm
Input: representations (φi)i∈[M ] with values (Li, Si)i∈[M ],
regularization factor λ ≥ 1, confidence level δ ∈ (0, 1).
Initialize V1i = λIdi , θ1i = 0di for each i ∈ [M ]
for t = 1, . . . do

Observe context xt
Pull action at ∈ argmaxa∈[K] mini∈[M ]{Uti(xt, a)}
Observe reward rt and, for each i ∈ [M ], set
Vt+1,i = Vti + φi(xt, at)φi(xt, at)

T and
θt+1,i = V −1

t+1,i

∑t
l=1 φi(xl, al)rl

end for

We show that, in certain cases, LEADER is able to combine
representations and achieve constant regret when none of
the individual representations would. The intuition is that a
subset of “locally good” representations can be combined to
recover a condition similar to HLS. This property is formally
stated in the following definition.

Definition 1 (Mixing HLS). Consider a linear contextual
problem with reward µ and context distribution ρ, and a set
of M realizable linear representations φ1, . . . , φM . Define
Mi = Ex∼ρ

[
φ?i (x)φ?i (x)T

]
and let Zi = {(x, a) ∈ X ×

A | φi(s, a) ∈ Im(Mi)} be the set of context-action pairs
whose features belong to the column space of Mi, i.e., that
lie in the span of optimal features. We say that the set (φi)

satisfies the mixed-HLS condition if X ×A ⊆ ⋃Mi=1 Zi.

Let λ+
i = λ+

min(Mi) be the minimum nonzero eigenvalue
ofMi. Intuitively, the previous condition relies on the obser-
vation that every representation satisfies a “restricted” HLS
condition on the context-action pairs (x, a) whose features
φi(x, a) are spanned by optimal features φ?(x). In this case,
the characterizing eigenvalue is λ+

i , instead of the smallest
eigenvalue λi,HLS (which may be zero). If every context-
action pair is in the restriction Zi of some representation,
we have the mixed-HLS property. In particular, if represen-
tation i is HLS, λ+

i = λi,HLS and Zi = S × A. So, HLS
is a special case of mixed-HLS. In App. E.2, we provide
simple examples of sets of representations satisfying Def. 1.
Note that, strictly speaking, there is not a single “mixed rep-
resentation” solving the whole problem. Even defining one
would be problematic since each representation may have a
different parameter and even a different dimension. Instead,
each representation “specializes” on a different portion of
the context-action space. If together they cover the whole
space, the benefits of HLS are recovered, as illustrated in
the following theorem.

Theorem 3. Consider a stochastic bandit problem with
reward µ, context distribution ρ and ∆ > 0. Let (φi) be
a set of M realizable linear representations satisfying the
mixed-HLS property in Def. 1. Then, with probability at
least 1− 2δ, there exists a time τ <∞ independent from n
such that, for any n ≥ 1, the pseudo-regret of LEADER is

bounded as

Rn ≤ min
i∈[M ]

{
32λ∆2

maxS
2
i σ

2

∆
×

×
(

2 ln

(
M

δ

)
+ di ln

(
1 +

τL2
i

λdi

))2}
.

First, note that we are still scaling with the characteristics
of the best representation in the set (i.e., di, Li and Si).
However, the time τ to constant regret is a global value
rather than being different for each representation. This
highlights that mixed-HLS is a global property of the set of
representations rather than being individual as before. In
particular, whenever no representation is (globally) HLS
(i.e., λi,HLS = 0 for all φi), we can show that in the worst
case τ scales as (mini λ

+
i )−2. In practice, we may expect

LEADER to even behave better than that since i) not all the
representations may contribute actively to the mixed-HLS
condition; and ii) multiple representations may cover the
same region of the context-action space. In the latter case,
since LEADER leverages all the representations at once,
its regret would rather scale with the largest minimum non-
zero eigenvalue λ+

i among all the representations covering
such region. We refer to App. E.2 for a more complete
discussion.

5.3. Discussion

Most of the model selection algorithms reviewed in the
introduction could be readily applied to select the best rep-
resentation for LINUCB. However, the generality of their
objective comes with several shortcomings when instanti-
ated in our specific problem (see App. A for a more detailed
comparison). First, model selection methods achieve the
performance of the best algorithm, up to a polynomial de-
pendence on the number M of models. This already makes
them a weaker choice compared to LEADER, which, by
leveraging the specific structure of the problem, suffers only
a logarithmic dependence on M . Second, model selection
algorithms are often studied in a worst-case analysis, which
reveals a high cost for adaptation. For instance, corralling
algorithms (Agarwal et al., 2017; Pacchiano et al., 2020b)
pay an extra

√
n regret, which would make them unsuitable

to target the constant regret of good representations. Simi-
lar costs are common to other approaches (Abbasi-Yadkori
et al., 2020; Pacchiano et al., 2020a). It is unclear whether a
problem-dependent analysis can be carried out and whether
this could shave off such dependence. Third, these algo-
rithms are generally designed to adapt to a specific best
base algorithm. At the best of our knowledge, there is no
evidence that model selection methods could combine algo-
rithms to achieve better performance than the best candidate,
a behavior that we proved for LEADER in our setting.

On the other hand, model selection algorithms effec-
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tively deal with non-realizable representations in certain
cases (e.g., Foster et al., 2020; Abbasi-Yadkori et al., 2020;
Pacchiano et al., 2020a), while LEADER is limited to the re-
alizable case. While a complete study of the model misspeci-
fication case is beyond the scope of this paper, in App. F, we
discuss how a variation of the approach presented in (Agar-
wal et al., 2012b) could be paired to LEADER to discard
misspecified representations and possibly recover the prop-
erties of “good” representations.

6. Experiments
In this section, we report experimental results on two syn-
thetic and one dataset-based problems. For each problem,
we evaluate the behavior of LEADER with LINUCB and
model selection algorithms: EXP4.IX (Neu, 2015), COR-
RAL and EXP3.P in the stochastic version by Pacchiano
et al. (2020b) and Regret Balancing with and without elim-
ination (REGBALELIM and REGBAL) (Abbasi-Yadkori
et al., 2020; Pacchiano et al., 2020a). See App. G for a
detailed discussion and additional experiments. All results
are averaged over 20 independent runs, with shaded areas
corresponding to 2 standard deviations. We always set the
parameters to λ = 1, δ = 0.01, and σ = 0.3. All the repre-
sentations we consider are normalized to have ‖θ?i ‖ = 1.

Synthetic Problems. We define a randomly-generated con-
textual bandit problem, for which we construct sets of
realizable linear representations with different properties
(see App. G.1 for details). The purpose of these experi-
ments is twofold: to show the different behavior of LINUCB
with different representations, and to evaluate the ability of
LEADER of selecting and mixing representations.

Varying dimension. We construct six representations of vary-
ing dimension from 2 up to 6. Of the two representations
of dimension d = 6, one is HLS. Fig. 4(left) shows that in
this case, LINUCB with the HLS representation outperforms
any non-HLS representation, even if they have smaller di-
mension. This property is inherited by LEADER, which
performs better than LINUCB with non-HLS representations
even of much smaller dimension 2.

Mixing representations. We construct six representations of
the same dimension d = 6, none of which is HLS. However,
they are constructed so that together they satisfy the weaker
mixed-HLS assumption (Def. 1). Fig. 4(middle left) shows
that, as predicted by Thm. 3, LEADER leverages different
representations in different context-action regions and it
thus performs significantly better than any LINUCB using
non-HLS representations. The superiority of LEADER
w.r.t. the model-selection baselines is evident in this case
(Fig. 4(middle right) ), since only LEADER is able to
mix representations, whereas model-selection algorithms
target the best in a set of “bad” representations. Additional
experiments in App. G confirm that LEADER consistently

outperforms all model-selection algorithms.

Jester Dataset. In the last experiment, we extract multi-
ple linear representations from the Jester dataset (Goldberg
et al., 2001), which consists of joke ratings in a continuous
range from −10 to 10 for a total of 100 jokes and 73421
users. For a subset of 40 jokes and 19181 users rating all
these 40 jokes, we build a linear contextual problem as fol-
lows. First, we fit a 32× 32 neural network to predict the
ratings from features extracted via a low-rank factorization
of the full matrix. Then, we take the last layer of the net-
work as our “ground truth” linear model and fit multiple
smaller networks to clone its predictions, while making sure
that the resulting misspecification is small. We thus obtain
7 representations with different dimensions among which,
interestingly, we find that 6 are HLS. Figure 4(right) reports
the comparison between LEADER using all representations
and LINUCB with each single representation on a log-scale.
Notably, the ability of LEADER to mix representations
makes it perform better than the best candidate, while transi-
tioning to constant regret much sooner. Finally, the fact that
HLS representations arise so “naturally” raises the question
of whether this is a more general pattern in context-action
features learned from data.

Last.fm dataset. In App. F we study a variant of LEADER
that is able to handle misspecified representations, and we
test it on the Last.fm music-recommendation dataset (Can-
tador et al., 2011). See App. F.4 for details.

7. Conclusion
We provided a complete characterization of “good” realiz-
able representations for LINUCB, ranging from existence
to a sufficient and necessary condition to achieve problem-
dependent constant regret. We introduced LEADER, a
novel algorithm that, given a set of realizable linear repre-
sentations, is able to adapt to the best one and even lever-
age their combination to achieve constant regret under the
milder mixed-HLS condition. While we have focused on
LINUCB, other algorithms (e.g., LinTS (Abeille & Lazaric,
2017)) as well as other settings (e.g., low-rank RL (Jin
et al., 2020)) may also benefit from HLS-like assumptions.
We have mentioned an approach for eliminating misspec-
ified representations, but a non-trivial trade-off may exist
between the level of misspecification and the goodness of
the representation. A slightly imprecise but very informa-
tive representation may be preferable to most bad realizable
ones. Finally, we believe that moving from selection to
representation learning –e.g., provided a class of features
such as a neural network– is an important direction both
from a theoretical and practical perspective.
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Figure 4. Regret of LEADER and model-selection baselines on different linear contextual bandit problems. (left) Synthetic problem with
varying dimensions. (middle left) Representation mixing. (middle right) Comparison to model selection baselines. (right) Jester dataset.
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A. Comparison to Related Work
In this section, we provide a more detailed review of the literature of model-selection in contextual bandits. Note that this
literature has mainly focused on analyzing the minimax regime. Studying whether it is possible and/or how to leverage a
problem-dependent analysis is outside the scope of this work. We thus present a review of the theoretical results of these
algorithms, once applied to the representation selection problem considered in this paper.

In general, a model-selection algorithm has access to a set of M base contextual-bandit algorithms (in the following, simply
bases), and, at each step, it selects a base and plays the corresponding action. Our bases are instances of LINUCB with
different (realizable) representations.

One of the representative algorithms in model selection is CORRAL (Agarwal et al., 2017). However, the stability conditions
required by CORRAL are not satisfied by LINUCB. For this reason, we consider the stochastic version in (Pacchiano et al.,
2020b), which can be applied to any base algorithm after applying a smoothing wrapper. This approach requires the
knowledge of an upper bound to the regret of the best base algorithm. For simplicity, we consider the Õ(

√
n) worst-case

bound (e.g., Abbasi-Yadkori et al., 2011, Thm. 3). Let c(δ) be the leading constant from that bound. Neglecting logarithmic
terms and setting the initial learning rate of CORRAL to η =

√
M/n/c(δ), according to Theorem 5.3. from Pacchiano et al.

(2020b):

Rn ≤ Õ
(

(1 + c(δ))
√
Mn+

√
Mn

c(δ)

)
.

Pacchiano et al. (2020b) showed a minimax lower bound Ω(T ) for adversarial masters. Despite being a minimax result,
whether the inherent

√
T of adversarial masters can be shaved off through a refined analysis is an open question, as

well as how to leveraged more adaptive regret bounds. Another major downside of CORRAL is the
√
M dependence

on the number of representations, compared to the logarithmic dependence of LEADER. Clearly, these downsides are
compensated by the more general applicability of these algorithms. See (Arora et al., 2020; Foster et al., 2020) for examples
of usage of corralling techniques. Pacchiano et al. (2020b) also propose to use EXP3.P as a master algorithm in place
of CORRAL, using the same smoothing wrapper for base algorithms and the same regret oracle. By setting the explicit-
exploration parameter of EXP3.P to p = n−1/3M−2/3c(δ)2/3, according to Theorem 5.3. from Pacchiano et al. (2020b):
Rn ≤ Õ

(√
Mn+M1/3n2/3c(δ)2/3

)
. The same considerations made for CORRAL apply to this case.

Recently, techniques based on the idea of regret balancing has been used for model selection (Abbasi-Yadkori et al., 2020;
Pacchiano et al., 2020a). Denote byHti = (xk, ak, rk)k∈Ni(t) as the history associated to base algorithm i, i.e., restricted to
rounds where i was selected. The Regret Balancing algorithm by Abbasi-Yadkori et al. (2020) (REGBAL for short) requires
access to a (high-probability, possibly data dependent) upper bound u : Hti? 7→ R on the regret of the best base algorithm
i? ∈ [M ]. The regret of REGBAL is then, with high probability:

Rn ≤M max
i∈[M ]

u(Hni),

that is, bounded like the best base on the worst subjective history. While this bound is very implicit, it shows: i) REGBAL
pays a linear dependence on the number of base algorithms; ii) even using a problem dependent bound, the final result will
scale as the worse base algorithm.

The second regret balancing approach is by (Pacchiano et al., 2020a). Their Regret Balancing and Elimination by Pacchiano
et al. (2020a) (REGBALELIM for short) requires an upper bound ui : Hi 7→ R on the regret of each base algorithm (can
be different for each algorithm). Their algorithms is able to eliminate the bases for which ui is incorrectly specified, and
compete with the best correct upper bound. Their algorithm improves w.r.t. REGBAL and, by simplifying a lot, may allow
to scale as the regret of the best base algorithm. However, i) the dependence on M is still linear and ii) whether the idea of
regret balancing will allow to break the barrier of logarithmic regret is an open question. As shown in their paper (e.g., Table
1), even if the regret upper bound is O(nβ) with β < 1/2, their bound has a (minimax) O(

√
n) dependence.

Finally, we would like to mention also the literature about learning with expert advice. In particular, EXP4.IX (Neu, 2015)
is an algorithm for bandits with expert advice, itself an improvement over the original EXP4 (Auer et al., 2002). At each
step, each expert prescribes an action (more in general, a distribution over actions) based on the whole history. EXP4.IX
observes the prescriptions of all the experts and decides which action to play. In our case, the experts are the bases. Similarly
to LEADER, EXP4.IX is not strictly a model-selection algorithm since the action it plays may be different from the one
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prescribed by any base. In our notation, the (worst-case, high-probability) regret bound from (Neu, 2015, Thm. 2) is:

Rn ≤ 2
√

2Kn logM +

(√
2Kn

lnn
+ 1

)
ln(2/δ) + un,

where un is an upper bound on the regret of LINUCB with the best representation. Even in the case the best representation is
HLS (i.e., un is a constant), the regret bound is still Õ(

√
n). Moreover, EXP4.IX has an explicit dependence on the number

of actions K. An upside is the logarithmic dependence on the number of representations M .

B. Analysis of Several Diversity Conditions
B.1. Categorization

In this Section, we provide a complete proof of Lemma 1. The (counter)examples we provide to prove that the intersections
depicted in Figure 3 are nonempty, we believe, can also improve understanding of the diversity conditions.

In comparing representations, we fix a contextual problem with reward µ and context distribution ρ, and a dimension d ≥ 1.
We use set notation for conciseness.9 First, we provide in Table 1 equivalent definitions, in terms of the span of particular
sets of features, of the properties defined in Figure 2. Without loss of generality, we assume that the context distribution ρ is
full-support, i.e., supp(ρ) = X . Otherwise, it is enough to replace X with supp(ρ) in the definitions.

Name Definition
Non-redundant span {φ(x, a) | x ∈ X , a ∈ A} = Rd

CMB ∀a, span {φ(x, a) | x ∈ X} = Rd
BBK ∀a,u ∈ Rd, span

{
φ(x, a) | x ∈ X , φ(x, a)Tu ≥ 0

}
= Rd

HLS span {φ?(x) | x ∈ X} = Rd
WYS ∀a, span {φ(x, a) | x ∈ X ?(a)} = Rd

Table 1. Diversity conditions in terms of the span of particular sets of features.

The examples we provide are always 2-dimensional representations with a corresponding parameter θ? = [1, 1], and refer
to the contextual problem having the resulting reward function and uniform context distribution. Optimal features are
underlined for convenience.

CMB ⊂ non-redundant. For any a ∈ A, span {φ(x, a) | x ∈ X} ⊆ span {φ(x, a′) | x ∈ X , a′ ∈ A}. In words, if the
features of a single arm span Rd, so does the whole set of features. Not all non-redundant representations are CMB, as
testified by the following representation:

φ(x1, a1) = [1, 1] φ(x1, a2) = [1/2, 1/2]

φ(x2, a1) = [0, 1] φ(x2, a2) = [1, 1]

which is non-redundant since all features together span R2, but not CMB since those of arm a2 alone fail to do so.

HLS ⊂ Non-redundant. Since φ?(x) = φ?(x, a?x) for some a?x ∈ A, span {φ?(x) | x ∈ X} ⊆
span {φ(x, a′) | x ∈ X , a′ ∈ A}. In words, if optimal features span Rd, so does the whole set of features. Not all
non-redundant representations are HLS, as testified by the following representation:

φ(x1, a1) = [1, 1] φ(x1, a2) = [1/2, 1/2]

φ(x2, a1) = [0, 1] φ(x2, a2) = [1, 1]

which is non-redundant since all features together span R2, but not HLS since optimal features alone fail to do so.

9For instance, we use HLS to denote the set of d-dimensional realizable representations that are HLS for the given contextual problem.
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CMB * HLS. The following representation is CMB but not HLS:

φ(x1, a1) = [1, 1] φ(x1, a2) = [1, 0]

φ(x2, a1) = [0, 1] φ(x2, a2) = [1, 1] (3)

since the features of each arm taken alone span R2, but optimal features fail to do so.

HLS * CMB. The following representation is HLS but not CMB:

φ(x1, a1) = [2, 0] φ(x1, a2) = [1/2, 1/2]

φ(x2, a1) = [0, 2] φ(x2, a2) = [1/2, 1/2]

since optimal features span R2, but the features of arm a2 alone fail to do so.

WYS ⊂ CMB ∩ HLS. Assume φ is WYS. For all a, since X ?(a) ⊆ X , span{φ(x, a)|x ∈ X ?(a)} ⊆ span{φ(x, a)|x ∈
X}. Hence φ is CMB. If x ∈ X ?(a), then φ(x, a) = φ?(x). So, for any a, span{φ(x, a)|x ∈ X ?(a)} ⊆ span{φ?(x)|x ∈
X}. Hence φ is HLS. The inclusion is strict, as testified by the following representation, which is both HLS and CMB:

φ(x1, a1) = [2, 0] φ(x1, a2) = [1, 0]

φ(x2, a1) = [0, 2] φ(x2, a2) = [0, 1]

but is not WYS since a1 is only optimal for x1, and φ(x1, a1) cannot span R2 alone.

CMB ∩ HLS 6= ∅. See the previous example.

BBK ⊂ CMB. For all action a and u ∈ Rd, span
{
φ(x, a) | x ∈ X , φ(x, a)Tu ≥ 0

}
⊆ span {φ(x, a) | x ∈ X}. So if a

representation is BBK, it is also CMB. The converse is not true in general: none of the examples we have provided so far are
BBK, since all features lie in the first quadrant of R2, hence span

{
φ(x, a) | x ∈ X , φ(x, a)Tu ≥ 0

}
= ∅ for u = [−1,−1].

In particular, (3) is CMB but not BBK. This, together with HLS * CMB, also shows that HLS * BBK.

BBK * HLS The following representation:

φ(x1, a1) = [2, 0] φ(x1, a2) = [0, 1]

φ(x2, a1) = [0, 1] φ(x2, a2) = [2, 0]

φ(x2, a1) = [−1, 0] φ(x2, a2) = [0,−2]

φ(x2, a1) = [0,−2] φ(x2, a2) = [−1, 0] (4)

is BBK but not HLS. To show that it is not HLS, we just notice that optimal features fail to span R2. To show
that it is BBK, we can easily check that {φ(x, a) | x ∈ X , φ(x, a)Tu ≥ 0} spans R2 for both actions and
u ∈ {[1, 1], [−1, 1], [−1,−1], [1,−1]}. Any other vector can be obtained as Au from one of these four vectors, where A is
a p.s.d. diagonal matrix. Since all features φ are aligned with the axes of R2, φTu = φi × ui, for some index i ∈ {1, 2}.
Similarly, Rd, φ(x, a)TAu = φi ×Aii × ui. Since Aii ≥ 0, non-negativity of the former guarantees non-negativity of the
latter. This example also shows that BBK is not empty in general.

HLS ∩ BBK * WYS. The following representation:

φ(x1, a1) = [2, 0] φ(x1, a2) = [1, 0]

φ(x2, a1) = [0, 2] φ(x2, a2) = [0, 1]

φ(x2, a1) = [−1, 0] φ(x2, a2) = [−2, 0]

φ(x2, a1) = [0,−1] φ(x2, a2) = [0,−2] (5)

is HLS and BBK but not WYS. To show that it is BBK, we can use the same argument used for (4). To show that it is not
WYS, we notice that a2 is never optimal, so span {φ(x, a2) | x ∈ X ?(a2)} = ∅. This example also shows that HLS ∩ BBK
is not empty in general, and that BBK * WYS.
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WYS * BBK The following representation:

φ(x1, a1) = [2, 0] φ(x1, a2) = [1, 0]

φ(x2, a1) = [0, 2] φ(x2, a2) = [0, 1]

φ(x2, a1) = [1, 0] φ(x2, a2) = [2, 0]

φ(x2, a1) = [0, 1] φ(x2, a2) = [0, 2]

is WYS since each arm admits two orthogonal optimal features, but not BBK since all the features lie in the first quadrant of
R2. This example also shows that WYS is not empty in general.

BBK ∩ HLS ∩WYS 6= ∅. The following representation:

φ(x1, a1) = [2, 0] φ(x1, a2) = [1, 0]

φ(x2, a1) = [0, 2] φ(x2, a2) = [0, 1]

φ(x2, a1) = [−2, 0] φ(x2, a2) = [−1, 0]

φ(x2, a1) = [0,−2] φ(x2, a2) = [0,−1]

is HLS, BBK and WYS. This can be shown using the arguments employed for the previous examples.

B.2. Existence of HLS Representations

In this section, we prove a slightly more general version of Theorem 3.

We first prove the existence of an HLS representation in the case of finite contexts.

Lemma 4. For any dimension d ≥ 1, any contextual problem such that:

• X is finite,

• | supp(ρ)| ≥ d, and

• there exists x ∈ supp(ρ) with µ?(x) 6= 0,

admits a d-dimensional realizable HLS representation.

Proof. Consider a contextual problem P with the properties stated above. Without loss of generality, ρ(x) > 0 for
x ∈ {x1, . . . , xd}, and µ?(x1) 6= 0.

In this case, to prove that a d-dimensional realizable linear representation φ is HLS, it suffices to show that
span{φ?(xi)}di=1 = Rd. Indeed:

λmin

(
Ex∼ρ[φ?(x)φ?(x)T]

)
≥ λmin

(
d∑
i=1

ρ(xi)φ
?(xi)φ

?(xi)
T

)
≥ ρmin × λmin

(
d∑
i=1

φ?(xi)φ
?(xi)

T

)
, (6)

where ρmin := mini∈[d] ρ(xi) > 0. If φ?(x1), . . . φ?(xd) span Rd, the matrix Φ having these vectors as rows is full rank,
hence so is

∑d
i=1 φ

?(xi)φ
?(xi)

T = ΦTΦ, and the minimum eigenvalue in (6) is positive.

We first consider the case d = 1. A realizable one-dimensional linear representation for P is φ(x, a) = µ(x, a) for all x, a,
with θ? = 1. This is HLS since φ?(x1) = µ?(x1) 6= 0 spans R.

Now consider the case d > 1. Let L be a constant such that L > maxi∈[d] |µ?(xi)|. Notice that L > |µ?(x1)| > 0.
Within the scope of this proof, we use φi to denote the i-th element of vector φ. Consider the linear representation
with φ1(x, a) = µ(x, a) and φi(x, a) = L × 1 {x = xi} for i = 2, . . . , d and all x, a. This is a d-dimensional linear
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representation for P with θ? = [1, 0 . . . , 0]T. The optimal features of the first d contexts, taken as rows, form the following
matrix: 

µ∗(x1) 0 0 . . . 0
µ∗(x2) L 0 . . . 0
µ∗(x3) 0 L . . . 0

...
...

...
. . .

...
µ∗(xd) 0 0 . . . L


which is strictly diagonally dominant, hence full-rank. Equivalently, φ?(x1), . . . , φ?(xd) span Rd, completing the proof.

Next, we prove a similar result for the continuous case.

Lemma 5. For any dimension d ≥ 1, any contextual problem such that:

• X is a standard Borel space with measure ρ and metric ∂,

• x 7→ µ?(x) is continuous on X , and

• there exist x1, . . . , xd ∈ supp(ρ) with µ?(xi) 6= 0 for i = 1, . . . , d,

admits a d-dimensional realizable HLS representation.

Proof. Consider a contextual problem P with the properties stated above. Without loss of generality, let x1, . . . , xd ∈
supp(ρ) and |µ?(xi)| > εi > 0 for i = 1, . . . , d.

We first consider the case d = 1. Define the open interval I1 := (ε1,∞). Since µ? is continuous, |µ?| is also continuous.
Hence, the inverse image E1 = |µ?|−1(I1) is an open subset of X . In particular, since x1 ∈ E1, E1 is an open neighborhood
of x1. Since x1 ∈ supp(ρ), by definition of support10, ρ(E1) > 0. Moreover, by definition of E1, |µ?(x)| > ε1 for all
x ∈ E1. Consider the representation φ(x, a) = µ(x, a) for all x, a. This is a one-dimensional realizable linear representation
for P with θ? = 1. We have that:

λmin

(
Ex∼ρ[φ?(x)φ?(x)T]

)
=

∫
X
µ?(x)2dρ ≥

∫
E1

µ?(x)2dρ > ρ(E1)× ε21 > 0,

and the representation is HLS.

Now consider the case d > 1. For i = 1, . . . , d, define the open interval Ii := (εi,∞). As in the scalar case,Ei = |µ?|−1(Ii)
is an open neighborhood of xi of positive measure such that µ?(x) > εi for all x ∈ Ei. However, these neighborhoods may
not be disjoint.

To fix this, we will use the fact that X is a metric space. Let r0 = min{∂(xi, xj) | i, j = 1, . . . , d} be the minimum distance
between any of the d points. Also, let ri be the radius of the smallest open ball contained in Ei. Let r = min{r0, r1, . . . , rd}.
Finally, let Fi = Bxi,r = {x ∈ X |∂(x, xi) < r} be the open ball of radius r centered in xi. The F1, . . . , Fd defined in this
way are disjoint open neighborhoods of x1, . . . , xd of positive measure such that, for all x ∈ Fi, |µ?(x)| > εi.

Let L be a constant such that L > maxi∈[d] εi. Notice that L > 0. Within the scope of this proof, we use φi to denote the
i-th element of vector φ. Consider the linear representation with φ1(x, a) = µ(x, a) and φi(x, a) = L × 1 {x ∈ Fi} for
i = 2, . . . , d and all x, a. This is a d-dimensional realizable linear representation for P , with θ? = [1, 0 . . . , 0]T. Notice
that, for all x ∈ Fi, ‖φ?(x)‖2 = µ?(x)2 + L2 > ε2i + L2. For i = 1, . . . , d, define vector u(i) as follows: u1(i) = εi and
uj(i) = L × 1 {x ∈ Fj} for j = 1, . . . , d. For any vector u ∈ Rd, the only nonzero eigenvalue of uuT is ‖u‖2. So if

10In a Borel space, the support of the measure is defined as the smallest set for which every open neighbourhood of every point in the
set has positive measure.
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x ∈ Fi, φ?(x)φ?(x)T � u(i)u(i)T. Finally, we have that:

λmin

(
Ex∼ρ[φ?(x)φ?(x)T]

)
= λmin

(∫
X
φ?(x)φ?(x)Tdρ

)
≥ λmin

(
d∑
i=1

∫
Fi

φ?(x)φ?(x)Tdρ

)
(7)

≥ λmin

(
d∑
i=1

∫
Fi

u(i)u(i)Tdρ

)

= λmin

(
d∑
i=1

ρ(Fi)u(i)u(i)T

)

≥ ρmin × λmin

(
d∑
i=1

u(i)u(i)T

)
, (8)

where ρmin = mini∈[d] ρ(Fi) > 0. In (7), we used the fact that the Fi are disjoint. It remains to show that the matrix U
obtained by taking u(1), . . . ,u(i) as rows is full-rank. But this yields the following matrix:

ε1 0 0 . . . 0
ε2 L 0 . . . 0
ε3 0 L . . . 0
...

...
...

. . .
...

εd 0 0 . . . L

 (9)

which, by definition of L, is strictly diagonally dominant, hence full-rank. So, the matrix UTU =
∑d
i=1 u(i)u(i)T in (8)

also is full-rank, its minimum eigenvalue is positive, and φ is HLS.

The following lemma implies that, once there exist an HLS representation for a problem, there exist infinite equivalent HLS
representations (at least one for each d× d invertible matrix):

Lemma 6. Any invertible linear transformation of an HLS representation yields an HLS representation.

Proof. Let φ : X × [K] → Rd be a realizable linear representation for a problem P with context space X and K arms,
with corresponding parameter θ?. Any invertible matrix A ∈ Rd×d defines an invertible linear transformation TA in the
following sense:

TA(φ)(x, a) = ATφ(x, a). (10)

First, note that φ̃ = TA(φ) is still a (d-dimensional) realizable linear representation for the same problem with parameter
θ̃? = A−1θ?, since for all x, a:

µ(x, a) = φ(x, a)Tθ? = φ(x, a)TAA−1θ? = φ̃(x, a)Tθ̃?. (11)

Now note that:

λmin

(
Ex∼ρ[φ̃?(x)φ̃?(x)T]

)
= λmin

(
Ex∼ρ[ATφ?(x)φ?(x)TA]

)
.

If the matrix in the LHS is full-rank, so is the matrix in the RHS, because A is full-rank and the product of full-rank square
matrices is always full-rank. Hence if φ is HLS, so is φ̃.

These results are summarized in Lemma 3 in the paper. For simplicity, we assumed that µ?(x) 6= 0 for all x ∈ X . In
the continuous case, we also assumed that ρ is non-degenerate, which means supp(ρ) contains an open ball. This two
assumptions together guarantee there exist d (in fact, infinite) points in the support of ρ with nonzero optimal reward.

Finally, we can remove all assumptions on nonzero optimal rewards by introducing a concept of equivalence between
contextual problems. We say two reward functions µ and µ′ are equivalent provided µ′(x, a) = µ(x, a) + C for all x, a
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and some C ∈ R. We say two contextual problems are equivalent if they have the same context space, the same arm set,
the same context distribution, and equivalent reward functions. So, if the assumptions on nonzero optimal rewards from
Lemma 3, 4, or 5 are not satisfied, we can always find an equivalent problem that admits an HLS representation by adding
an appropriate constant offset to all rewards.

B.3. Additional Properties of HLS Representations

In this section, we prove additional properties of HLS representations that will be useful to construct illustrative representation-
selection problems (App. G.1).

Lemma 7. Under the same assumptions of Lemma 4, for every d > 1, every contextual problem, assuming non-optimal
features span Rd, admits an infinite number of d-dimensional non-redundant representations that are not HLS.

Proof. Lemma 4 shows that every contextual problem admits a d-dimensional HLS (hence, non-redundant) representation.
We will show how to turn an HLS representation φ of dimension d > 1 into an equivalent representation that is still
non-redundant but not HLS, having rank(Mφ) ≤ k < d for a k of choice, where Mφ = Ex∼ρ[φ?(x)φ?(x)T]. As shown
in the proof of Lemma 6, an invertible linear transformation does not affect the rank of Mφ. So, one can easily obtain an
infinite number of equivalent representations with the same property.

Let Φ? ∈ RN×d be a matrix having as rows the optimal features, after removing contexts that are not in the support of ρ.
Let q = N − k + 1, where k is the desired rank, and Φ?q denotes Φ? with all the d columns but only the first q rows. We
will only modify Φ?q , leaving all other features unchanged. Let µ? ∈ RN be the vector of optimal rewards, and µ?q be the
sub-array of its first q elements. The modified features are:

Φ̃?q =
µ?q(µ

?
q)

T∥∥µ?q∥∥2 Φ?q .

The new representation φ̃ obtained in this way is equivalent to φ (with θ̃? = θ?) since:

Φ̃?qθ
? =

µ?q(µ
?
q)

T∥∥µ?q∥∥2 Φ?qθ
? =

µ?q(µ
?
q)

Tµ?q∥∥µ?q∥∥2 = µ?q = Φ?qθ
?,

and all other features are unchanged. However, note that Φ̃?q has rank one, since it is obtained by multiplication with the
rank-one matrix µ?q(µ

?
q)

T. This means that the first q = N − k + 1 optimal features of φ̃ are all linearly dependent. With
the remaining k − 1 features, the rank of Φ̃? is at most k < d, so φ̃ is not HLS. Since we only modified optimal features,
assuming non-optimal features of φ span Rd, φ̃ is still non-redundant.

Lemma 8. Let Φ ∈ RNK×d be a random matrix whose elements are sampled i.i.d. from a non-degenerate distribution
(e.g., a standard normal). Let θ? ∈ Rd be any vector and consider the contextual problem with context set [N ], action
set [K], uniform context distribution ρ, and µ : (x, a) 7→ Φ[xK + a]Tθ?, where [·] selects rows. Then, almost surely, the
representation φ : (x, a) 7→ Φ[xK + a] is HLS for this problem.

Proof. Let Φ? be the submatrix of Φ with only rows xK + a such that a is an optimal action for x. Notice that φ is HLS
if and only if Φ? is full-rank. But the rows of Φ? are sampled i.i.d. from a non degenerate d-variate distribution (e.g., a
d-variate Gaussian with positive variance in all directions). So, Φ? is full-rank almost surely (Eaton & Perlman, 1973).

C. Constant Regret with a HLS Representation
C.1. Preliminary Results

Proposition 3 (Abbasi-Yadkori et al., 2011). Consider any linear contextual bandit problem with noise standard deviation σ.
Run LINUCB with confidence parameter δ, regularization parameter λ, and a dφ-dimensional realizable linear representation
such that supx,a ‖φ(x, a)‖2 ≤ Lφ, and ‖θ?φ‖2 ≤ Sφ. The following good event holds with probability at least 1− δ:

Gφ(δ) :=
{
∀t ≥ 1,

∥∥θtφ − θ?φ∥∥Vtφ ≤ βtφ(δ)
}
, (12)
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where

βtφ(δ) := σ

√
2 ln

(
det(Vtφ)1/2 det(λIdφ)−1/2

δ

)
+
√
λSφ (13)

≤ σ
√

2 log(1/δ) + dφ log(1 + (t− 1)L2
φ/(λdφ)) +

√
λSφ. (14)

Proposition 4 (Abbasi-Yadkori et al., 2011). Under the same assumptions of Proposition 3, assuming the good event Gφ(δ)
holds, for all t ≥ 1, the instantaneous regret of LINUCB is bounded as:

rt ≤ 2βtφ(δ) ‖φ(xt, at)‖V −1
tφ

.

Proof of Proposition 1.

Proof. This is a variant of Theorem 5 by Abbasi-Yadkori et al. (2011) where we do not assume the existence of a unique
optimal feature vector over X . The proof is easier, and the result has a worse dependence on the feature dimension.

The assumptions of this proposition are the same as Prop. 3. We will show that the logarithmic regret bound holds under the
good event Gφ(δ), which in turn holds with probability at least 1− δ. Here and in the rest of the paper, we further assume
that ∆max ≥ 1, Sφ ≥ 1, λ ≥ 1, and σ ≥ 1. These are technical assumptions that can be easily removed by properly clipping
the constants in the regret bound.

From Prop. 4 and βtφ(δ) ≥ 1:

rt ≤ 2βtφ(δ) ‖φ(xt, at)‖V −1
tφ

≤ min
{

2βtφ(δ) ‖φ(xt, at)‖V −1
tφ

,∆max

}
≤ 2∆maxβtφ(δ) min

{
‖φ(xt, at)‖V −1

tφ
, 1
}
.

From the fact that βtφ(δ) is increasing and the Elliptical Potential Lemma (e.g., Abbasi-Yadkori et al., 2011, Lemma 11):

t∑
k=1

r2
k ≤ 4∆2

maxβtφ(δ)2
t∑

k=1

min
{
‖φ(xt, at)‖2V −1

tφ
, 1
}

≤ 8∆2
maxβtφ(δ)2dφ log(1 + tL2

φ/(λdφ)).

Since either rt ≥ ∆ or rt = 0:

Rt =

t∑
k=1

rk ≤
t∑

k=1

r2
k

∆
≤

8∆2
maxβtφ(δ)2dφ log(1 + tL2

φ/(λdφ))

∆

≤
8∆2

max

(
σ
√

2 log(1/δ) + dφ log(1 + (t− 1)L2
φ/(λdφ)) +

√
λSφ

)2

dφ log(1 + L2
φ/(λdφ))

∆

≤
32∆2

maxλS
2
φσ

2
(

2 log(1/δ) + dφ log(1 + tL2
φ/(λdφ))

)2

∆
.

Proposition 5 (Abbasi-Yadkori et al., 2011). Under the same assumptions of Proposition 3, assuming the good event Gφ(δ)
holds, for all t ≥ 1, the number of suboptimal pulls of LINUCB up to time t is at most:

gtφ(δ) :=
32∆2

maxλS
2
φσ

2
(

2 log(1/δ) + dφ log(1 + tL2
φ/(λdφ))

)2

∆2
.
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Proof. A similar bound can be found in the proof of Theorem 5 by Abbasi-Yadkori et al. (2011). Again, we do not assume a
unique optimal feature vector.

Let nt be the number of suboptimal pulls up to time t. Since Rt ≥ nt∆:

nt ≤
Rt
∆
.

The regret bound from Prop. 1, which holds under Gφ(δ), completes the proof.

Lemma 9. Under the same assumptions of Proposition 3, assuming the good event Gφ(δ) holds, with probability 1− δ, for
all t ≥ 1:

λmin(Vt+1,φ) ≥ λ+ tλφ,HLS − 8L2
φ

√
t log(2dφt/δ)− L2

φgtφ(δ), (15)

where gtφ(δ) is from Prop. 5.

Proof. Since Vt+1,φ is symmetric:

Vt+1,φ = λIdφ +

t∑
k=1

φ(xk, ak)φ(xk, ak)T

= λIdφ +

t∑
k=1

1
{
ak = a?xk

}
φ(xk, ak)φ(xk, ak)T +

t∑
k=1

1
{
ak 6= a?xk

}
φ(xk, ak)φ(xk, ak)T

� λIdφ +

t∑
k=1

1
{
ak = a?xk

}
φ?(xk)φ?(xk)T

= λIdφ +

t∑
k=1

φ?(xk)φ?(xk)T −
t∑

k=1

1
{
ak 6= a?xk

}
φ?(xk)φ?(xk)T

� λIdφ +

t∑
k=1

φ?(xk)φ?(xk)T − gtφ(δ)L2
φIdφ

= λIdφ + tEx∼ρ
[
φ?(x)φ?(x)T

]
−

t∑
k=1

(
Ex∼ρ

[
φ?(x)φ?(x)T

]
− φ?(xk)φ?(xk)T

)
− L2

φgtφ(δ)Idφ

= λIdφ + tEx∼ρ
[
φ?(x)φ?(x)T

]
−

t∑
k=1

Xk − L2
φgtφ(δ)Idφ , (16)

where gtφ(δ) is the upper bound on suboptimal pulls from Prop. 5, which holds under the good event Gφ(δ), and Xk =
Ex∼ρ

[
φ?(x)φ?(x)T

]
− φ?(xk)φ?(xk)T. Since the matrix in (26) is still symmetric, by definition of λφ,HLS:

λmin(Vt+1,φ) ≥ λ+ tλφ,HLS − λmax

(
t∑

k=1

Xk

)
− L2

φgtφ(δ).

We bound the third term using a matrix Azuma inequality by Tropp (2012). First, notice that Ek[Xk] = 0. Also, since Xk is
symmetric:

X2
k � λmax(X2

k)Idφ � ‖Xk‖2 Idφ � 4L4
φIdφ .

Hence, from Prop. 27, with probability at least 1− δ′t, for all t ≥ 1:11

λmax

(
t∑

k=1

Xk

)
≤ 4L2

φ

√
2t log(dφ/δ′t).

11Notice that this is true regardless of Gφ(δ). This will be useful to bound expected regret in App. C.3.
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We set δ′t = δ/(2t2) and perform a union bound over time. Finally, with probability at least 1− δ, for all t ≥ 1:

λmax

(
t∑

k=1

Xk

)
≤ 4L2

φ

√
2t log(2dφt2/δ) ≤ 8L2

φ

√
t log(2dφt/δ).

C.2. High-Probability Regret Bound

Lemma 10. Consider a contextual bandit problem with realizable linear representation φ satisfying the HLS condition.
Assume ∆ > 0, maxx,a ‖φ(x, a)‖2 ≤ Lφ and ‖θ?φ‖2 ≤ Sφ. Then, assuming the good event Gφ(δ) holds, with probability
at least 1 − δ, there exists a (constant) time τφ such that, for all t ≥ τφ, the instantaneous regret of LINUCB run with
confidence parameter δ is rt+1 = 0.

Proof. From Prop. 4, under the good event Gφ(δ):

rt+1 ≤ 2βt+1,φ(δ) ‖φ(xt+1, at+1)‖V −1
t+1,φ

≤ 2βt+1,φ(δ)Lφ

√
λmax(V −1

t+1,φ)

≤ 2βt+1,φ(δ)
Lφ√

λmin(Vt+1,φ)
.

Since either rt+1 ≥ ∆ or rt+1 = 0, we just need to show that, for all t ≥ τφ:

2βt+1,φ(δ)
Lφ√

λmin(Vt+1,φ)
< ∆.

From Lemma 9, which holds with probability at least 1− δ under Gφ(δ), rearranging:

tλφ,HLS >
4βt+1,φ(δ)2L2

φ

∆2
+ 8L2

φ

√
t log(2dφt/δ) + L2

φgtφ(δ)− λ.

By replacing βt+1,φ(δ) with its bound from 14 and gtφ(δ) with its definition from Prop. 5 a sufficient condition is:

tλφ,HLS >
4
(
σ
√

2 log(1/δ) + dφ log(1 + tL2
φ/(λdφ)) +

√
λSφ

)2

L2
φ

∆2
+ 8L2

φ

√
t log(2dφt/δ)

+
32∆2

maxλL
2
φS

2
φσ

2
(

2 log(1/δ) + dφ log(1 + tL2
φ/(λdφ))

)2

∆2
− λ. (17)

Since φ is HLS, λφ,HLS > 0 and the LHS is linear in t, while the RHS is sublinear. This means we can find a sufficiently
large constant τφ such that (17) holds for all t ≥ τφ. One such time is derived explicitly in Appendix C.6.

Proof of Lemma 2.

Proof. First assume the good event Gφ(δ) holds. From Lemma 10, with probability 1− δ, the instantaneous regret is zero
after τφ. So, we can replace n with τφ in the anytime regret upper bound from Prop. 1, which also holds under Gφ(δ). More
precisely, if n ≥ τφ:

Rn =

n∑
t=1

rt =

τφ∑
t=1

rt +

n∑
t=τφ+1

rt︸ ︷︷ ︸
0

=

τφ∑
t=1

rt.

So, in any case:

Rn ≤
min{n,τφ}∑

t=1

rt = Rmin{n,τφ},
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which can be bounded with Prop. 1 to obtain:

Rn ≤
32∆2

maxλS
2
φσ

2

∆

(
2 ln

(
1

δ

)
+ dφ ln

(
1 +

min{τφ, n}L2
φ

λdφ

))2

.

From Prop. 3, the good event may fail with probability at most δ. Lemma 10 may fail anyway with probability at most δ.
From a union bound, the overall failure probability is at most 2δ.

C.3. Expected Regret Bound

To establish an expected-regret guarantee, we need to consider a slight variant of LINUCB that employs an adaptive
confidence parameter schedule (δt)

∞
t=1. For now, we just assume δt ∈ (0, 1) for all t and is a decreasing function of t.

We will need the following good events:

• Gtφ :=

{∥∥∥θtφ − θ?φ∥∥∥
Vtφ
≤ βtφ(δt)

}
. From (Abbasi-Yadkori et al., 2011) we know that this holds with probability at

least 1− δt. Under this event, we have the instantaneous regret upper bound from Prop. 4 restricted to time t.

• Ftφ := {nt ≤ gtφ(δt)}, where nt is the number of suboptimal pulls of LINUCB up to time t and gtφ is defined in
Prop. 5. This event holds if Gkφ holds for all k ≤ t. Indeed:

nt ≤
Rt
∆
≤

t∑
k=1

r2
k

∆

≤
t∑

k=1

4∆2
maxβkφ(δk)2 min

{
‖φ(xk, ak)‖2V −1

kφ
, 1
}

∆

≤ 4∆2
maxβtφ(δt)

2
t∑

k=1

min
{
‖φ(xk, ak)‖2V −1

kφ
, 1
}

∆
(18)

≤ gtφ(δt),

where (18) uses the fact that δt is decreasing in t and βtφ(δ) is increasing in t and decreasing in δ, and the last inequality
uses the same algebraic manipulations of the proof of Prop. 5. Hence, from a union bound, P(Ftφ) ≥ 1−∑t

k=1 δk.

• Etφ :=
{
λmax

(∑t
k=1 Ex∼ρ

[
φ?(x)φ?(x)T

]
− φ?(xk)φ?(xk)T

)
≤ 4L2

φ

√
2t log(dφ/δ′t)

}
. This is the event we used

to concentrate contexts in the proof of Lemma 9. From Prop. 27, it holds with probability δ′t. Since it is independent
from the behavior of LINUCB, we can set δ′t to any convenient value regardless of the confidence schedule δt.

Lemma 11. Consider a contextual bandit problem with realizable linear representation φ satisfying the HLS condition.
Assume ∆ > 0, maxx,a ‖φ(x, a)‖2 ≤ L and ‖θ?φ‖2 ≤ S. Then, the expected regret of OFUL run with adaptive confidence
schedule δt = 1/t3 after n ≥ 1 steps is at most:

ERn ≤
32∆2

maxλS
2
φσ

2

∆

(
6 ln(min{τ̃φ, n}) + dφ ln

(
1 +

min{τ̃φ, n}L2
φ

λdφ

))2

+ 26,

where τ̃φ is a constant independent from n.

Proof. Fix a time t and assume the three good events Gt+1,φ, Ftφ, and Etφ hold. Following the proof of Lemma 10 we can
show that, thanks to Gt+1,φ:

rt+1 ≤ 2βt+1,φ(δt+1)
Lφ√

λmin(Vt+1,φ)
.
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Following the proof of Lemma 9 we can show that, thanks to Gt+1,φ and Etφ:

λmin(Vt+1,φ) ≥ λ+ tλφ,HLS − 4L2
φ

√
2t log(dφ/δ′t)− L2

φnt,

and nt ≤ gtφ(δt) thanks to Ftφ. Putting all together, as observed in the proof of Lemma 10, a sufficient condition for
rt+1 = 0 is:

tλφ,HLS >
4βt+1,φ(δt+1)2L2

φ

∆2
+ 4L2

φ

√
2t log(dφ/δ′t) + L2

φgtφ(δt)− λ.

With our choice of δt, by setting δ′t = 1/t2, this becomes:

tλφ,HLS >
4
(
σ
√

6 log(t+ 1) + dφ log(1 + tL2
φ/(λdφ)) +

√
λSφ

)2

L2
φ

∆2
+ 8L2

φ

√
2t log(dφt)

+
32∆2

maxλL
2
φS

2
φσ

2
(

6 log(t) + dφ log(1 + tL2
φ/(λdφ))

)2

∆2
− λ. (19)

The RHS is still sublinear in t, so, if φ is HLS, we can find a sufficiently large constant τ̃φ such that (19) is always satisfied
for t ≥ τ̃φ.

If n ≥ τ̃φ, we can decompose the expected regret as follows:

ERn ≤ E
τ̃φ∑
t=1

rt︸ ︷︷ ︸
(a)

+E
n∑

t=τ̃φ+1

rt︸ ︷︷ ︸
(b)

. (20)

The first summation is just the expected regret of LINUCB up to time τ̃φ:

(a) = E
τ̃φ∑
t=1

1 {Gtφ} rt + E
τ̃φ∑
t=1

1 {¬Gtφ} rt

≤
τ̃φ∑
t=1

βkφ(δk) ‖φ(xk, ak)‖V −1
k

+ 2

τ̃φ∑
t=1

δt

≤ βτ̃φ,φ(δτ̃φ)

τ̃φ∑
t=1

‖φ(xk, ak)‖V −1
k

+ 2

∞∑
t=1

δt

≤
32∆2

maxλS
2
φσ

2

∆

(
6 ln(τ̃φ) + dφ ln

(
1 +

τ̃φL
2
φ

λdφ

))2

+ 2

∞∑
t=1

t−3

≤
32∆2

maxλS
2
φσ

2

∆

(
6 ln(τ̃φ) + dφ ln

(
1 +

τ̃φL
2
φ

λdφ

))2

+ 3,

where we used the same algebraic manipulations used to prove Prop. 1. For the second summation:

(b) = E
n−1∑
t=τ̃φ

rt+1

= E
n−1∑
t=τ̃φ

1 {Gt+1,φ ∩ Ftφ ∩ Etφ} rt+1︸ ︷︷ ︸
=0

+E
n−1∑
t=τ̃φ

1 {¬Gt+1,φ ∪ ¬Ftφ ∪ ¬Etφ} rt+1

≤ 2

∞∑
t=1

(
δt +

t∑
k=1

k−3 + t−2

)

≤ 2

∞∑
t=1

t−3 + 2

∞∑
t=1

t∑
k=1

1

k3
+ 4 ≤ 2

∞∑
t=1

∞∑
k=t

k−3 + 7 ≤ 2

∞∑
t=1

t−3/2
∞∑
k=t

k−3/2 + 7 ≤ 6

∞∑
t=1

t−3/2 + 7 ≤ 23.
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In any case, from the same argument used to bound (a):

ERn ≤
32∆2

maxλS
2
φσ

2

∆

(
6 ln(n) + dφ ln

(
1 +

nL2
φ

λdφ

))2

+ 3.

Putting everything together, we obtain our statement.

C.4. Margin Condition (Proof of Theorem 1)

Before proving Th. 1, we need to generalize some of the previous results for the case where the minimum gap can be
arbitrarily small but the margin condition (Asm. 1) holds. First, we show two immediate results that bound the regret
suffered by LINUCB on rounds where the minimum gap is above a given value.

Lemma 12. Under the good event Gφ(δ), for all ε > 0 and t > 0, the t-step regret of LINUCB on rounds where the
minimum gap is at least ε can be bounded as

Rεt :=

t∑
k=1

1 {∆(xk) ≥ ε} rk ≤
32λ(∆maxSφσ)2

ε

(
2 log(1/δ) + dφ log(1 + tL2

φ/(λdφ))
)2
. (21)

Moreover, the number of sub-optimal pulls performed by LINUCB on rounds where the minimum gap is at least ε can be
bounded as

gεtφ(δ) :=

t∑
k=1

1 {∆(xk) > ε, rk > 0} ≤ 32λ(∆maxSφσ)2

ε2
(
2 log(1/δ) + dφ log(1 + tL2

φ/(λdφ))
)2

(22)

Proof. It is easy to see that

Rεt =

t∑
k=1

1 {∆(xk) ≥ ε} rk ≤
t∑

k=1

1 {rk > 0,∆(xk) ≥ ε} r
2
k

ε
≤ 1

ε

t∑
k=1

r2
k. (23)

From here the first result follows by reproducing the proof of the regret bound in Prop. 1. The second result is immediate
from

Rεt =

t∑
k=1

1 {∆(xk) ≥ ε, rk > 0} rk ≥ εgεtφ(δ) =⇒ gεtφ(δ) ≤ Rεt
ε
. (24)

Next, we generalize Lem. 9.

Lemma 13. Under Asm. 1, for any ε > 0 and δ ∈ (0, 1), with probability at least 1− δ, for every t > 0,

λmin(Vt+1,φ) ≥ λ+ t(λφ,HLS − L2
φCε

α)− 4(1 + Cεα)L2
φ

√
t log(2dφt/δ)− L2

φg
ε
tφ(δ). (25)
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Proof. Using a similar decomposition as in the proof of Lem. 9,

Vt+1,φ = λIdφ +

t∑
k=1

φ(xk, ak)φ(xk, ak)T

� λIdφ +

t∑
k=1

1 {∆(xk) ≥ ε, rk = 0}φ?(xk)φ?(xk)T

= λIdφ +

t∑
k=1

1 {∆(xk) ≥ ε}φ?(xk)φ?(xk)T −
t∑

k=1

1 {∆(xk) ≥ ε, rk > 0}φ?(xk)φ?(xk)T

� λIdφ +

t∑
k=1

1 {∆(xk) ≥ ε}φ?(xk)φ?(xk)T − gεtφ(δ)L2
φIdφ

= λIdφ + tEx∼ρ
[
1 {∆(x) ≥ ε}φ?(x)φ?(x)T

]
−

t∑
k=1

Xk − L2
φg
ε
tφ(δ)Idφ , (26)

where gεtφ(δ) is given in Lem. 12 and Xk := Ex∼ρ
[
1 {∆(x) ≥ ε}φ?(x)φ?(x)T

]
−1 {∆(xk) ≥ ε}φ?(xk)φ?(xk)T. Using

the margin condition,

λmin

(
Ex∼ρ

[
1 {∆(x) ≥ ε}φ?(x)φ?(x)T

])
≥ λφ,HLS − λmax

(
Ex∼ρ

[
1 {∆(x) < ε}φ?(x)φ?(x)T

])
≥ λφ,HLS − L2

φP(∆(x) < ε) ≥ λφ,HLS − L2
φCε

α.

Thus,

λmin(Vt+1,φ) ≥ λ+ t(λφ,HLS − L2
φCε

α)− λmax

(
t∑

k=1

Xk

)
− L2

φg
ε
tφ(δ).

As in Lem. 9, we can bound the third term using a matrix Azuma inequality by Tropp (2012). Note that Ek[Xk] = 0 and
‖Xk‖ ≤ (1 + P(∆(x) < ε))L2

φ ≤ (1 + Cεα)L2
φ. Hence, from Prop. 27, with probability at least 1− δ′t, for all t ≥ 1:

λmax

(
t∑

k=1

Xk

)
≤ 2(1 + Cεα)L2

φ

√
t log(dφ/δ′t).

Setting δ′t = δ/(2t2) and taking a union bound over time, we have that, with probability at least 1− δ, for all t ≥ 1,

λmax

(
t∑

k=1

Xk

)
≤ 2(1 + Cεα)L2

φ

√
t log(2dφt2/δ) ≤ 4(1 + Cεα)L2

φ

√
t log(2dφt/δ).

Finally, we need the following upper bound on the regret suffered by LINUCB on (possibly random) subsets of rounds.

Lemma 14 (Cf. the proof of Lemma 13 in Tirinzoni et al. (2020)). Let {Et}t≥1 be any sequence of events. Then, under the
good event Gφ(δ), the n-step regret of LINUCB on rounds where the corresponding event holds can be upper bounded by

n∑
t=1

1 {Et} rt ≤
√

8∆2
maxNndφ log(1 +NnL2

φ/(λdφ))
(√

λSφ + σ
√

2 log(1/δ) + dφ log(1 + nL2
φ/(λdφ))

)
, (27)

where Nn :=
∑n
t=1 1 {Et}.
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Proof. Using the standard regret decomposition for LINUCB,

n∑
t=1

1 {Et} rt ≤

√√√√Nn

n∑
t=1

1 {Et} r2
t ≤

√√√√4Nn∆2
maxβ

2
nφ(δ)

n∑
t=1

1 {Et}min{‖φ(xt, at)‖2V −1
tφ

, 1}

≤

√√√√4Nn∆2
maxβ

2
nφ(δ)

n∑
t=1

1 {Et}min{‖φ(xt, at)‖2Ṽ −1
tφ

, 1}

≤
√

8Nn∆2
maxβ

2
nφ(δ)dφ log(1 +NnL2

φ/(λdφ)),

where Ṽtφ := λ +
∑t
k=1 1 {Ek}φ(xk, ak)φ(xk, ak)T � Vtφ since Vtφ − Ṽtφ � 0. This implies Ṽ −1

tφ � V −1
tφ , which

implies the norm inequality. The last inequality is from the elliptical potential lemma (Abbasi-Yadkori et al., 2011).

Proof of Theorem 1. We begin by proving the regret bound for LINUCB with margin condition and without a HLS
representation (first statement of Th. 1). Then, we prove the regret bound with HLS representation (second statement of
Th. 1).

Regret bound for LINUCB without HLS condition. Let ε > 0 to be chosen later. We start by splitting the regret into
rounds where the minimum gap is above ε,

Rn =

n∑
t=1

1 {∆(xt) ≥ ε} rt︸ ︷︷ ︸
(a)

+

n∑
t=1

1 {∆(xt) < ε} rt︸ ︷︷ ︸
(b)

. (28)

From Lem. 12,

(a) ≤ 32λ(∆maxSφσ)2

ε

(
2 log(1/δ) + dφ log(1 + nL2

φ/(λdφ))
)2
. (29)

Term (b) can be bounded using Lem. 14 with the sequence of events {∆(xt) < ε}t≥1,

(b) ≤
√

8∆2
maxNndφ log(1 +NnL2

φ/(λdφ))
(√

λSφ + σ
√

2 log(1/δ) + dφ log(1 + nL2
φ/(λdφ))

)
. (30)

It only remains to bound Nn, i.e., the count of these events. We have,

Nn :=

n∑
t=1

1 {∆(xt) < ε} ≤ P(∆(x) < ε)n+ 2
√
P(∆(x) < ε)(1− P(∆(x) < ε))n log(2n/δ) +

2

3
log(2n/δ) (31)

≤ Cεαn+ 2
√
Cεα(1− Cεα)n log(2n/δ) +

2

3
log(2n/δ), (32)

where the first inequality is from (any-time) Bernstein inequality and the second one is from the margin condition. The proof
of the first result is concluded by setting ε = n−1/α, for which the regret has the stated order. The final 1− 3δ probability is
the union bound of three events: the good event for LINUCB, concentration of contexts for Lem. 13, and concentration of
“low-gap” contexts to bound Nn.

Regret bound for LINUCB with HLS condition. We follow similar steps as before, while considering a decreasing
sequence εt = t−1/α instead of a fixed ε. We split the immediate regret at time t+ 1 as

rt+1 = 1 {∆(xt+1) ≥ εt+1} rt+1︸ ︷︷ ︸
(a)

+ + 1 {∆(xt+1) < εt+1)} rt+1︸ ︷︷ ︸
(b)

.

Let us start from (a). Since the minimum gap is larger than εt+1, a sufficient condition for the immediate regret to be zero is
(cf. proof of Lem. 10)

2Lφβt+1,φ(δ)√
λmin(Vt+1,φ)

< εt+1. (33)
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Rearranging and expanding the definition of εt,

λmin(Vt+1,φ) > 4L2
φβ

2
t+1,φ(δ)(t+ 1)2/α. (34)

Using Lem. 13 with ε =
(
λφ,HLS

2L2
φC

)1/α

,

λmin(Vt+1,φ) ≥ λ+
λφ,HLS

2
t− 6L2

φ

√
t log(2dφt/δ)− L2

φg
ε
tφ(δ), (35)

where gεtφ(δ) ≤ O((C/λφ,HLS)2/α(log t)2) by our choice of ε. Therefore, since (i) α > 2 and (ii) the minimum eigenvalue
of Vt+1,φ grows linearly with t, there exists a constant time τφ after which rt = 0. Moreover, it is easy to see that
τφ ∝ (λφ,HLS)

α
2−α . Therefore, summing (a) from t = 1 to t = n yields a total regret bounded by ∆maxτφ. It only remains

to characterize the contribution of (b) to the regret. Using Lem. 14 on the sequence of events {∆(xt) < εt},
n∑
t=1

1 {∆(xt) < εt)} rt ≤
√

8∆2
maxNndφ log(1 +NnL2

φ/(λdφ))
(√

λSφ + σ
√

2 log(1/δ) + dφ log(1 + nL2
φ/(λdφ))

)
.

(36)

To boundNn, note that {∆(xt) < εt} is a sequence of independent random variables. Moreover E[Nn] =
∑n
t=1 P{∆(xt) <

εt} ≤ C
∑n
t=1 ε

α
t and V[Nn] =

∑n
t=1 P{∆(xt) < εt}(1 − P{∆(xt) < εt}) ≤ C

∑n
t=1 ε

α
t . Thus, using Bernstein’s

inequality,

Nn ≤ E[Nn] + 2
√
V[Nn] log(2n/δ) +

2

3
log(2n/δ) ≤ C

n∑
t=1

εαt + 2

√√√√C

n∑
t=1

εαt log(2n/δ) +
2

3
log(2n/δ). (37)

Since
∑n
t=1 ε

α
t =

∑n
t=1 1/t ≤ log n + 1, we obtain the stated order of regret. The final 1 − 3δ probability is the union

bound of the same three events considered in the proof of the first part of the theorem.

C.5. HLS is Necessary and Sufficient

Prop. 2 shows that LINUCB suffers constant regret on any linear contextual bandit problem with strictly-positive minimum
gap when the algorithm is run with a HLS realizable representation φ. In this section, we prove that the HLS condition is
also necessary for achieving constant regret. We do so by leveraging the asymptotic problem-dependent regret lower-bound
for linear contextual bandits (Lattimore & Szepesvari, 2017; Hao et al., 2020; Tirinzoni et al., 2020), from which we show
that any consistent algorithm (like LINUCB) must suffer logarithmic regret if the representation is not HLS. We note that
Hao et al. (2020) proved that the asymptotic lower bound is sub-logarithmic when representation φ is HLS, while we could
not find a formal proof that the asymptotic regret is logarithmic when φ is not HLS.

In addition to those in the main paper, we consider the same assumptions used to derive the asymptotic lower-bound for
linear contextual bandits (Hao et al., 2020; Tirinzoni et al., 2020):

1. The set of contexts X is finite;

2. The context distribution ρ is full-support, i.e., ρ(x) > 0 for each x ∈ X ;

3. The reward noise ηt is i.i.d. from N (0, 1).

We note that the finiteness of X implies that the minimum-gap assumption holds (i.e., ∆ > 0). We believe that the
asymptotic lower-bound (and thus our results) could be generalized to infinite contexts with an assumption on the minimum
positive gap, though this is out of the scope of this work.

We start by stating the asymptotic lower bound on the expected regret of any consistent bandit algorithm. Formally, we
call an algorithm consistent if it suffers o(nα) regret for any α ∈ (0, 1) in any linear contextual problem satisfying the
assumptions above.
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Proposition 6 (Hao et al., 2020). Consider any consistent bandit algorithm and any linear contextual bandit problem
satisfying the assumptions above. Then,

lim inf
n→∞

E
[
Rn
]

log(n)
≥ v?(θ?), (38)

where v? is the value of the optimization problem

inf
η(x,a)≥0

∑
x∈X

∑
a∈A

η(x, a)∆(x, a) s.t. ‖φ(x, a)‖2
V −1
η
≤ ∆(x, a)2

2
∀x ∈ X , a ∈ A : ∆(x, a) > 0, (P)

where Vη :=
∑
x

∑
a η(x, a)φ(x, a)φ(x, a)T .

We now show that, if φ is not HLS, then there exists a positive constant c > 0 such that v? ≥ c. This implies that the
asymptotic regret of any consistent strategy (including LINUCB) grows at rate at least c log(n), hence proving our main
claim.
Proposition 7. Consider any consistent bandit algorithm and any linear contextual bandit problem satisfying the as-
sumptions above with a realizable representation φ that is not HLS. Then, there exists a positive constant c > 0 such
that

lim inf
n→∞

E
[
Rn
]

log(n)
≥ c. (39)

Proof. We start by noting that, if φ is not HLS, then there exists at least one context x̄ and one sub-optimal arm ā such that
φ(x̄, ā) /∈ span({φ?(x)}x∈X ). Clearly, for any λ ≥ 0, v? is larger than the value of the following optimization problem

inf
η(x,a)≥0

∑
x∈X

∑
a∈A

η(x, a)∆(x, a) s.t. ‖φ(x̄, ā)‖2(λI+Vη)−1 ≤ ∆(x̄, ā)2

2
. (40)

This holds because we removed all constraints except the one for x̄, ā and added a small regularization to the matrix Vη
(which can only decrease the norm). Let η?(x, a) be an optimal solution of this optimization problem. We now prove that
there exists a positive constant c′ > 0 such that, for some context x and sub-optimal arm a, η?(x, a) ≥ c′. Let us proceed by
contradiction. Suppose that all sub-optimal arms have η?(x, a) = 0. Since η? is feasible, we must have that

‖φ(x̄, ā)‖2
(λI+

∑
x∈X η(x,a?(x))φ?(x)φ?(x)T )

−1 ≤ ∆(x̄, ā)2

2
. (41)

Let λi, ui denote the eigenvalues/eigenvectors of the matrix
∑
x∈X η(x, a?(x))φ?(x)φ?(x)T . Note that at least one of the

eigenvalues must be zero since the optimal features do not span Rd. Moreover, since φ(x̄, ā) is not in the span of the optimal
arms, Lem. 28 ensures that there exists some ε > 0 such that |φ(x̄, ā)Tui| ≥ ε for at least one eigenvector ui associated
with a zero eigenvalue. Then, the norm can be re-written as

‖φ(x̄, ā)‖2
(λI+

∑
x∈X η(x,a?(x))φ?(x)φ?(x)T )

−1 =
∑
i∈[d]

(φ(x̄, ā)Tui)
2

λ+ λi
≥ ε2

λ
. (42)

Since λ was arbitrary, we can set it to any value λ < 2ε2

∆(x̄,ā)2 , for which we have a contradiction. Thus, we have proved
that there always exists a positive constant c′ > 0 such that, for some context x and sub-optimal arm a, η?(x, a) ≥ c′. This
means that the value of the original optimization problem is at least v? ≥ c′∆ > 0. This concludes the proof.

C.6. An Explicit Bound on τ from Lemma 2

We need to find a t that satisfies:

t >
1

λHLS

(
8L2

√
t log(2dt/δ) + L2gt(δ) +

4L2βt(δ)

∆2
− λ
)
.

Note that:

4L2βt(δ)

∆2
<

4L2

∆2

(
λS2 + σ2 log

(
dλ+ tL2

δd

))
< L2gt(δ),
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thus a sufficient condition is:

t >
1

λHLS

8L2
√
t log(2dt/δ)︸ ︷︷ ︸

(A)

+ 2L2gt(δ)︸ ︷︷ ︸
(B)

 . (43)

We consider two cases.

Case 1. We first consider the case (A) ≥ (B). In this case, we just need to find a t such that:

t >
1

λHLS
16L2

√
t log(2dt/δ) ⇐⇒ t >

256L4

λ2
HLS

log(2dt/δ).

Inequalities of the form at ≥ log(bt) (with a, b > 0) can be solved using the Lambert W function as follows:

eln(bt)−at ≤ 1

⇐⇒ bte−at ≤ 1

⇐⇒ − ate−at ≥ −a/b := x.

We get real solutions only if x > −e−1. If x ∈ (e−1, 0), then −at = W−1(x). If x > 0, then −at = W0(x). We can make
the bound more explicit by noting that −1−

√
2u− u ≤W−1(−e−u−1) ≤ −1−

√
2u− 2u/3 for u > 0 (Chatzigeorgiou,

2016) and, when x > e, ln(x)− ln ln(x) ≤W0(x) ≤ ln(x)− 1
2 ln ln(x) (Hoorfar & Hassani, 2008).

Since a =
λ2

HLS
256L4 and b = 2d/δ, we have that 0 > −a/b =

−δλ2
HLS

512dL4 > e−1 for reasonable values of the constants. Then
t ≥ −W−1(−a/b)

a , or t ≥ 1+
√

2u+u
a with u = ln(b/a) + 1. Then a valid t is:

t ≥ 768L4

λ2
HLS

ln

(
512dL4

δλ2
HLS

)
.

Case 2: We now consider the case (A) < (B) in (43). We seek a t such that:

t >
4L2gt(δ)

λHLS
,

but notice that:

L2gt(δ) <
64L2σ2λS2

∆2
4d2 log2

(
dλ+ tL2

δd

)
,

so equivalently:

t ≥ 256L2σ2λS2

λHLS∆2
4d2 log2

(
dλ+ tL2

δd

)
.

We have an inequality of the kind
√
ct = ln(bt). Let y =

√
t and a =

√
c, then ay = 2 ln(by), then:

0 = ln(by)− ay

2
⇐⇒ − a

2b
=
−ay

2
e−ay/2.

We have that a =
√

λHLS∆2

1024d2L2σ2λS2 , and since dλ+tL2

δd < 2dL2t
δ , then b = 2dL2

δ . Note that 0 > − a
2b = − ∆δ

√
λHLS

64d2L3σS
√
λ
> e−1

for reasonable values of the constants. Then −ay2 = W−1

(
− a

2b

)
and:

y ≥ 6

a
ln(2b/a) =

384dLSσ
√
λ√

λHLS∆
ln

(
64d2L3σS

√
λ√

λHLS∆δ

)
,

so a valid t is:

t ≥
(

384dLSσ
√
λ

λHLS∆
ln

(
64d2L3σS

√
λ√

λHLS∆δ

))2

.
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In conclusion we have that:

t ≥ max

{
3842d2L2S2σ2λ

λHLS∆2
ln2

(
64d2L3σS

√
λ√

λHLS∆δ

)
,

768L4

λ2
HLS

ln

(
512dL4

δλ2
HLS

)}
. (44)

D. HLS Representations and Best-Arm Identification
In this section, we show that the HLS condition also enables LINUCB to solve best-arm identification (BAI) problems in
the linear contextual bandit setting. More precisely, we show that, given a HLS representation, LINUCB equipped with a
generalized likelihood-ratio test (e.g., Hao et al., 2020; Tirinzoni et al., 2020) stops after finite number of steps and returns
the optimal arms of each context. In fact, thanks to the HLS condition, LINUCB collects sufficient information about θ?φ by
pulling the optimal arms alone, hence enabling us to prove that the algorithm stops after a finite time.

For each parameter θ ∈ Rd, let a?x(θ) := argmaxa∈A φ(x, a)T θ. We assume that the true optimal arms a?x(θ?) are unique
for each context x ∈ X , with corresponding optimal feature vector φ?(x). Moreover, we shall remove the subscripts φ to
simplify the notation.

Consider the following variant of the LINUCB algorithm. At each step t, before choosing the next arm to pull, we perform
the following test:

inf
θ∈Θ̄t

‖θt − θ‖Vt > βt(δ), (45)

where

Θ̄t :=
{
θ ∈ Rd

∣∣ ∃x ∈ X : a?x(θ) 6= a?x(θt)
}
. (46)

is the set of alternative parameters with respect to θt, i.e., those where the optimal arm of at least one context differs from
the one of θt. This is the standard generalized likelihood-ratio test adopted for best-arm identification (e.g., Degenne et al.,
2020) and in works focusing on asymptotic optimality (e.g., Hao et al., 2020; Tirinzoni et al., 2020). For finite contexts, it is
known that the test can be re-written in the convenient form (Cf. (79) from Tirinzoni et al. (2020)):

min
x∈X

min
a6=a?x(θt)

(
φ(x, a?x(θt))− φ(x, a)

)T
θt

‖φ(x, a?x(θt))− φ(s, a)‖V −1
t

> βt(δ). (47)

Then, if the test triggers, we simply return the current least-square estimate θt. Otherwise, we keep running LINUCB in its
original form.

Using the standard confidence set derived for LINUCB (Abbasi-Yadkori et al., 2011), it is easy to prove the following result.

Lemma 15 (LINUCB for BAI is δ-correct). If (45) holds at time t, then, with probability at least 1 − δ, for all x ∈ X ,
a?x(θ?) = a?x(θt).

Proof. By contradiction, suppose the statement does not hold. This means that, for some context x ∈ X , the true optimal
arm a?x(θ?) is sub-optimal for θt. By definition, this implies that θ? ∈ Θ̄t, so that,

‖θt − θ?‖Vt ≥ inf
θ∈Θ̄t

‖θt − θ‖Vt > βt(δ),

which holds with probability at most δ since θ? is contained in the confidence ellipsoid with probability at least 1− δ.

The following result shows that LINUCB run with a HLS representation and the generalized likelihood-ratio test stops in
finite time and retrieves the true optimal arms with high probability.

Lemma 16. Let φ be HLS with λHLS := λmin(E[φ?(x)φ?(x)T ]) > 0 and δ ∈ (0, 1). Let τ ≥ 1 be such that, for all
t ≥ τ − 1,

λ+ tλHLS − 8L2
√
t log(2dt/δ)− L2gt(δ) ≥

16L2β2
t+1(δ)

∆2
.

Then, with probability 1− δ, LINUCB for BAI stops in at most τ steps and returns a parameter whose optimal arms match
the true ones.



Leveraging Good Representations in Linear Contextual Bandits

Proof. The fact that the returned parameter is correct was already proved in the previous lemma, so we only focus on
showing that LINUCB eventually stops. In order to achieve so, we lower bound the left-hand side in (47) by a function that
grows linealy in time. Fix any time step t such that t+ 1 ≥ τ , x ∈ X , a 6= a?θt+1

(s). Then, using Lem. 9,

‖φ(x, a?x(θt+1))− φ(x, a)‖2
V −1
t+1

≤ 4L2

λmin(Vt+1)
≤ 4L2

λ+ tλHLS − 8L2
√
t log(2dt/δ)− L2gt(δ)

.

Similarly,

(
φ(x, a?x(θt+1))− φ(x, a)

)T
θt+1 ≥ ∆(s, a)− 2βt+1(δ) max

a′∈[K]
‖φ(x, a′)‖V −1

t
≥ ∆− 2Lβt+1(δ)√

λmin(Vt+1)

≥ ∆− 2Lβt+1(δ)√
λ+ tλHLS − 8L2

√
t log(2dt/δ)− L2gt(δ)

≥ ∆

2
,

where we used Lem. 9 and the fact that t+ 1 ≥ τ . Then, the left-hand side of (47) is at least,

∆

4L

√
λ+ tλHLS − 8L2

√
t log(2dt/δ)− L2gt(δ) ≥ βt+1(δ),

where the last inequality holds for t+ 1 ≥ τ . This means that the test triggers for t+ 1 ≥ τ , which concludes the proof.

E. Representation Selection
In this section, we study the properties of LEADER when a set of M realizable representations is provided. Denote by at
the action selected by LEADER at time t. The the instantaneous regret at time t is

rt = µ?(xt)− µ(xt, at). (48)

Note that since all the representations are realizable, we have that rt = 〈θ?i , φi(xt, a?)− φi(xt, at)〉 for any i ∈ [M ].12 We
will address misspecified representations in App. F.

E.1. Leveraging Good Representations

The following lemma establishes a key property of LEADER. We will use it to leverage access to HLS representations, but
the same argument could be used to leverage other nice properties of candidate representations, or even to combine them
(see App. E.2).

Lemma 17. Consider a contextual bandit problem with reward µ, context distribution ρ and ∆ > 0. Let (φi) be a set of M
realizable linear representations such that maxx,a ‖φi(x, a)‖2 ≤ Li and ‖θ?i ‖i ≤ Si. Then, with probability 1− δ, for all
t ≥ 1, the instantaneous regret of LEADER run with confidence parameter δ is:

rt ≤ min
i∈[M ]

{
2βti(δ/M) ‖φi(xt, at)‖V −1

ti

}
.

Proof. Notice that LINUCB is entirely off-policy, in the sense that the quality of its parameter estimates is not affected
by the fact of observing feedback from actions selected by an external rule. Since LEADER updates the estimates of all
representations at each step, we can affirm that it runs M parallel LINUCB instances. Notice that each LINUCB instance is
run with confidence parameter δ/M , where δ is the global confidence parameter of LEADER. For this reason, the good
event Gi(δ/M) defined in Prop. 3 holds with probability 1− δ/M for any i ∈ [M ]. From a union bound, the intersection of
this M events:

G(δ) :=
{
∀i ∈ [M ],∀t ≥ 1, ‖θti − θ?i ‖Vti ≤ βti(δ/M)

}
, (49)

holds with probability at least 1 − δ. Recall that Cti(δ) = {θ ∈ Rdi | ‖θti − θ‖Vti ≤ βti(δ)}. So θ?i ∈ Cti(δ/M) for all
i ∈ [M ] under G(δ).

12Recall that we abbreviate φi as just i in subscripts.
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We proceed to bound the instantaneous regret at any time t under G(δ). Since all the representations are realizable, for all
a ∈ [K], µ(xt, a) = φj(xt, a)Tθ?j for any j ∈ [M ]. So it is also true that, for any i ∈ [M ]:

φ?i (xt)
Tθ?i = µ?(xt) = max

a∈[K]
µ(x, a) = max

a∈[K]
min
j∈[M ]

φj(xt, a)Tθ?j

≤ max
a∈[K]

min
j∈[M ]

max
θ∈Ctj(δ/M)

φj(xt, a)Tθ (50)

= min
j∈[M ]

max
θ∈Ctj(δ/M)

φj(xt, at)
Tθ, (51)

≤ max
θ∈Cti(δ/M)

φi(xt, at)
Tθ

≤ φi(xt, at)Tθ̃ti, (52)

where (50) is from G(δ), (51) is from the arm-selection rule of LEADER, and θ̃ti := arg maxθ∈Cti(δ/M) φi(xt, at)
Tθ.

Finally, for any i ∈ [M ]:

rt = φ?i (xt)
Tθ?i − φi(xt, at)Tθ?i

≤ φi(xt, at)T
(
θ̃ti − θ?i

)
(53)

≤
∥∥∥θ̃ti − θ?i ∥∥∥

Vti
‖φ(xt, at)‖V −1

ti

≤ 2βti(δ/M) ‖φ(xt, at)‖V −1
ti

, (54)

where (53) is from (52), and the last inequality is from G(δ) and θ̃ti ∈ Cti(δ/M). Since (54) holds for all i ∈ [M ] with
overall probability 1− δ, we can take a minimum over representations to conclude the proof.

Remark. Inequality (52) clarifies in which sense LEADER is optimistic: every representation i ∈ [M ] can overestimate
the optimal reward of xt with the reward of the action at selected by LEADER, using an optimistic parameter θ̃ti from its
own confidence ellipsoid Cti(δ/M). In this sense, at is optimistic according to all representations, even if each representation
alone could prescribe a different optimistic action, since θ̃ti may differ from arg maxθ∈Cti(δ/M) maxa∈[K] φi(xt, a)Tθ, the
optimistic parameter of LINUCB. The fact that these prescriptions may all differ from at implies that all representations may
concur to the final action selection.

Proof of Theorem 2. The regret upper bound for LEADER established by Thm. 2 is a simple consequence of Lemma 17
and the results established for the single-representation case in previous sections.

Proof. From Lemma 17, under the good event G defined in (49):

Rn =

n∑
t=1

rt ≤
n∑
t=1

min
i∈[M ]

βti(δ/M) ‖φi(xt, at)‖V −1
ti
≤ min
i∈[M ]

n∑
t=1

βti(δ/M) ‖φi(xt, at)‖V −1
ti

. (55)

We can then bound βti(δ/M) ‖φi(xt, at)‖V −1
ti

individually for each representation i ∈ [M ]. First of all, we can proceed
as in the proof of Proposition 1. In this case, the regret of LEADER is bounded by the smallest of the regret bounds
(according to Proposition 1) of each LINUCB instance if it was run alone with confidence parameter δ/M . For HLS
representations, we can proceed as in the proof of Lemma 2 instead. For these representations, the time τi after which
βti(δ/M) ‖φi(xt, at)‖V −1

ti
= 0 is the same defined in Lemma 2, with δ replaced by δ/M . The final statement unifies

the two cases by defining τi = ∞ for representations that are not HLS. The overall probability is 1 − 2δ, from a union
bound. The first 1 − δ is for G. The additional 1 − δ is to apply Lemma 9, instantiated with δ ← δ/M , to each HLS
representation.

Remark. By using the same arguments used for the single-representation case, one can easily obtain an expected-regret
version of Theorem 2 (cf. App. C.3) and relax the zero-gap assumption into a margin condition (cf. App. C.4).
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E.2. Mixing representations

To prove Theorem 3, we first need to establish variants of the preliminary results from App. C.1 that hold without the HLS
condition.

Lemma 18 (Generalization of Lemma 9 in Loewner ordering). Under the same assumptions of Proposition 3, assuming the
good event Gi(δ) holds, with probability 1− δ, for all t ≥ 1:

Vt+1,i � λIdi + tEx∼ρ[φ?i (x)φ?i (x)T]−
(

8L2
i

√
t log(2dit/δ) + L2

i gti(δ)
)
Idi ,

where � denotes the Loewner ordering.

Proof. First, we can rewrite Vt+1,i as

Vt+1,i = λIdi +

t∑
k=1

φi(xk, ak)φi(xk, ak)T

= λIdi +

t∑
k=1

1
{
ak = a?sk

}
φ?i (xk)φ?i (xk)T +

t∑
k=1

1
{
ak 6= a?sk

}
φi(xk, ak)φi(xk, ak)T

� λIdi +

t∑
k=1

φ?i (xk)φ?i (xk)T −
t∑

k=1

1
{
ak 6= a?sk

}
φ?i (xk)φ?i (xk)T,

where the last inequality is due to the positive-semidefiniteness of
∑t
k=1 1

{
ak 6= a?sk

}
φi(xk, ak)φi(xk, ak)T. Note that,

for two positive semidefinite matrices A,B, we have A−B � A− λmax(B)I . To see this, note that a sufficient condition
for A−B to be greater than A− λmax(B)I in Loewner ordering is λmin(A−B −A+ λmax(B)I) ≥ 0, which is clearly
true. Therefore,

Vt+1,i � λIdi +

t∑
k=1

φ?i (xk)φ?i (xk)T − λmax

(
t∑

k=1

1
{
ak 6= a?sk

}
φ?i (xk)φ?i (xk)T

)
Idi

� λIdi +

t∑
k=1

φ?i (xk)φ?i (xk)T − L2
i gti(δ)Idi ,

where gti is the upper bound on suboptimal pulls from Prop. 5, which is valid under Gi. We can now apply the same
reasoning to lower-bound the sum of outer products of optimal feature vectors:

t∑
k=1

φ?i (xk)φ?i (xk)T =

t∑
k=1

φ?i (xk)φ?i (xk)T ±
t∑

k=1

Es∼ρ[φ?i (s)φ?i (s)T]

� tEs∼ρ[φ?i (s)φ?i (s)T]− λmax

 t∑
k=1

Es∼ρ[φ?i (s)φ?i (s)T]− φ?i (xk)φ?i (xk)T︸ ︷︷ ︸
Xk

 Idi .

Clearly E[Xk] = 0 since s ∼ ρ. Also X2
k � λmax(X2

k)Idi � ‖Xk‖2 I � 4L4
i I since Xk is symmetric. Hence, from matrix

Azuma (Prop. 27), w.p. 1− δ′t:

λmax

(
t∑

k=1

Xk

)
≤ 4L2

i

√
2t log(d/δ′t).

The proof is completed by union bound over time with δ′t = δ/(2t2).

The proof of the following key lemma provides some insights on how LEADER is able to mix representations.

Lemma 19. Make the same assumptions of Theorem 3 and assume the good event G(δ) defined in (49) holds. With
probability at least 1 − δ, for each representation i ∈ [M ], there exists a constant τ̌i such that, for all t ≥ τ̌i, whenever
(xt+1, at+1) ∈ Zi, the instantaneous regret of LEADER is rt+1 = 0. Moreover, for all t ≥ maxi∈[M ] τ̌i, rt+1 = 0.
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Proof. Recall from Definition 1 that Mi = Ex∼ρ[φ?i (x)φ?i (x)T], and Zi = {(x, a) ∈ X ×A|φi(x, a) ∈ Im(Mi)}, where
Im(Mi) denotes the column space of Mi. We will fix a representation i ∈ [M ], assume (xt+1, at+1) ∈ Zi, and show that
rt+1 = 0 if t ≥ τ̌i. Since the M representations together satisfy the mixed-HLS condition,

⋃
i∈[M ] Zi covers X ×A and

rt+1 = 0 after the maximal τ̌i.

From Lemma 18 (instantiated with δ ← δ/M for each representation, from which the 1− δ overall probability):

Vt+1,i � λIdi + tMi −
(

8L2
i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)
Idi := Bti. (56)

Note thatBti is invertible for all t ≥ Ti for a sufficiently large constant Ti. To see this, interpret the RHS as a time-dependent
affine transformation of Mi, and note that those eigenvalues of Mi that are initially zero keep decreasing with time, while
those that are initially nonzero start increasing forever after a finite time. Without loss of generality, we assume that Ti ≤ τ̌i.
Otherwise, it suffices to replace τ̌i with max{τ̌i, Ti}.
Let v := φi(xt+1, at+1)/ ‖φi(xt+1, at+1)‖. From the Loewner ordering and the invertibility:

vTV −1
t+1,iv ≤ vTB−1

ti v. (57)

Since by assumption (xt+1, at+1) ∈ Zi, v ∈ Im(Mi), hence v belongs to the span of k orthonormal eigenvectors of Mi,
where k is the number of nonzero eigenvalues of Mi. Note that the orthonormal eigenvectors of Bti coincide with the
orthonormal eigenvectors of Mi since Bti is an affine transformation of Mi. This means that v belongs to the span of k
eigenvectors of Bti. Also note that, for t ≥ Ti, the nonzero eigenvalues of Mi correspond to positive eigenvalues of Bti.
This means that v belongs to the span of k eigenvectors of Bti having positive corresponding eigenvalues. The smallest of
these eigenvalues is:

λ+ tλ+
i −

(
8L2

i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)
, (58)

where λ+
i denotes the smallest nonzero eigenvalue of Mi, and all of these eigenvalues are upper-bounded by:

λ+ tL2
i −

(
8L2

i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)
. (59)

Now from Lemma 29:√
vTV −1

ti v ≤
√
vTB−1

ti v ≤
λ+ tL2

i −
(

8L2
i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)

λ+ tλ+
i −

(
8L2

i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
) 1√

vTBtiv
. (60)

Finally, since v is orthogonal to all the eigenvectors of Bti that correspond to zero eigenvalues, from Lemma 30:

vTBtiv ≥ λ+ tvTMiv −
(

8L2
i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)

(61)

≥ λ+ t min
v∈Im(Mi)
‖v‖=1

vTMiv −
(

8L2
i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)

(62)

≥ λ+ tλ+
i −

(
8L2

i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)
. (63)

Finally, from Lemma 17, under the same good event G(δ):

rt+1 ≤ 2
√
βt+1,i ‖φ(xt+1, at+1)‖V −1

t+1

≤ 2
√
βt+1,iLi

√
vTV −1

ti v

≤
2Li
√
βt+1,i

[
λ+ tL2

i −
(

8L2
i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)]

[
λ+ tλ+

i −
(

8L2
i

√
t log(2Mdit/δ) + L2

i gti(δ/M)
)]3/2 (64)

=
Õ(t)

Ω(t
√
t)− Õ(t)

= Õ

(
1√
t

)
.

Hence we can find τ̌i such that, for all t ≥ τ̌i, rt+1 < ∆. By definition of ∆, rt+1 = 0.
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Remark. Although we do not provide an explicit value for τ̌i here, by examining (64) we can conclude that
√
τ̌i ∝

L3
i /(∆(λ+

i )3/2) ≥ L2
i /(∆

√
λ+
i ) hence τ̌i ∝ L4

i /(∆
2λ+
i ). So λ+

i (which is always nonzero for non-degenerate representa-
tions) has effectively replaced λi,HLS for the context-action pairs belonging to Zi. In this sense, we can say that φi is always
”locally HLS ” w.r.t. Zi.

Proof of Theorem 3.

Proof. Assume the good event G(δ) from (49) holds. Let τ = maxi∈[M ] τ̌i, where τ̌i is defined as in Lemma 19. From the
same lemma, with probability 1− δ, rt+1 = 0 if t ≥ τ . Hence, if n ≥ τ :

Rn =

n∑
t=1

rt ≤
τ∑
t=1

rt.

So, in any case, from Lemma 17:

Rn ≤
min{τ,n}∑
t=1

rt ≤ 2

min{τ,n}∑
t=1

min
i∈[M ]

βti(δ/M) ‖φi(xt, at)‖V −1
ti
≤ 2 min

i∈[M ]

min{τ,n}∑
t=1

βti(δ/M) ‖φi(xt, at)‖V −1
ti

.

We can bound βti(δ/M) ‖φi(xt, at)‖V −1
ti

individually for each representation as in Proposition 1, obtaining the desired
statement. The overall probability is 1− 2δ, from a union bound. The first 1− δ is for G. The additional 1− δ was required
to apply Lemma 19.

A corollary of Theorem 3 provides a generalization of Lemma 2 to the case of redundant representations, which is stated
by (Hao et al., 2020) without an explicit proof.

Corollary 1. Consider a contextual bandit problem with realizable linear representation φi such that, for all x ∈ X and
a ∈ A:

φi(x, a) ∈ span{φ?i (x) | x ∈ supp(ρ)}. (65)

Assume ∆ > 0, maxx,a ‖φi(x, a)‖2 ≤ Li and ‖θ?i ‖2 ≤ Si. Then, with probability at least 1− 2δ, the regret of LINUCB
after n ≥ 1 steps is at most

Rn ≤
32λ∆2

maxS
2
φσ

2

∆

(
2 ln

(
1

δ

)
+ dφ ln

(
1 +

τ̌iL
2
φ

λdφ

))2

,

where τ̌i is defined as in the proof of Lemma 19.

Proof. We will show that φ by itself satisfies the mixed-HLS condition. Then, this is just Theorem 3 in the special case
M = 1.

Let Mi and Zi be as in Definition 1. Note that Im(Mi) is precisely span{φ?i (x) | x ∈ supp(ρ)}. Hence, condition (65) is
saying that Zi = X ×A. But this means that φi by itself satisfies the mixed-HLS condition.

Corollary 1 that, even if φi is not HLS, but it spans the same subspace spanned by the whole set of (redundant) features,
LINUCB (hence, also LEADER) can achieve constant regret.

Finally, we provide some examples of sets of representations that have the mixed-HLS property.

Example 1. The following are two equivalent (non-HLS) 2-dimensional representations, with θ?1 = θ?2 = [1, 1], for a
problem with 2 contexts, 2 arms, and uniform context distribution. Optimal features are underlined.

φ1(x1, a1) = [2, 0] φ1(x1, a2) = [1, 0] φ2(x1, a1) = [2, 0] φ2(x1, a2) = [0, 1]

φ1(x2, a1) = [2, 0] φ1(x2, a2) = [0, 1] φ2(x2, a1) = [2, 0] φ2(x2, a2) = [1, 0].

The first representation is HLS restricted to context x1, i.e., Z1 = {(x1, a1), (x1, a2), (x2, a1)}. The second is HLS
restricted to context x2, i.e., Z2 = {(x1, a1), (x2, a1), (x2, a2)}. Since Z1

⋃
Z2 = X ×A, {φ1, φ2} is mixed-HLS.
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Example 2. The following are three equivalent (non-HLS) 2-dimensional representations, with θ?1 = θ?2 == θ?3 = [1, 1],
for a problem with 2 contexts, 3 arms, and uniform context distribution. Optimal features are underlined.

φ1(x1, a1) = [2, 0] φ1(x1, a2) = [1, 0] φ1(x1, a3) = [0, 1] φ2(x1, a1) = [0, 2] φ2(x1, a2) = [1, 0] φ2(x1, a3) = [0, 1]

φ1(x2, a1) = [2, 0] φ1(x2, a2) = [0, 1] φ1(x2, a3) = [1, 0] φ2(x2, a1) = [0, 2] φ2(x2, a2) = [0, 1] φ2(x2, a3) = [1, 0].

In this case Z1 = {(x1, a1), (x1, a2), (x2, a1), (x2, a3)} and Z2 = {(x1, a1), (x1, a3), (x2, a1), (x2, a2)}. Since
Z1

⋃
Z2 = X ×A, {φ1, φ2} is mixed-HLS.

Example 3. Consider the following 2-dimensional representation, with θ?1 = [1, 1], for a problem with 2 contexts, 2 arms,
and uniform context distribution.

φ1(x1, a1) = [2, 0] φ1(x1, a2) = [1, 0]

φ1(x2, a1) = [2, 0] φ1(x2, a2) = [1, 0].

It is redundant since the features only span R1. For the same reason, it is not HLS. However, optimal features also span R1.
So, according to Corollary 1, LINUCB and LEADER can achieve constant regret with access to this distribution. Indeed,
Z1 = X ×A and φ1 by itself satisfies the mixed-HLS condition. Redundancy is still a problem: the regret will scale with
d = 2 even if all features lie in a one-dimensional subspace. Redundant representations are the subject of study of sparse
bandits (e.g., Abbasi-Yadkori et al., 2012).

F. Dealing with Misspecified Representations
In this section, we introduce a variant of LEADER, called E-LEADER, that handles misspecified representations. More
precisely, we consider the realizable setting (Agarwal et al., 2012a) where we are given a set of M representations such
that at least one is realizable. Then, we combine LEADER with a statistical test that, under certain conditions, allows
eliminating misspecified representations. Finally, we analyze the regret of E-LEADER and show that, under a minimum
misspecification assumption, the algorithm essentially retains the same guarantees of LEADER for the subset of realizable
representations, while suffering only constant regret for eliminating the misspecified ones. While we use a similar test as the
one designed by Agarwal et al. (2012a) based on the mean squared error, our setting and analysis involve several additional
complications. In fact, Agarwal et al. (2012a) consider a finite set of representations, each being a direct mapping from
context and actions to rewards. On the other hand, in our case this mapping is given only after pairing some features φ (i.e.,
our concept of representation) with some parameter θ. Since these parameters are unknown and lie in a continuous space,
our setting basically involves infinite possible representations (according to the definition of Agarwal et al. (2012a)).

F.1. Formal Setting and Assumptions

We assume to have a set of representations {φi}i∈[M ] such that

µ(x, a) = φi(x, a)T θ?i + fi(x, a) ∀i ∈ [M ], x ∈ X , a ∈ [K]. (66)

As for the realizable setting, we suppose that ‖θ?i ‖2 ∈ Bi := {θ ∈ Rdi : ‖θ‖2 ≤ Si} and ‖φi(x, a)‖2 ≤ Li for all i ∈ [M ].
Moreover, we suppose that the non-linear component fi (i.e., the misspecification) satisfies |fi(x, a)| ≤ ‖fi‖∞ := εi ≤ ε.
The learner knows the upper bounds Si, Li, while fi, εi, ε are all unknown.

The following are our two key assumptions.
Assumption 2 (Realizability). There exists a subset I? ∈ [M ] with |I?| ≥ 1 such that εi = 0 for each i ∈ I?
Assumption 3 (Minimum misspecification). For each misspecified representation i ∈ [M ] \ I?, there exists γi > 0 such
that

min
θ∈Bi

min
π∈Π

Ex∼ρ
[(
φi(x, π(x))T θ − µ(x, π(x))

)2] ≥ γi, (67)

where Π is the set of all mappings from X to [K].

Intuitively, Asm. 3 requires that, no matter what actions the algorithm takes, in expectation over contexts no linear predictor
can perfectly approximate the reward function. A sufficient condition for this to hold is that there exists some contexts which
occur with positive probability and for which all actions are misspecified. Finally, as a technical assumption, we suppose
that |µ(x, a)| ≤ 1 and |yt| ≤ 1 almost surely. This simplifies the analysis and the notation, though it can be easily relaxed.
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Algorithm 2 E-LEADER
Input: representations (φi)i∈[M ] with values (Li, Si)i∈[M ], regularization factor λ ≥ 1, confidence level δ ∈ (0, 1).
Initialize V1i = λIdi , θ1i = 0di for each i ∈ [M ] and Φ1 = [M ]
for t = 1, . . . do

Observe context xt
Pull action at ∈ argmaxa∈[K] mini∈Φt{Uti(xt, a)}
Observe reward rt and, for each i ∈ [M ]
Vt+1,i = Vti + φi(xt, at)φi(xt, at)

T

θt+1,i = V −1
t+1,i

∑t
l=1 φi(xl, al)rl

θ̃t+1,i = argminθ∈Bi
∑t
l=1

(
φ(xl, al)

T θ − rl
)2

Φt+1 :=
{
i ∈ Φt : Et(φi, θ̃t+1,i) ≤ minj∈[M ] minθ∈Bj (Et(φj , θ) + αt+1,i)

}
end for

Additional Notation. Finally, introduce some additional terms which will be recurrent in this section.

• Et(φ, θ) := 1
t

∑t
k=1

(
φ(xk, ak)T θ − yk

)2
: mean squared error (MSE) of representation (φ, θ) at time t;

• θ̃ti := argminθ∈Bi Et−1(φi, θ): least-squares estimate projected onto the ball of valid parameters;

• Ek and Vk: expectation and variance conditioned on the full history up to (and not including) round k.

F.2. Algorithm

The pseudo-code of elimination-based LEADER (E-LEADER), which combines LEADER with a statistical test for
eliminating misspecified representations, is provided in Alg. 2.

The algorithm maintains a set of active representations Φt defined as Φ1 := [M ] and, for t ≥ 2,

Φt :=

{
i ∈ Φt−1 : Et−1(φi, θ̃ti) ≤ min

j∈[M ]
min
θ∈Bj

(Et−1(φj , θ) + αtj)

}
, (68)

where

αtj :=
20

t− 1
log

8M2(12LjSj(t− 1))dj (t− 1)3

δ
+

1

t− 1
. (69)

Note that E-LEADER needs to compute a projected (onto the ball of valid parameters) version of the least-squares estimates
to define the set Φt. While we need this to simplify the analysis, in practice one can use the standard regularized least-squares
estimates θti instead of θ̃ti. Finally, E-LEADER proceeds exactly as LEADER, by selecting, at each time step, the action
with the minimum UCB across all active representations. Computationally, the main difference between the two algorithms
is that E-LEADER needs to maintain estimates of the mean squares error Et. These estimates can be updated incrementally
when using regularized least squares, which makes E-LEADER as efficient as LEADER.

F.3. Analysis

F.3.1. REALIZABLE REPRESENTATIONS ARE NEVER ELIMINATED

The first three lemmas show that any realizable representation i ∈ I? is never eliminated from Φt with high probability.

Lemma 20. Let φ, θ ∈ Rd be such that |φ(s, a)T θ| ≤ 1. Then, for each i ∈ I?, t ≥ 1, and δ ∈ (0, 1),

P
(
Et(φi, θ

?
i ) > Et(φ, θ) +

20

t
log

4t

δ

)
≤ δ. (70)

Proof. This result can be obtained by reproducing the first part of the proof of Lemma 4.1 in (Agarwal et al., 2012a). We
report the main steps for completeness.
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Define g(x, a) := φ(x, a)T θ, g?(x, a) := φi(x, a)T θ?i , and Zk := (g(xk, ak)− yk)2− (g?(xk, ak)− yk)2. Note that {Zk}
is a martingale difference sequence with |Zk| ≤ 4. Then, using Freedman’s inequality (Lem. 26), with probability at least
1− δ,

t∑
k=1

Ek[Zk]−
t∑

k=1

Zk ≤ 2

√√√√ t∑
k=1

Vk[Zk] log
4t

δ
+ 16 log

4t

δ
.

Using Lemma 4.2 of (Agarwal et al., 2012a), we have that Vk[Zk] ≤ 4Ek[Zk]. Then, after a simple manipulation,
the inequality above yields −∑t

k=1 Zk ≤ 20 log 4t
δ . The proof is concluded by noting that

∑t
k=1 Zk = t(Et(φ, θ) −

Et(φi, θ
?
i )).

Lemma 21. For each δ ∈ (0, 1),

P
(
∃t ≥ 1, i ∈ I?, j ∈ [M ], θ ∈ Bj : Et(φi, θ

?
i ) > Et(φj , θ) +

20

t
log

8M2(12LjSjt)
dj t3

δ
+

1

t

)
≤ δ. (71)

Proof. We shall use a covering argument for each representation j ∈ [M ]. First note that, for any ξ > 0, there always exists
a finite set Cj ⊂ Rdj of size at most (3Sj/ξ)

dj such that, for each θ ∈ Bj , there exists θ′ ∈ Cj with ‖θ − θ′‖2 ≤ ξ (see e.g.
Lemma 20.1 of (Lattimore & Szepesvári, 2020)). Moreover, suppose that all vectors in Cj have `2-norm bounded by Sj
(otherwise we can always remove vectors with large norm). Now take any two vectors θ, θ′ ∈ Bj with ‖θ − θ′‖2 ≤ ξ. We
have

Et(φj , θ) =
1

t

t∑
k=1

(
φj(xk, ak)T θ ± φj(xk, ak)T θ′ − yk

)2
=

1

t

t∑
k=1

(
φj(xk, ak)T (θ − θ′)

)2
+

1

t

t∑
k=1

(
φj(xk, ak)T θ′ − yk

)2
+

2

t

t∑
k=1

(
φj(xk, ak)T (θ − θ′)

) (
φj(xk, ak)T θ′ − yk

)
≥ Et(φj , θ′) +

2

t

t∑
k=1

(
φj(xk, ak)T (θ − θ′)

) (
φj(xk, ak)T θ′ − yk

)︸ ︷︷ ︸
|·|≤2

≥ Et(φj , θ′)−
4

t

t∑
k=1

‖φj(xk, ak)‖2‖θ − θ′‖2 ≥ Et(φj , θ′)− 4Ljξ.

Using ξ = 1
4Ljt

,

P
(
∃t ≥ 1, i ∈ I?, j ∈ [M ], θ ∈ Bj : Et(φi, θ

?
i ) > Et(φj , θ) +

20

t
log

4t3

δ′t
+

1

t

)
≤
∞∑
t=1

∑
i∈I?

∑
j∈[M ]

P
(
∃θ ∈ Bj : Et(φi, θ

?
i ) > Et(φj , θ) +

20

t
log

4t3

δ′t
+

1

t

)

≤
∞∑
t=1

∑
i∈I?

∑
j∈[M ]

P
(
∃θ′ ∈ Cj : Et(φi, θ

?
i ) > Et(φj , θ

′)− 1

t
+

20

t
log

4t3

δ′t
+

1

t

)

≤
∞∑
t=1

∑
i∈I?

∑
j∈[M ]

∑
θ′∈Cj

P
(
Et(φi, θ

?
i ) > Et(φj , θ

′) +
20

t
log

4t3

δ′t

)
≤
∞∑
t=1

∑
i∈I?

∑
j∈[M ]

∑
θ′∈Cj

δ′t
t2

≤M2
∞∑
t=1

δ′t
t2

(12LjSjt)
dj .

Here the first inequality is from the union bound, the second one follows by relating θ with its closest vector in the cover as
above, the third one is from another union bound, the fourth one uses Lemma 20, and the last one is from the maximum size
of the cover. The result follows by setting δ′t = δ

2M2(12LjSjt)
dj

.
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Lemma 22. [Validity of representation set] With probability at least 1− δ, for each i ∈ I? and time t ≥ 1, i ∈ Φt.

Proof. Clearly i ∈ Φ1 by definition. From Lemma 21, with probability at least 1− δ, for any i ∈ I? and t ≥ 1,

Et(φi, θ
?
i ) ≤ min

j∈[M ]
min
θ∈Bj

(
Et(φj , θ) +

20

t
log

8M2(12LjSjt)
dj t3

δ
+

1

t

)
.

By definition, θ̃t+1,i is the vector in Bi minimizing Et(φi, θ). Therefore, since θ?i ∈ Bi,

Et(φi, θ̃t+1,i) ≤ Et(φi, θ?i ),

which concludes the proof.

F.3.2. MISSPECIFIED REPRESENTATIONS ARE EVENTUALLY ELIMINATED

Next, we show that, thanks to Asm. 3, all the misspecified representations are eliminated from Φt at some point.

Lemma 23. Let Zk(φ, θ) :=
(
φ(xk, ak)T θ − yk

)2
. Define vt :=

∑t
k=1 Ek [Vk[yk|xk, ak]] and bt(φ, θ) :=∑t

k=1 Ek
[(
φ(xk, ak)T θ − µ(xk, ak)

)2]
as the sum of conditional variances and biases, respectively. Then, for any

δ ∈ (0, 1),

P

(
∃t ≥ 1, i ∈ [M ], θ ∈ Bi :

∣∣∣∣∣
t∑

k=1

Zk(φi, θ)− bt(φi, θ)− vt
∣∣∣∣∣ > 4

√
t log

4Mt(12tSiLi)di

δ
+ 2

)
≤ δ (72)

Proof. We follow a covering argument analogous to the one used in Lem. 21. It is easy to see that, if two parameters
θ, θ′ ∈ Bi are ξ-close in `2-norm, then

t∑
k=1

|Zk(φi, θ)− Zk(φi, θ
′)| ≤

t∑
k=1

∣∣φi(xk, ak)T (θ + θ′)− 2yk
∣∣︸ ︷︷ ︸

≤4

∣∣φi(xk, ak)T (θ − θ′)
∣∣︸ ︷︷ ︸

≤Liξ

≤ 4Liξt.

For each time t ≥ 1 and i ∈ [M ], we build a ξti-cover Cti of Bi, where ξti = 1/(4Lit). Therefore,

P

(
∃t ≥ 1, i ∈ [M ], θ ∈ Bi :

∣∣∣∣∣
t∑

k=1

Zk(φi, θ)−
t∑

k=1

Ek[Zk(φi, θ)]

∣∣∣∣∣ > 4
√
t log(2t/δ′t) + 2

)

≤
∑
t≥1

∑
i∈[M ]

∑
θ∈Cti

P

(∣∣∣∣∣
t∑

k=1

Zk(φi, θ)−
t∑

k=1

Ek[Zk(φi, θ)]

∣∣∣∣∣ > 4
√
t log(2t/δ′t) + 2− 8Liξtit

)

≤M
∑
t≥1

δ′t(12tSiLi)
di ,

where the first inequality is from a union bound and a reduction to the cover Cti (for both terms inside the absolute value)
while the second one uses Azuma’s inequality (Lem. 25). The proof is concluded by setting δ′t = δ

2M(12tSiLi)di
and noting

that

Ek[Zk(φi, θ)] = Ek
[
Vk[yk|xk, ak] +

(
φi(xk, ak)T θ − µ(xk, ak)

)2]
.

Lemma 24 (Elimination). Let i ∈ [M ] be any misspecified representation. Then, with probability at least 1− 2δ, we have
i /∈ Φt+1 for all t such that

t ≥ 1

γi
min
j∈I?

{
5 + 4

√
t log

4Mt(12tSiLi)di

δ
+ 4

√
t log

4Mt(12tSjLj)dj

δ
+ 20 log

8M2(12LjSjt)
dj t3

δ

}
.
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Proof. Suppose that the misspecified representation i ∈ [M ] is active at time t + 1 (i.e., i ∈ Φt+1). Let j ∈ I? be any
realizable representation. Then,

Et(φi, θ̃t+1,i) ≤ min
j∈Φt+1

min
θ∈Bj

(Et(φj , θ) + αt+1,i) ≤ Et(φj , θ?j ) + αt+1,j

≤ vt
t

+ 4

√
1

t
log

4Mt(12tSjLj)dj

δ
+

2

t
+ αt+1,j ,

where the first inequality uses the definition of Φt+1, the second one uses that j is active at any time, and the last one uses
Lem. 23 together with bt(φj , θ?j ) = 0 since j is realizable. Similarly, by another application of Lem. 23 to the left-hand side,

Et(φi, θ̃t+1,i) ≥
bt(φi, θ̃t+1,i) + vt

t
− 4

√
1

t
log

4Mt(12tSiLi)di

δ
− 2

t
.

Combining these two and expanding the definition of αt+1,j ,

bt(φi, θ̃t+1,i) ≤ 5 + 4

√
t log

4Mt(12tSiLi)di

δ
+ 4

√
t log

4Mt(12tSjLj)dj

δ
+ 20 log

8M2(12LjSjt)
dj t3

δ
.

Finally, by Asm. 3

bt(φi, θ̃t+1,i) ≥ min
θ∈Bi

bt(φi, θ) = min
θ∈Bi

Ex∼ρ

[
t∑

k=1

(
φi(x, πk(x))T θ − µ(x, πk(x))

)2]
≥ tmin

θ∈Bi
min
π∈Π

Ex∼ρ
[(
φi(x, π(x))T θ − µ(x, π(x))

)2] ≥ tγi.
Relating the last two inequalities, where in the former we can take a minimum over all realizable representations, we obtain
an inequality of the form tγi ≤ o(t), from which we can find t such that i is eliminated. The result holds with probability
1− 2δ due to the combination of two union bounds: one for the validity of the representation set, and the other for using
Lem. 23.

F.3.3. REGRET ANALYSIS

Given that all misspecified representations are eliminated at some point, the analysis follows straightforwardly from the one
of LEADER. In particular, if we let Γi be the first (deterministic) time step such that the inequality in Lem. 24 holds, we
can bound the immediate regret for each t ≤ Γi with its maximum value (i.e., 2). Then, the total regret of E-LEADER is

Rn =

dΓe∑
t=1

rt +

n∑
t=dΓe+1

rt ≤ 2dΓe+

n∑
t=dΓe+1

rt,

where Γ := maxi∈[M ]\I? Γi. Then, the second term above can be bounded using exactly the same proof as LEADER since
only the realizable representations remain active after dΓe. Hence, E-LEADER suffers only constant regret for eliminating
misspecified representations. Moreover, if at least one realizable representation is HLS, or the mixing HLS condition holds,
the second term above is also constant, and E-LEADER suffers constant regret.

F.4. Experiments

We finally report some numerical simulations where we compare E-LEADER with other model selection baselines (the one
that performed better) on a toy problem with misspecification and on feature representations extracted from real data.

Toy problem. For the toy problem, we modified the experiment with varying dimensions of App. G.1.2 . In addition to
the representations considered in such experiment, we added four misspecified features, one with half the dimensionality of
the base representation φorig (see App. G.1.2), one with one third of the same, one generated randomly with dimension 3,
and one generated randomly with dimension 9.



Leveraging Good Representations in Linear Contextual Bandits

0 2 4 6 8

·104

0

500

1,000

1,500

2,000

2,500

Rounds n

P
se

ud
o

R
eg

re
t

E-LEADER
REGBAL

REGBALELIM

0 0.2 0.4 0.6 0.8 1

·106

0

0.5

1

1.5
·105

Rounds n

P
se

ud
o

R
eg

re
t

E-LEADER
REGBAL

REGBALELIM

Figure 5. Regret of LEADER and model-selection baselines on two misspecified problems. (left) Toy problem with varying dimensions
and misspecified representations. (right) 20 representations extracted from the Last.fm dataset.

Last.fm dataset. For the experiment with real data, we use the Last.fm dataset (Cantador et al., 2011), which is a list of
users and music artists, together with information about the artists listened by each user. This dataset has been obtained
from Last.fm (https://www.last.fm/) online music system. We first preprocessed the dataset by keeping only artists
listened by at least 70 users and users that listened at least to 10 different artists. We thus obtained a dataset of 1322 users
(which we treat as contexts) and 220 artists (which we treat as arms) reporting the number of times each user listened to
each artist (which we treat as reward). Then, we generated multiple linear representations as follows. First, we extracted
context-arm features via a low-rank factorization (taking only the highest 150 singular values) of the full matrix. Then, for
each of 20 representations we generated a random neural network architecture by sampling the number of hidden layers
in {1, 2}, the number of hidden neurons uniformly in [50, 200], and the size of the output layer uniformly in [5, 50]. We
obtained 20 neural networks with R2 score on a test set ranging from 0.5 to 0.85. For each of them, we took the last layer
of the network as our linear model, thus obtaining 20 linear representations with varying dimension and misspecification.
We found that 12 of these representations satisfy the HLS condition and took the best (in terms of R2) of these as our
ground-truth model. Finally, we normalized all these representations to have ‖θ?‖2 = 1 by properly re-scaling φ.

Results. The results of running E-LEADER and the other model-selection baselines on the two problems described above
are shown in Fig. 5. We compare to the baselines that perform best in the experiments of the main paper, i.e., REGBAL
and REGBALELIM. For these baselines, we used d

√
n as the oracle upper bound to the n-step regret of LINUCB with a

d-dimensional representation instead of the theoretical upper bound. Fig. 5 shows that E-LEADER outperforms the other
baselines and quickly transitions to constant regret. REGBALELIM also transitions to constant regret since it eventually
eliminates all misspecified representations but it takes an order of magnitude more steps than E-LEADER to achieve so.

G. Experimental Details
In this section we provide further details on how the experiments from Section 6 were designed, the experimental setup, and
additional results.

G.1. Synthetic Problems with Finite Contexts

The two synthetic experiments reported in Section 6 and the motivating example from Figure 1 all pertain to the same
randomly-generated contextual bandit problem with 20, 5 actions, uniform context distribution ρ, and noise standard
deviation σ = 0.3. All the representations we consider are normalized so that Si = ‖θ?i ‖ = 1, while Li can change.

To construct the reward function µ for our problem, we first generate a 6-dimensional random feature map φorig : X ×A →
R6. Specifically, each of the 20× 5× 6 elements of φorig is sampled independently from a standard normal distribution. We
separately sample a 6-dimensional parameter θ?orig, each element from a uniform distribution over the interval [−1, 1]. We
then normalize the parameter to have Sorig = 1. The reward function µ is defined a posteriori as µ(x, a) = φorig(x, a)Tθ?orig,

https://www.last.fm/
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Figure 6. Regret of LEADER, LINUCB (left) with different representations and model-selection baselines (right) on the motivating
representation-selection problem (App. G.1.1).

so φorig is linearly realizable by construction.

From Lemma 8, φ?orig is almost surely HLS. However, we verify this by checking that λorig,HLS is positive. All the
representations we consider in the following are derived from and equivalent to φorig.

G.1.1. MOTIVATING EXAMPLE

The motivating example from Figure 1 is obtained from φorig (φ5 in the figure) by reducing the rank of Ex∼ρ[φ?i (x)φ?i (x)T]
from 6 (full-rank), to 5, 4, 3, 2 and 1, using the procedure described in Lemma 7. A random linear transformation is then
applied to each representation, which is also normalized to have Si = 1. Notice that this operations do not affect the rank
of Ex∼ρ[φ?i (x)φ?i (x)T] (Lemma 6). So we have a total of six representations, where only φorig is HLS. The experiment is
reproduced in Figure 6, where we also report the regret of the model-selection baselines. The results are in line with the
theory. Only LINUCB with the HLS representation and LEADER achieve constant regret, significantly outperforming the
other LINUCB instances.

G.1.2. VARYING DIMENSION

Starting from φorig, we construct five equivalent representations with dimension ranging from 2 to 6. To reduce the
dimension, we just replace a subset of features of φorig (that is, elements of φorig(x, a) for all x, a) with a single feature
that is a linear combination weighted by the corresponding elements of θ?orig. To obtain an equivalent representation, it
is enough to set the corresponding element of the new θ?i to 1. We then apply the procedure from Lemma 7 to obtain
rank(Ex∼ρ[φ?i (x)φ?i (x)T]) = 1. Each representation is then passed through a random linear transformation and normalized
to have Si = 1. So, of the seven representations, only the original φorig is HLS. The experiment is reproduced in Figure 7,
where we also report the regret of the model-selection baselines.

G.1.3. MIXING REPRESENTATIONS

For this experiment, we derive from φorig six non-HLS 6-dimensional representations with the mixed-HLS property. The
original HLS representation itself is not included in the set of candidates, to make mixing representations necessary.

To obtain the desired property, we remove two optimal features from each representation, replacing them with two copies
of a new one that is an average of the two, similarly to what we did for the previous experiment, but without affecting
the dimensionality. This operation makes the new representation non-HLS. However, since we only modify features of
optimal arms, the new representation is still non-redundant. We pick the features to remove in a way that ensures the six
representations together still have all the original features. Since the original φorig was HLS, it is easy to verify that the set
of representations constructed in this way has the mixed-HLS property from Definition 1. Again, each representation is
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Figure 7. Regret of LEADER, LINUCB (left) with different representations and model-selection baselines (right) on the representation-
selection problem with varying dimension (App. G.1.2).
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Figure 8. Regret of LEADER, LINUCB (left) with different representations and model-selection baselines (right) on the problem of
mixing representations (App. G.1.3).
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Figure 9. Regret of LINUCB with two different representations on the synthetic problem with continuous contexts (App. G.2).

passed through a random linear transformation and normalized to have Si = 1. The experiment is reproduced in Figure 8.
Differently from the experiment reported in Figure 4 in the main paper, here all the base algorithms of REGBAL and
REGBALELIM are updated at each time step for more fair comparison.

G.2. Synthetic Problem with Continuous Contexts

In this section, we test LEADER on a synthetic contextual problem with continuous contexts. This example also clarifies
the relationship between feature maps and context distributions in determining the goodness of a representation, showing
how a change representation can sometimes correct for a ”bad” distribution.

The continuous context space is X = {x ∈ Rd | ‖x‖ ≤ 1}. The finite action set is A = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}13.
The context distribution ρ is uniform over {(x[1], x[2]) ∈ X | x[2] ≤ 0}, where we use bracketed subscripts to index
elements of vectors. Notice that ρ assigns zero probability to some contexts in X . The reward function is:

µ(x, a) = x[1]a[1] + x[2]a[2].

Intuitively, each action selects one, both or none of the elements of the current context and receives the sum of the selected
elements as a reward.

A natural 2-dimensional representation for this problem is:

φ1(x, a) =
[
x[1]a[1], x[2]a[2]

]T
,

with θ?1 = [1, 1]T. This would be a perfectly fine representation if ρ was full-support. However, since almost surely x[2] ≤ 0,
φ?1(x) is either [0, 0]T or [x[1], 0]T depending on the sign of x[1]. Hence, optimal features do not span R2, and φ1 is not HLS.

Consider another representation for the same problem, this time 3-dimensional:

φ2(x, a) =
[
x[1]a[1] − x[1], x[2]a[2] − x[2], x[1] + x[2]

]T
,

with θ?2 = [1, 1, 1]T. It is easy to see that the two representations are equivalent. However, now φ?2(x) can be [0,−x[2], x[1] +

x[2]]
T or [−x[1],−x[2], x[1] + x[2]]

T depending on the sign of x[1], optimal features span R3, and φ2 is HLS.

In Figure 9, we show the regret of LINUCB with the two representations (λ = 1, δ = 0.01, σ = 0.2, 20 independent runs).
Note that only φ2 achieves constant regret.

13We directly assign a vector in Rd to each one of the four actions for ease of notation.
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Figure 10. Regret of LEADER and model-selection baselines on 7 representations extracted from the Jester dataset.

G.3. Jester Dataset

We report the comparison between LEADER and the model-selection baselines on the 7 feature representations extracted
from the Jester dataset. For REGBAL and REGBALELIM, we use d

√
n as the oracle upper bound to the regret of LINUCB

(instead of the theoretical one). Moreover, for all algorithms, we update all base learners with all collected samples (i.e.,
we share data across representations as LEADER does). The results are shown in Fig. 10. Consistently with the other
experiments, LEADER outperforms all baselines and quickly transitions to constant regret thanks to the presence of multiple
HLS representations.

G.4. Hyperparameters for Model-Selection Baselines

In this section, we report hyperparameters and other settings used for the model-selection baselines. All base algorithms are
always updated at each time step unless otherwise stated.

EXP4.IX. For the implicit-exploration parameter, we used the theoretical value γ =
√

2 log(M)/(nK). The learning
rate is η = 2γ.

CORRAL. and EXP3.P We used the theoretical learning rate (respectively, exploration parameter) reported in App. A,
with c(δ) =

√
d(
√
λS + σ

√
d− 2 log(δ)).

Regret Balancing (with Elimination) As a regret oracle, we used u : Sti 7→ 4βti(δ)
√
t log(detVti) (for all bases).

H. Auxiliary Results
Lemma 25 (Azuma’s inequality). Let {(Zt,Ft)}t∈N be a martingale difference sequence such that |Zt| ≤ a almost surely
for all t ∈ N. Then, for all δ ∈ (0, 1),

P

(
∀t ≥ 1 :

∣∣∣∣∣
t∑

k=1

Zk

∣∣∣∣∣ ≤ a√t log(2t/δ)

)
≥ 1− δ. (73)

Lemma 26 (Freedman’s inequality). Let {(Zt,Ft)}t∈N be a martingale difference sequence such that |Zt| ≤ a almost
surely for all t ∈ N. Then, for all δ ∈ (0, 1),

P

∀t ≥ 1 :

∣∣∣∣∣
t∑

k=1

Zk

∣∣∣∣∣ ≤ 2

√√√√ t∑
k=1

Vk[Zk] log(4t/δ) + 4a log(4t/δ)

 ≥ 1− δ. (74)

Lemma 27 (Matrix Azuma, Tropp, 2012). Let {Xk}tk=1 be a finite adapted sequence of symmetric matrices of dimension
d, and {Ck}tk=1 a sequence of symmetric matrices such that for all k, Ek[Xk] = 0 and X2

k � C2
k almost surely. Then, with



Leveraging Good Representations in Linear Contextual Bandits

probability at least 1− δ:

λmax

(
t∑

k=1

Xk

)
≤
√

8σ2 log(d/δ), (75)

where σ2 =
∥∥∥∑t

k=1 C
2
k

∥∥∥.

Lemma 28. Let Φ = [φ1, . . . , φn], where φi ∈ Rd for i ∈ [n], be such that span(Φ) ⊂ Rd. Call λi the i-th eigenvalue
(using an arbitrary order) of the matrix ΦΦT ∈ Rd×d, and let ui be its corresponding eigenvector. Then, for any vector
φ ∈ Rd, if φ /∈ span(Φ), there exists i ∈ [d] such that λi = 0 and |φTui| > 0.

Proof. We prove the lemma by contradiction. Suppose that, for all i ∈ [d], either λi > 0 or |φTui| = 0. Note that, since
the columns of Φ do not span Rd, rank(Φ) = rank(ΦΦT ) < d. This implies that at least one eigenvalue of ΦΦT is zero.
Moreover, if λi = 0, the condition above implies that |φTui| = 0. This means that φ is orthogonal to all eigenvectors of Φ
associated to a zero eigenvalue. Define the matrix Φ̄ := [Φ, φ] ∈ Rd×(n+1). It must be that rank(Φ̄) > rank(Φ) (otherwise
φ would lie in the span of the columns of Φ). Note that

Φ̄Φ̄T =
n∑
i=1

φiφ
T
i + φφT = ΦΦT + φφT . (76)

If ui is an eigenvector of ΦΦT associated with a zero eigenvalue, then

Φ̄Φ̄Tui = ΦΦTui︸ ︷︷ ︸
=0

+φφTui︸ ︷︷ ︸
=0

= 0 (77)

since ui is orthogonal to φ. Hence, ui is still an eigenvector of Φ̄Φ̄T associated with eigenvalue zero. Therefore, the
number of non-zero eigenvalues of Φ̄Φ̄T is the same as the one of ΦΦT , which implies that rank(Φ̄) = rank(Φ̄Φ̄T ) =
rank(ΦΦT ) = rank(Φ). This yields the desired contradiction.

Lemma 29 (Kantorovich-like inequality). Let v ∈ Rd with ‖v‖ = 1 and A ∈ Rd×d symmetric invertible with non-zero
eigenvalues λ1 ≤ · · · ≤ λd and corresponding orthonormal eigenvectors u1, . . . , ud. Let I ⊆ [d] be any index set. If
v ∈ span{ui}i∈I and λi > 0 for all i ∈ I:

vTA−1v ≤ (maxi∈I λi + mini∈I λi)
2

4 maxi∈I λi mini∈I λi

1

vTAv
.

Proof. Since the eigenvectors are all orthogonal, vTui = 0 for all i /∈ I (meaning i ∈ [d] \ I). Now consider the quadratic
form:

vTAv = vTQΣQTv (orthogonal diagonalization)

=

d∑
i=1

λi(v
Tui)

2

=
∑
i∈I

λi(v
Tui)

2 +
∑
i/∈I

λi(v
Tui)

2 (78)

=
∑
i∈I

λi(v
Tui)

2 +
∑
i/∈I

λ̃(vTui)
2 (the second summation is zero anyway) (79)

:= vTBv,

where λ̃ is any eigenvalue from {λi}i∈I and B is the symmetric matrix of which (79) is the eigendecomposition. The
substitution is legit because the dot products in the second summation in (78) are all zero. The new matrix B gives the same
quadratic form but only has eigenvalues from {λi}i∈I . Since by hypothesis the surviving eigenvalues are all positive, B is
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positive definite. We can do exactly the same for vTA−1v since the orthonormal eigenvectors of A−1 are the same as A.
Hence:

vTA−1vvTAv = vTB−1vvTBv

≤ (λmax(B) + λmin(B))2

4λmax(B)λmin(B)
(80)

=
(maxi∈I λi + mini∈I λi)

2

4 maxi∈I λi mini∈I λi
,

where (80) is the standard Kantorovich matrix inequality (e.g., Chen, 2013).

Lemma 30. The smallest nonzero eigenvalue of symmetric p.s.d. matrix A ∈ Rd×d is:

min
v∈Im(A)
‖v‖=1

vTAv,

where Im(A) denotes the column space of A.

Proof. Let λ1 ≤ λ2 ≤ · · · ≤ λd be the eigenvalues of A with corresponding orthonormal eigenvectors u1, u2, . . . , ud. The
eigenvalues can be computed iteratively as:

λi = min
v∈{u1,...,ui−1}⊥

‖v‖=1

vTAv. (81)

When λi is the smallest nonzero eigenvalue of A, span{u1, . . . , ui−1} is precisely the solution set of:

Av = 0v = 0, (82)

which is ker(A). Hence {u1, . . . , ui−1}⊥ = ker(A)⊥ = Im(A) since A is symmetric.


