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1. Experimental Details for VAE Pretraining
We use diagonal Gaussians for both the variational posterior
and the generative distribution of VAEs. For the encoder, we
attach a linear output layer on ResNet-18 to predict the mean
and the variances of a Gaussian distribution. The decoder
takes a similar architecture with transposed convolution
layers. We jointly train the encoder and the decoder on
CIFAR-10 for 100 epochs with a batch size of 128. We use
the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9,
β2 = 0.999, ε = 1e − 8 and no weight decay. The global
learning rate is set to 5e-4. When finetuning, we apply
a smaller learning rate of 5e-5 to the pretrained ResNet
encoder, while keeping the learning rate high for the linear
output layer.

2. MI and Average Hamming Distance
We argue that maximizing the mutual information (MI)
I(X, C̃) over a noisy communication channel learns the
codewords that have high Hamming distance to each other.
We here show a relationship between the mutual information
and the average Hamming distance between the codewords.
Specifically, the mutual information lower-bounds the aver-
age Hamming distance. Recall that the Hamming distance
between two codewords ci, cj ∈ {−1, 1}D is

dH(ci, cj) = D − ci · cj
2

. (1)

The average Hamming distance is defined as
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1
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∑
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dH(ci, cj). (2)

Let c̃ be the noisy message transmitted through a binary
symmetric channel with flip probability p. Then

Ec̃|ci
[c̃ · cj ] = (1− 2p)(ci · cj). (3)
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Finally,
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Therefore, maximizing the mutual information objective
increases the average Hamming distance between the code-
words.
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