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Abstract
We propose a novel Wasserstein distributional
normalization method that can classify noisy la-
beled data accurately. Recently, noisy labels have
been successfully handled based on small-loss
criteria, but have not been clearly understood
from the theoretical point of view. In this pa-
per, we address this problem by adopting dis-
tributionally robust optimization (DRO). In par-
ticular, we present a theoretical investigation of
the distributional relationship between uncertain
and certain samples based on the small-loss crite-
ria. Our method takes advantage of this relation-
ship to exploit useful information from uncertain
samples. To this end, we normalize uncertain
samples into the robustly certified region by in-
troducing the non-parametric Ornstein-Ulenbeck
type of Wasserstein gradient flows called Wasser-
stein distributional normalization, which is cheap
and fast to implement. We verify that net-
work confidence and distributional certification
are fundamentally correlated and show the con-
centration inequality when the network escapes
from over-parameterization. Experimental results
demonstrate that our non-parametric classification
method outperforms other parametric baselines
on the Clothing1M and CIFAR-10/100 datasets
when the data have diverse noisy labels.

1. Introduction
The success of deep neural networks in supervised classifica-
tion tasks is heavily dependent on accurate and high-quality
label information. Nevertheless, annotating large-scale
datasets is an extremely expensive and time-consuming task.
Thus, most conventional studies obtain large-scaled training
data using crowd-sourcing platforms (Yu et al., 2018), which
inevitably results in noisy labels in the annotated samples.
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While there are several methods that can deal with noisy-
labeled data, recent methods typically adopt the small-loss
criterion, which helps to construct classification models that
are not susceptible to noise corruption. In this learning
scheme, a classification network is trained using easy sam-
ples first during the early stages of training. Gradually, as
training proceeds, more complex samples are selected to
train mature models. For example, collaborative learning
models (Jiang et al., 2018) have been proposed, in which a
mentor network delivers the data-driven curriculum loss to a
student network. Dual networks (Han et al., 2018; Yu et al.,
2019) generate gradient information jointly using easy sam-
ples and then employ this information to allow the networks
to teach each other. A disagreement strategy (Wei et al.,
2020) updates the gradient information based on disagree-
ment values between dual networks. Accumulated gradients
(Han et al., 2020) have been used to escape optimization
processes from over-parameterization and obtain more gen-
eralized results. These methods have given empirical insight
regarding network behavior under noisy labels. However,
they have not extensively investigated theoretical aspects of
noisy labels.

In contrast, we provide theoretical explanations to under-
stand the network behavior under noisy labels. In particular,
we present an in-depth analysis of small-loss criteria in a
probabilistic sense. For this, we exploit stochastic properties
of noisy-labeled data and develop probabilistic descriptions
of data under the small-loss criteria, as follows. Let P be a
probability measure for pre-softmax logits of training sam-
ples, l be an objective function for classification, and 1{·}
be an indicator function. Then, we define uncertain and
certain samples defined in the pre-softmax feature space
(i.e., X and Y , respectively), as follows.

X ∼ µ|ζ =
1{X;l(X)>ζ}P
P[l(X) > ζ]

, Y ∼ ξ|ζ =
1{X;l(Y )≤ζ}P
P[l(Y ) ≤ ζ]

,

(1)
where µ and ξ denote the probability measures of uncertain
and certain samples, respectively, and ζ is a constant. In (1),
X and Y are sampled from µ|ζ and ξ|ζ, respectively. Intu-
itively, uncertain samples X can be considered as samples
that produce losses larger than pre-fixed scalar ζ in each
mini-batch. While previous works focus on the usage of Y
and the sampling strategy of ζ , they do not thoroughly inves-
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(a) Robust distributional certification of µ (b) Classification accuracy

Figure 1. Distributional certification of µ with the proposed Wasserstein distributional normalization (WDN). The proposed WDN
distributionally certifies uncertain samples by normalizing µ onto the robust certified region Bξ(ε) (the black dotted line in (a)), which
forces certified measure µ̂ = F [µ] to be in the robust region. In this case, test accuracy is consistently enhanced as training proceeds (the
black line in (b)), while an uncertified approach suffers from over-parameterization problems (the red dotted line in (b)).

tigate poor generalization capabilities due to the abundance
of uncertain samplesX , which potentially contain important
information. To exploit the information from the uncertain
samples X , we adopt distributionally robust optimization
(DRO) and distributionally normalize the uncertain measure
µ into µ̂ via transformation F (i.e., µ̂ = F [µ]). Then, our
objective function is defined as

inf
θ

sup
µ̂

EX̂∼µ̂[l(X̂, θ)] + EY∼ξ[l(Y, θ)], (2)

where X̂ denotes transformed uncertain samples (i.e., cer-
tified samples) and θ indicates learnable parameters for
classification networks. Specifically, the transformation F
is designed to satisfy the following inequality:

sup
µ̂
W(µ̂, ξ) ≤ ε, (3)

where W(µ̂, ξ) indicates the statistical discrepancy (i.e.,
Wasserstein distance) between the normalized measure µ̂
and certain measure ξ. In this setting, our network can be
trained using both the certified samples X̂ ∼ µ̂ = F [µ]
and certain samples Y ∼ ξ. Fig.1 shows the distributional
certification of µ with our method.

If a network is trained based on uncertified approaches (e.g.,
conventional cross-entropy) and noisy signals are consec-
utively provided, the network quickly suffers from over-
parameterization problems owing to the inconsistency of
noisy-labeled training data. To prevent this problem, we
determine a certified robust region Bξ centered at ξ, which
contains a certified measure µ̂ ∈ Bξ normalized from µ. To
empirically verify the effectiveness of DRO settings in (2)
for noisy-labeled data, we derive a well-posed upper bound
ε (Section 5), which helps the proposed network to escape
from over-parameterization. In addition, we develop uni-
versal concentration inequality (Section 6), which captures

the probabilistic state when our network is robust to noisy-
labeled data. The explicit form and theoretical/numerical
advantages of F are presented (Section 4). Please note
that our distributional normalization method is fully non-
parametric, simple, and computationally efficient. Thus,
our method can reduce the computational complexity of con-
ventional approaches for dual networks, while maintaining
the concept of small-loss criterion.

Main contributions of our work are as follows.

• We theoretically verify that there exists a strong cor-
relation between model confidence and statistical dis-
tance between X and Y . We empirically investigate
that the classification accuracy worsens when uncerti-
fied samples are consecutively given to classification
networks.

• We develop a simple, non-parametric, and computa-
tionally efficient stochastic model to control the ob-
served ill-behaved sample dynamics. For this, we
present Wasserstein gradient flows of uncertain mea-
sure and simulate non-parametric stochastic differen-
tial equations (i.e., Ornstein-Ulenbeck process) for
tractable computation. Thus, our method requires no
additional learning parameter.

• We provide two important theoretical results. 1) the
exponentially controllable certification bound ε is intro-
duced, which makes our method to control the distribu-
tional certification. 2) the concentration inequality of
certified measure is presented, which clearly describes
the probabilistic resemblance between µ̂ and ξ.

2. Related Work
Curriculum Learning & Small-loss Criterion. To han-
dle noisy labels, (Han et al., 2018; Yu et al., 2019; Jiang
et al., 2018; Wei et al., 2020; Lyu & Tsang, 2020a; Han
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et al., 2020) adopted curriculum learning or sample selec-
tion frameworks. However, these methods considered only
a small number of selected samples, while a large number of
samples are excluded at the end of the training. While this
inevitably leads to poor generalization capabilities, conven-
tional sample selection methods cannot solve this problem,
because a large number of training samples are gradually
eliminated. (Chen et al., 2019) iterated cross-validation for
randomly partitioned noisy-labeled data to identify samples
with correct labels. To generate the partitions and select
samples, they adopted the small-loss criteria. In contrast,
our method can extract useful information from unselected
samples X ∼ µ (i.e., uncertain samples) by distributionally
certified samples (e.g., X̂ ∼ F [µ]) for accurate classifica-
tion.

Loss Correction & Label Correction. Noisy labels were
transformed either explicitly or implicitly into clean labels
by correcting classification losses (Patrini et al., 2017b;
Hendrycks et al., 2018; Ren et al., 2018). While modifying
loss-dynamics failed to accurately correct noisy labels under
extremely noisy environments, (Arazo et al., 2019) adopted
a label augmentation method called MixUp (Zhang et al.,
2018). Unlike these methods, our method transforms holis-
tic information from uncertain samples into certain samples,
which implicitly reduces effect of potentially noisy labels.

Distillation. To mitigate the impact of gradients induced
by noisy labels, (Li et al., 2019b) updated mean teacher
parameters by calculating an exponential moving average
of student parameters. (Lukasik et al., 2020) deeply investi-
gated the effect of label smearing for noisy labels and linked
label smoothing to loss correction in a distillation frame-
work. Like these methods, our method leverages useful
properties of distillation models.

Other methods. A robust generative classifier based on
pre-trained deep models has been proposed (Lee et al.,
2019). (Damodaran et al., 2019) designed a constraint on the
Wasserstein space and adopted an adversarial framework
for classification models of noisy-labeled data by imple-
menting semantic Wasserstein distance. (Pleiss et al., 2020)
identified noisy-labeled samples by considering AUM statis-
tics, which exploit the differences in the training dynam-
ics of clean and mislabeled samples. Recently, (Li et al.,
2019a) adopted semi-supervised learning methods to deal
with noisy labels, where the student network utilized labeled
and unlabeled samples to perform semi-supervised learning
guided by the teacher network.

3. Distributional Robust Optimization
Let l be the conventional cross-entropy loss and r̂ be a
corrupted label for an unknown label transition matrix from
a clean label r with label transition matrix Q. Then, a

conventional objective function for classification with noisy
labels can be defined as follows:

inf
θ
J [µ] = inf

θ
EX∼µ,r̂|Q [l(X; θ, r̂)] . (4)

However, as aforementioned in Section 1, the conventional
objective function defined in (4) cannot be used for accu-
rate classification if the network is under noisy-labeled data.
Instead of abandoning uncertain samples X ∼ µ as in pre-
vious works, we normalize µ in the certified region Bξ and
the network uses the information of certified samples µ̂ for
accurate classification. For a clear mathematical description,
we first introduce the following definition.

Definition 1. (Wasserstein certified region) Let P2(Rd) be
a 2-Wasserstein space. We define a Wasserstein certified
region in this space as follows:

Bξ(ε) =
{
µ ∈ P2

(
Rd
)

:W(µ, ξ) ≤ ε
}
, (5)

whereW denotes the 2-Wasserstein distance.

Then, we propose a distributionally robust (DR) objective
function as follows:

inf
θ

sup
µ̂∈Bξ(ε)

J [µ̂] + J [ξ]

= inf
θ
EX̂∼F [µ],r̂[l(X̂; θ, r̂)] + EX∼ξ,r̂[l(Y ; θ, r̂)], (6)

where F : P2(Rd)→ P2(Rd) is a distributional normaliza-
tion for probability measure µ, which ensures that F [µ] is
lying in the certified region (i.e., µ̂ = F [µ] ∈ Bξ(ε)).

As the normalization functional F is assumed to satisfy the
condition in (3), the sup operation can be omitted in the
objective function in (6). Then, the probability measure
ξ is defined as ξ = arg minJ [ξk? ], where ξk denotes a
certain measure at the k-th iteration and k? ∈ Ik−1 =
{1, · · · , k − 1}. In other words, ξ indicates the best certain
measure that produces the smallest losses so far at training
time. Thus, our objective function is formulated to train
the network using certain samples Y as well as certified
uncertain samples X̂ under noisy labels r̂.

Adaptive Radius of Certified Region. An important ques-
tion arises from the objective function in (6): How can
we select the effective radius ε of the certified region Bξ?
To answer this question, (Sinha et al., 2018) postulate the
empirical Lagrangian relaxation regarding Monge map of
optimal transport to ensure the radius of certified region:
W(ξ, µ̂) ≤ ε. However, in this setting (i.e., robustness to
adversarial examples), ε cannot be designed, but needs to
be given in advance according to various noisy environ-
ments. Please note that in our setting (i.e., robustness to
noisy labels), there is no unified rule or prior information on
selecting an effective radius ensuring accurate classification.



Wasserstein Distributional Normalization

As a naive solution, one may search the optimal certification
radius ε by manually tuning this value according to various
network architectures, datasets, and noise types. However,
because a large amount of computation is required, this
approach is computationally inefficient. To overcome this,
we propose an adaptive radius ε that is data-dependent and
cheap to compute. In particular, we decompose the original
certification radius ε into two separate terms (ε1, ε2) by
using the triangle inequality of the Wasserstein distance:

W (ξ, µ̂) ≤ ε = ε1 + ε2

=W (ξ,N (mξ,Σξ))︸ ︷︷ ︸
ε1: Intrinsic statistics

+ W (N (mξ,Σξ), µ̂)︸ ︷︷ ︸
ε2: Distributional Normalization

. (7)

Intrinsic Statistics. The first term (i.e., ε1) sets a detour
point as a Gaussian measure, for which the mean and covari-
ance are the same as those for ξ (i.e., mξ = EY∼ξ[Y ] and
Σξ = CovY∼ξ[Y ]). The Wasserstein distance of this term
is only dependent on the statistical structure of ξ because
(mξ,Σξ) is dependent on ξ. Thus, this term can induce a
data-dependent and non-zero constant certification radius,
whenever ξ 6= N and can prevent ε from collapsing to
ε → 0. This provides a marked advantages compared to
manual tuning of certification radius ε, because this term
is automatically determined based on the characteristics of
noise types, datasets, and network architectures during train-
ing. Furthermore, owing to the independence between ε1

and ε2, a divide-and-conquer-based analyses can be con-
ducted to theoretically investigate the properties of ε.

Distributional Normalization. The second term (i.e., ε2)
represents our central objective to design. F facilitates the
distributional normalization of µ to certify the geometric
conditions. Based on the independence of ε1 and ε2, the
original condition in (3) can be rewritten as follow.

sup
µ̂
W(ξ, µ̂ = F [µ])

≤ ε1 + sup
µ̂
W (N (mξ,Σξ), µ̂ = F [µ]) = ε1 + ε2.

(8)

In the following section, we introduce the explicit form ofF ,
which ensures the certification radius in (8), and demonstrate
its theoretical/numerical advantages.

4. Wasserstein Distributional Normalization
In the previous section, we propose a DR-type objective
function that performs distributional normalization F such
that the normalized measure F [µ] lies in Bξ(ε) for the certi-
fied radius ε. In this section, we specify the formulation of
F and show the theoretical and numerical advantages.

Definition 2. The functional F : R+ × P2 → P2 on the
probability measure such that Ft[µ] = µt is called as distri-
butional normalization if µt is a solution to the following

continuity equations:

∂tµt = ∇ · (µtvt)1, (9)

where dµt = ptdNξ, dNξ = dqtdx. For simplicity, we
denote Nξ = N (mξ,Σξ).

The distributional normalization F is defined as a gradient
flow in the Wasserstein space beginning at µ. While the
steady state of the solution µt (e.g., t→∞) is a Gaussian
measure, the following property is satisfied:

Proposition 1. The distributional normalization F maps
µ into the certified robust region with controllable radius
ε2 = K2(µ)e−t (i.e., BNξ (K2e

−t (µ))), where K2(µ) > 0
is a constant that depends on µ.

It is well known that the solution to (9) induces a geodesic in
the Wasserstein space (Villani, 2008), which is the shortest
path from µ = µt=0 to Nξ. The functional Ft generates
a path for µt, in which the distance is exponentially de-
cayed according to the auxiliary variable t and constant K2,
meaning W(Nξ,Ftµ) ≤ ε2 = K2e

−t. This theoretical
results indicates that the Wasserstein distance in (8) can be
controlled. Thus, by setting a different t, our method can
efficiently control the distance. Specifically, the certification
radius in (8) can be written to a controllable form:

sup
µ̂
W(ξ, µ̂) ≤ ε1 + sup

µ̂
W (Nξ, µ̂) = ε1 +K2e

−t. (10)

However, it is typically intractable to directly compute the
continuity in (9). To solve this problem, we adopt stochastic
differential equations (SDEs), which enable tractable com-
putation. In particular, we adopt an Ornstein-Ulenbeck (OU)
process2, which can be approximated using particle-based
dynamics. We draw i.i.d N(1− %) uncertain samples (i.e.,
{Xn

t=0} ∼ µ) from a single batch with N samples using
(1) for hyper-parameter 0 ≤ % ≤ 1. Then, we simulate a
discrete SDE for each particle using the Euler-Maruyama
scheme:

Xn
t+1 = Xn

t −∇φ (Xn
t ;mν) ∆t+

√
2τ−1∆tΣξZ

n, (11)

where φ (Xt;mν) = τ
2d

2
E (Xt,mν), n ∈ {1 · · · , N(1 −

%)}, Z is a standard Gaussian random variable, dE is Eu-
clidean distance, and N is a mini-batch size. Thus, the
simulated samples are indicated as follows:

{Xn
t }n≤N(1−%) = {X̂n}n≤N(1−%) ∼ µ̂ = Ft[µ] (12)

By the property of OU process, the proposed method is
computationally efficient and non-parametric to estimate

1This equation is read as ∂tpt(x) = ∇· (pt(x)∇ log qt(x)) in
a distributional sense, where vt = ∇ log qt.

2The corresponding partial differential equation (PDE) is the
Fokker-planck equation ∂tpt(x) = ∇·(pt(x)∇ log qt(x)) defined
in (9).
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Figure 2. Relation between the certification radius ε and test accuracy.

the second term ε2 in (7), because the SDE in (11) for the
OU process has a simple form with fixed drift (i.e.,∇φ)
and diffusion (i.e.,

√
ΣξZ) terms. Because these terms are

independent to times, we can induce an non-parametric
simulation of the SDE in (11) and make our method compu-
tationally efficient compared to other model-based methods
that require additional dual networks (Han et al., 2018).

Explicit certification radius. In addition to the aforemen-
tioned motivation on setting a detour point as a Gaussian
measure, decomposing ε into ε1 + ε2 in (7) provides the-
oretical advantages (i.e., explicit certification radius). The
next proposition investigates the explicit certification radius
regarding two terms (ε1, ε2) in (7), which are induced by
the property of (9). Let define vt(x) = ∇ log pt(x) where
dµt
dNξ = pt(x) is a distribution as defined in (2). Let L be a
differential operator such that L[f ] = Σξ∇2[f ] −mT

ξ ∇f
3 which acts on the space of compactly supported continu-
ous function (i.e., f ∈ C∞0 ). Then, we define the integral
operators K2 on P2 as follows:

K2(µ) =

√
sup
f

∫
Rd
|Lf(x)| dµ(x). (13)

Intuitively, K2(µ) can be interpreted as an indicator that
tells us how the uncertain measure µ is diffused according
to Gaussian measure. For example, if µ = Nξ in (13), then
K2(Nξ) = 0. By using property of integral operator K2, an
explicit certification radius can be found.

Proposition 2. Let 0 < β(ξ) <∞ be a numerical constant,

3∇ and ∇2 indicate gradient and hessian operators, respec-
tively.

which depends on ξ. Then, the following inequality holds:

W(ξ, µ̂) ≤ ε = ε1 + ε2 = K1(ξ)∨
[
e−tK2(µ) +K2(ξ)

]
,

(14)
where λmax(Σξ) denotes the maximum eigenvalue of the
covariance matrix Σξ and K1(ξ) =

√
dβλmax(Σξ) +

‖EξY ‖2 which is only dependent on ξ.

Finally, we obtain the controllable explicit certification ra-
dius in (14). By setting a fixed large t, the certification radius
ε is adaptively determined based on different characteristics
of datasets and network architectures.

5. Empirical Observations
In this section, we investigate the effectiveness of DRO with
the proposed WDN regarding the certified region Bξ(ε). For
this, we numerically measure the certification radius ε devel-
oped in (14) and demonstrate that distributional certification
makes classification networks robust to noisy labels.

As the first term K1(ξ) in (14) is constant and typically very
small compared to the second term with a large t, we only
examine the behavior of the second term K2(ξ)+K2(Ftµ),
which can be efficiently estimated. In particular, for any
probability measure ν, K2(ν) can be estimated4:

K2(ν) ≈ EX,Z[∥∥∥e−∆X +
√

1− e−2∆(Σ
1
2
ν Z + mν)

∥∥∥− ‖X‖] , (15)

where Z denotes the standard Gaussian random variable.
In this paper, we set ∆ = 0.01 and t ∈ [16, 64]. As we
aforementioned, K2(Nξ) = 0.

4Please refer to Supplementary Materials for detailed mathe-
matical descriptions.
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Algorithm 1 Wasserstein Distributional Normalization (WDN)
Require: α ∈ [0, 0.2], % ∈ [0.1, 0.65], T ∈ [16, 64],∆t = 10−4, τ ∈ [0.1, 0.001],

for k = 1 to K (i.e., the total number of training iterations) do
1) Select (1− ρ)N uncertain and ρN certain samples from the mini-batch N .
{Y nk }{n≤ρN} ∼ ξk, {X

n
k }{n≤(1−ρ)N} ∼ µk

2) Update the certain measure ξ.
if J [ξk] < J [ξ] then
ξ ← ξk,mξ ← E [Yk], and Σξ ← Cov [Yk]

end if
3) Update the moving geodesic averageN (mα,Σα).
Solve the Ricatti equation T ΣξT = Σξk .
Σα = ((1− α)Id + αT ) Σξ ((1− α)Id + αT ) and mα = (1− α)mξ + αmξk

4) Simulate the discrete SDE for T steps.
for t = 0 to T − 1 do
Xn
k,t+1 = −∇φ(Xn

k,t;m
α)∆t +

√
2τ−1Σαξ dW

n
t s.t.

{
Xn
k,t=0

}
∼ µk,

{
Xn
k,t=T

}
∼ FTµk

end for
5) Update the network using the objective function.
J [F [µk]] + J [ξk] = EFT µk [l(Xk,T ; θ, r̂)] + Eξk [l(Yk; θ, r̂)]

end for

Using (15), we observe three important empirical properties:

(1) Uncertified samples induce low test accuracy. We ex-
amine the relationship between certification radius ε and
test accuracy in an experiment using the CIFAR-10 dataset
with symmetric noise at a ratio of 0.5. Fig.2 presents the
landscape for the log10-scaled cumulative average of cer-
tification radius ε and test accuracy over epochs. The red
dotted lines represent the landscape of ε = W(ξ, µ) for
the uncertified approach with cross-entropy loss. The black
lines indicate the landscape of certification radius for the cer-
tified network with proposed WDN, where supµ̂W(ξ, µ̂) =
εk = ε1 + ε2 = K2(ξk) +K2(Ft=Tµk). Note that the test
accuracy of the classification network with uncertified sam-
ples begins to decrease after 13-epochs (red-dotted vertical
lines in the top-right plot), whereas the certification radius
increases quadratically in the top-left plot. These experimen-
tal results verify that uncertified samples inevitably induce
low test accuracy.

Contrary to the uncertified network, if the distributional
certification is ensured by WDN, the certification radius can
be efficiently controlled (i.e., lim supk εk ≈ 2.15). In this
case, the test accuracy continues to increase, even after 13-
epochs. For detailed analysis, we compute the deviations as
follows: ∆̂k = εk−εk−1. In the gray regions, the deviation
for the uncertified network is grater than 2.5 × 10−2, i.e.,
∆k > 2.5 × 10−2. Then, its test accuracy begins to drop,
as shown in Fig.2. In contrast to the uncertified network,
the maximum deviation of the certification radius is very
small (supk ∆̂k ≤ 8× 10−3) if distributional certification
is ensured by the proposed WDN.

(2) The distributional certification with our WDN helps
networks to escape from over-parameterization. To an-
alyze the behavior of classification network under over-
parameterization with and without the distributional certi-

fication, we design several variants of experiments, which
begin at delayed epochs. The green, orange, and blue curves
in the second row of Fig.2 represent the landscapes, when
our WDN is applied after kd ∈ {10, 15, 20} epochs, respec-
tively. In this case, the certification radius εk is

εk =

{
W(ξk, µk), if k < kd, uncertified,
K2(ξk) +K2(Ft=Tµk), else k ≥ kd, certified.

(16)

Consider kd = 20, which is described by the blue dotted
vertical lines. Before our WDN is applied (i.e., k < kd),
the network suffers from over-parameterization, which in-
duces a significant performance drop, as shown in the blue
curve of the bottom-right plot. However, the network rapidly
recovers to normal accuracy if distributional certification
is assured by the normalization (i.e., k ≥ kd). Note that
similar behavior can be observed in the green and orange
curves. In particular, the orange curve produces fewer fluc-
tuations than the blue curve in terms of test accuracy. This
shows that our WDN can help networks to escape from over-
parameterization by certifying distributional robustness.

(3) The certification radius ε with our WDN is depen-
dent of data statistics. Another interesting point in Fig.2
is that all curves, excluding the red curve, converge to par-
ticular numbers 2.15 = ε := lim infk εk ≤ lim supk εk :=
ε̄ = 2.2. The upper bound ε̄ is neither overly enlarged nor
collapsed to zero, while the lower bound ε is fixed for all
curves. We argue that this behavior stems from the distri-
butional characteristics of the proposed method, where the
first term in (7), W(ξ,Nξ) ∝ K2(ξ), is a non-zero data-
dependent term that is minimized by the proposed method.
Therefore, we can derive the following relationship:

[W(ξ, µ̂) ≤ W(ξ,Nξ) +W(Nξ,Fµ)]⇓⇓
∝ [K2(ξ) +K2(Fµ) = ε]⇓⇓.

(17)
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This empirical observation verifies that a detour point, which
is set as a Gaussian measure, can induce the data-dependent
bound (ε, ε̄), where our data-dependent bound can change
according to various noise levels and efficiently leverage
data-dependent statistics. Fig.2 indicates that classification
models with more stable certification also induce more sta-
ble convergence in test accuracy.

6. Probabilistic Concentration
In Section 5, we investigate the effectiveness of WDN to
certify distributional robustness on noisy-labeled data where
uncertain measure µ is normalized into the certified region
Bξ(ε). In this circumstance, the following proposition indi-
cates the probabilistic resemblance of ξ and certified µ̂.

Proposition 3. There exists δ > 0 such that the following
concentration inequality for an uncertain measure holds:

µ̂
(
|σ − Eν [σ]| ≥ δ

)
≤ 6e

−
√

2δ
3
2

K2(µ) , (18)

where σ denotes the soft-max function.

In (18), we show that the network inference using the cer-
tified measure is similar to that of certain measure Eν [σ],
where the upper-bound in right-hand side is exponentially
relative to the initial diffuseness of µ (i.e.,K2(µ)), which
induces long-tail probabilistic representations. This indi-
cates that the proposed WDN certifies uncertain measures
to make µ̂ similar to ξ.

7. Wasserstein Moving Geodesic Average
In the experiments, we observed that the certain measure
ξ = arg minJ [ξk? ] was not updated for a few epochs af-
ter the training begins. This is problematic because ξ can
diverge significantly from the current ξk, which is equiv-
alent to the normalized measure µ̂k = F [µk] at epoch k
diverging from ξ, meaning X̂ ∼ µ̂k and Y ∼ ξ become
statistically inconsistent. To alleviate this statistical distor-
tion, we modify the detour measure from Nξ to another
Gaussian measure, which allows us to capture the statis-
tics of ξk and ξ. Inspired by the moving average of Gaus-
sian parameters in batch normalization (Ioffe & Szegedy,
2015), we propose the Wasserstein moving geodesic average.
Specifically, we replace Gaussian parameters {mξ,Σξ}
with {mα,Σα} such that mα = (1 − α)mξ + αmξk and
Σα = ((1− α)Id + αT ) Σξ ((1− α)Id + αT ), where T
is a solution to the Riccati equation T ΣξT = Σξk . There-
fore our final detour Gaussian measure is set to Nα

ξ :=

N (m(α),Σ(α)), 0 ≤ α ≤ 15. The overall procedure for
our method is summarized in Algorithm 1.

8. Experiments
8.1. Experiments on the CIFAR-10/100 dataset

We used settings similar to those proposed by (Laine &
Aila, 2017; Han et al., 2018) for our experiments on the
CIFAR10/100 dataset. We used a 9-layered CNN as the
baseline architecture with a batch size of 128. We used
an Adam optimizer with (β1, β2) = (0.9, 0.99), where the
learning rate linearly decreased from 10−3 to 10−5.

Synthetic Noise. We injected label noise into clean datasets
using a noise transition matrix Qi,j = Pr(r̂ = j|r = i),
where a noisy label r̂ is obtained from a true clean label
r. We defined Qi,j by following the approach discussed
by (Han et al., 2018). For symmetric noise, we used the
polynomial, % = −1.11r2 + 1.78r + 0.04 for 0.2 ≤ r ≤
0.65, where r is the noise ratio. For asymmetric noise, we
set % to 0.35. To select the enhanced detour measure, we
set α to 0.2 for the Wasserstein moving geodesic average
in all experiments. We trained our classification model
over 500 epochs because the test accuracy of our method
continued increasing, whereas those of the other methods
did not. We compared our method with other state-of-the-
art methods, including [MentorNet, (Jiang et al., 2018)],
[Co-teaching, (Han et al., 2018)], [Co-teaching+, (Yu et al.,
2019)], [GCE, (Zhang & Sabuncu, 2018)], [RoG, (Lee et al.,
2019)], [JoCoR, (Wei et al., 2020)], [NPCL, (Lyu & Tsang,
2020b)], [SIGUA, (Han et al., 2020)], and [DivideMix, (Li
et al., 2019a)]. As shown in Table 1, the proposed WDN
significantly outperformed other baseline methods. Please
note that our WDN utilizes OU-process and corresponding
Gaussian measure as our main objects, there are potential
risks when handling highly concentrated and non-smooth
types of noise (e.g., asymmetric noise). Nevertheless, the
proposed WDN still produced accurate results, even with
asymmetric noise. In this case, a variant of our WDN (i.e.,
WDNcot) exhibited the best performance.

Open-set Noise. In this experiment, we considered the
open-set noisy scenario suggested by (Wang et al., 2018),
where a large number of training images were sampled from
other CIFAR-100 dataset. However, these images were
labeled according to the classes in the CIFAR-10 dataset.
We used a 9-layered CNN, which was also used in our
previous experiment. For hyper-parameters, we set % and
α to 0.5 and 0.2, respectively. As shown in Table 2, our
method achieved state-of-the-art accuracy.

Collaboration with Other Methods. Because our core
methodology is based on small-loss criteria, our method
can collaborate with co-teaching methods. In (Han et al.,
2018), only certain samples (Y ∼ ξ) were used for updating
colleague networks, where the number of uncertain sam-
ples gradually decreased until it reached a predetermined
value. To enhance potentially bad statistics for co-teaching,

5Please refer to Supplementary Materials for more details.
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Table 1. Average test accuracy (%) on the CIFAR-10/100 dataset over the last 10 epochs with various noise corruptions. The
symbol ? indicates scores provided by the corresponding authors. WDNcot denotes our WDN combined with a co-teaching network. The
best results are boldfaced.

Methods Symmetric 20% Symmetric 50% Asymmetric 45%

Vanilla 71.91± .43/40.44± .36 49.54± .41/21.34± .27 49.06± 1.02/31.85± .85
MentorNet? 80.76± .36/52.13± .40 71.10± .48/39.00± 1.00 58.14± .38/31.60± .51

Co-teaching+ 80.64± .15/56.15± .09 58.43± .30/37.88± .06 70.78± .11/32.88± .25
GCE 84.68± .05/51.86± .09 61.80± .11/37.60± .08 61.09± .18/33.13± .14
RoG? 84.32 / 58.16 76.67 / 45.42 71.26 / 43.18
JoCoR 85.73± .19 /53.01± .04 79.41± .25 /43.49± .46 64.21± .12/26.51± .32
NPCL? 84.30± .07/55.30± .09 77.66± .09/42.56± .06 −
SIGUA? ≤ 84 / − ≤ 78 / − ≤ 65 / −

DivideMix − 81.13± .18 / 49.41± .25 68.93± .33 / 34.24± .63

WDN 87.40± .23 /59.18± .29 82.89± .13/48.45± .27 76.12± .29/38.23± .31

Co-teaching 78.23± .27/53.89± .09 72.81± .20/34.96± .50 70.46± .58/34.55± .12
WDNcot 87.12± .16/57.27± .33 76.06± .28/42.38± .28 74.11± .35/44.41± .37

Table 2. Test accuracy on the CIFAR-10 dataset with open-set noisy labels from CIFAR-100.

Methods Vanilla GCE Co-teaching Co-teaching+ JoCoR WDN

Accuracy 38.12 46.57 35.77 42.57 47.73 51.28

Table 3. Test accuracy (mean, %) on the Clothing 1M dataset.
Methods GCE D2L FW JoCoR WAR SL JOFL DMI MLNT PENCIL WDN DivideMix

Accuracy 69.0 69.47 69.84 70.30 70.66 71.02 72.23 72.46 73.47 73.49 74.75 74.76

Table 4. Average training time for the 5-epochs (sec) on the CIFAR-10 dataset.
Methods Vanilla GCE WDN Co-teaching JoCoR DivideMix

Time 11.43± .05 11.53± .06 12.72± .08 15.88± .11 17.88± .11 34.41± .53
∆ +0% +9% +11.3% +38.9% +56.3% +201%

we taught dual networks by considering a set of samples
(Y,XT ), whereXT ∼ FTµ are certified samples using (11).
Table 1 shows the test accuracy results for the proposed col-
laboration model with a co-teaching network (WDNcot).

8.2. Experiments on a Real-world dataset
To evaluate our method on real-world datasets, we employed
the Clothing1M dataset presented by (Xiao et al., 2015),
which consists of 1M noisy, labeled, and large-scale cloth
images with 14 classes collected from shopping websites.
It contains 50K, 10K, and 14K clean images for training,
testing, and validation, respectively. We only used a noisy
set for training; for testing, we used a clean set. We set
α = 0.2 and % = 0.1. For fair comparison, we followed the
settings suggested in previous works. We used a pre-trained
ResNet50 for a baseline architecture with a batch size of
48. For the pre-processing steps, we applied a random cen-
ter crop, random flipping, and normalization to 224× 224
pixels. We adopted the Adam optimizer with a learning
rate starting at 10−5 that linearly decayed to 5 × 10−6 at
24K iterations. Regarding the baseline methods, we com-
pared the proposed method to [GCE, (Zhang & Sabuncu,
2018)], [D2L, (Ma et al., 2018)], [FW, (Patrini et al., 2017a)],
[WAR, (Damodaran et al., 2019)], [SL, (Wang et al., 2019)],

[JOFL, (Tanaka et al., 2018)], [DMI, (Xu et al., 2019)],
[PENCIL, (Yi & Wu, 2019)], and [MLNT, (Li et al., 2019b)].
Table 3 reveals that our method achieved competitive per-
formance as comparison with other baseline methods.

8.3. Computational Cost
Because Co-teaching, JoCoR, and DivideMix use addi-
tional networks, the number of network parameters is twice
(8.86M) that of the vanilla network (4.43M ). In Table 4,
we compared the average training time for the first 5-epochs
over various baseline methods under symmetric noise on
the CIFAR-10 dataset. While non-parametric methods such
as GCE and WDN required less than 12% additional time,
other methods that require additional networks spent more
time than non-parametric methods. The averaging time can
change according to various experimental environments. In
Table 4, we measured the time using publicly available code
provided by authors.

9. Conclusion
We proposed a novel method called WDN for accurate clas-
sification of noisy labels. The proposed method normalizes
uncertain measures to robustly certified region by adopting
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Wasserstein gradient flow. To this end, we simulated discrete
SDE using the Euler-Maruyama scheme, which makes our
method fast, computationally efficient, and non-parametric.
In theoretical analysis, we derived the explicit certification
radius of the proposed Wasserstein normalization and ex-
perimentally demonstrated a strong relationship between
distributional certification and the over-parameterization.
We conducted experiments on the CIFAR-10/100 and Cloth-
ing1M datasets. The experimental results demonstrated that
the proposed WDN significantly outperforms other state-of-
the-art methods.
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