
CoDiTE with CMEs and U-Statistic Regression

A. Background Material
In this section, we give a more detailed review of the background on reproducing kernel Hilbert space embeddings and
U-statistics. Interested readers can refer to Berlinet & Thomas-Agnan (2004); Muandet et al. (2017) for the former, and
Serfling (1980, Chapter 5) for the latter.

A.1. Reproducing Kernel Hilbert Space Embeddings

LetH be a vector space of real-valued functions on Y , endowed with the structure of a Hilbert space via an inner product
〈·, ·〉H. Let ‖·‖H be the associated norm, i.e. ‖f‖H = 〈f, f〉

1
2

H for f ∈ H.

Definition A.1 (Berlinet & Thomas-Agnan (2004, p.7, Definition 1)). A function l : Y ×Y → R is a reproducing kernel of
the Hilbert spaceH if and only if

(i) for all y ∈ Y , l(y, ·) ∈ H;

(ii) for all y ∈ Y and for all f ∈ H, 〈f, l(y, ·)〉H = f(y) (the reproducing property).

A Hilbert space of functions Y → R which possesses a reproducing kernel is called the reproducing kernel Hilbert space
(RKHS).

For any y ∈ Y , denote by ey : H → R the evaluation functional at y, i.e. ey(f) = f(y) for f ∈ H. Riesz representation
theorem can be used to prove the following lemma.

Lemma A.2 (Berlinet & Thomas-Agnan (2004, p.9, Theorem 1)). A Hilbert space of functions Y → R has a reproducing
kernel if and only if all evaluation functionals ey, y ∈ Y are continuous onH.

Next, we characterise reproducing kernels.

Definition A.3 (Berlinet & Thomas-Agnan (2004, p.10, Definition 2)). A function l : Y × Y → R is called a positive
definite function if, for all n ≥ 1, any a1, ..., an ∈ R and any y1, ..., yn ∈ Y ,

n∑
i,j=1

aiaj l(yi, yj) ≥ 0.

A reproducing kernel is a positive definite function, since, by the reproducing property,

n∑
i,j=1

aiaj l(yi, yj) =

∥∥∥∥∥∥
n∑
i=1

ail(yi, ·)

∥∥∥∥∥∥
2

H

≥ 0

(see Berlinet & Thomas-Agnan (2004, p.13, Lemma 2)). The Moore-Aronszajn Theorem (Aronszajn, 1950) shows that the
set of positive definite functions and the set of reproducing kernels on Y × Y are identical.

Theorem A.4 (Berlinet & Thomas-Agnan (2004, p.19, Theorem 3)). Let l be a positive definite function on Y × Y . Then
there exists a unique Hilbert space of functions Y → R with l as its reproducing kernel. The subspace H̃ ofH spanned by
{l(y, ·) : y ∈ Y} is dense inH, andH is the set of functions Y → R which are pointwise limits of Cauchy sequences in H̃
with the inner product

〈f, g〉H̃ =

n∑
i=1

m∑
j=1

αiβj l(yi, yj)

where f =
∑n
i=1 αil(yi, ·) and g =

∑m
j=1 βj l(yj , ·).

Examples of commonly used kernels in Euclidean spaces include the linear kernel l(y, y′) = y · y′, the monomial kernel
l(y, y′) = (y · y′)p, the polynomial kernel l(y, y′) = (y · y′ + 1)p, the Gaussian kernel l(y, y′) = e−

1
σ2
‖y−y′‖22 and the

Laplacian kernel l(y, y′) = e−
1
σ2
‖y−y′‖1 .

Kernel methods in machine learning turns linear methods into non-linear ones using the so-called “kernel trick”, whereby
individual datapoints y ∈ Y are “embedded” into an RKHSH with reproducing kernel l via the mapping y 7→ l(y, ·). The
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RKHS is high- (and often infinite-)dimensional, and performing a linear method (e.g. linear regression, support vector
machine, principal component analysis, etc.) inH with datapoints l(yi, ·), i = 1, ..., n, instead of the original space Y with
datapoints yi, i = 1, ..., n, results in a nonlinear method in the original space. Please see Scholkopf & Smola (2001) for
more details.

Recently, this idea of RKHS embeddings has been extended to embed entire (conditional) distributions, rather than individual
datapoints, via the expectation. Suppose Y is a random variable taking values in Y , with distribution PY . Assuming the
integrability condition

∫
Y

√
l(y, y)dPY (y) <∞, we define the kernel mean embedding µPY ∈ H of the measure PY , or

the random variable Y , as

µPY (·) = E
[
l(Y, ·)

]
=

∫
Y
l(y, ·)dPY (y) =

∫
Ω

l(Y (ω), ·)dP (ω).

Note that the integrand l(Y, ·) is an element in a Hilbert space (and therefore a Banach space), so the integral is not the usual
Lebesgue integral on R. There are a number of ways in which one can define integration on a Banach space (Schwabik &
Ye, 2005). Among those, the Bochner integral (Dinculeanu, 2000, p.15, Definition 35) is the simplest and most intuitive one,
and suffices for our purposes. Riesz representation theorem is again used to prove the following mean embedding version of
the reproducing property.
Lemma A.5 (Smola et al. (2007)). For each f ∈ Y ,

E
[
f(Y )

]
=

∫
Y
f(y)dPY (y) =

〈
f, µPY

〉
H .

Using the kernel mean embedding, we can define a distance function, called the maximum mean discrepancy (Gretton et al.,
2012), between two random variables Y and Y ′ on Y , or equivalently, two probability measures PY and PY ′ , as

MMD(Y, Y ′) =
∥∥µPY − µPY ′

∥∥
H .

The name maximum mean discrepancy comes from the following lemma.
Lemma A.6 (Gretton et al. (2012, Lemma 4)). We have

MMD(Y, Y ′) = sup
f∈H,‖f‖H≤1

{
E
[
f(Y )

]
− E

[
f(Y ′)

]}
.

In this alternative definition of the MMD, the function in the unit ball ofH that maximises E[f(Y )]−E[f(Y ′)] is called the
witness function (Gretton et al., 2012, Section 2.3). It can easily be seen that the witness function is in fact

µPY − µPY ′∥∥µPY − µPY ′

∥∥
H
.

Lloyd & Ghahramani (2015) uses the unnormalised witness function µPY − µPY ′ for model criticism.

The MMD is not a proper metric, since Y and Y ′ may be distinct and still give MMD(Y, Y ′) = 0, depending on the kernel l
that is used. The notion of characteristic kernels is therefore essential, since it tells us whether the associated RKHS is rich
enough to enable us to distinguish distinct distributions based on their embeddings.
Definition A.7 (Fukumizu et al. (2008, Section 2.2)). Denote by P the set of all probability measures on Y . A positive
definite kernel l is characteristic if the kernel mean embedding map P → H : PY 7→ µPY is injective.

For example, of the aforementioned kernels, the Gaussian and Laplacian kernels are characteristic, whereas the linear,
monomial and polynomial kernels are not. The MMD associated with a characteristic kernel is then a proper metric
between probability measures on Y . See Sriperumbudur et al. (2010; 2011); Simon-Gabriel & Schölkopf (2018) for various
characterisations of characteristic kernels.

Now we discuss conditional embedding of distributions into RKHSs. Suppose X is a random variable on a space X .
Definition A.8 (Park & Muandet (2020a, Definition 3.1)). The conditional mean embedding of the random variable Y , or
equivalently, the distribution PY , is the Bochner conditional expectation (as defined in Dinculeanu (2000, p.45, Definition
38))

µPY |X = E
[
l(Y, ·) | X

]
.

Notice that this is a straightforward extension of the kernel mean embedding µPY = E[l(Y, ·)] to the conditional case.
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A.2. U-Statistics

Suppose Y1, Y2, ..., Yr are independent copies of the random variable Y , i.e. they are independent and all have distribution
PY . Let h : Yr → R be a symmetric function (called a kernel in the U-statistics literature; confusion must be avoided
with the reproducing kernel used throughout this paper), i.e. for any permutation π of {1, ..., r}, we have h(y1, ..., yr) =
h(yπ(1), ..., yπ(r)). Suppose we would like to estimate a function of the form

θ(PY ) = E
[
h (Y1, ..., Yr)

]
=

∫
Y
...

∫
Y
h (y1, ..., yr) dPY (y1)...dPY (yr).

The corresponding U-statistic for an unbiased estimation of θ(PY ) based on a sample Y1, ..., Yn of size n ≥ r is given by

θ̂(PY ) =
1(
n
r

) ∑h (Yi1 , ..., Yir ) ,

where
(
n
r

)
is the binomial coefficient and the summation is over the

(
n
r

)
combinations of r distinct elements {i1, ..., ir}

from {1, ..., n}. Clearly, since the expectation of each summand yields θ(PY ), we have E[θ̂(PY )] = θ(PY ), so U-statistics
are unbiased estimators.

Some examples of h and the corresponding estimator include the sample mean h(y) = y, the sample variance h(y1, y2) =
1
2 (y1 − y2)2, the sample cumulative distribution up to y∗ h(y) = 1(y ≤ y∗), the kth sample raw moment h(y) = yk and
Gini’s mean difference h(y1, y2) = |y1 − y2|.

To the best of our knowledge, Stute (1991) was the first to consider a conditional counterpart of U-statistics. Let X1, ..., Xr

be independent copies of the random variable X . We are now interested in the estimation of the following quantity:

θ
(
PY |X

)
= E

[
h (Y1, ..., Yr) | X1, ..., Xr

]
.

By Çınlar (2011, p.146, Theorem 1.17), θ(PY |X) can be considered as a function X r → R, such that for each r-tuple
{x1, ..., xr}, we have

θ
(
PY |X

)
(x1, ..., xr) = E

[
h (Y1, ..., Yr) | X1 = x1, ..., Xr = xr

]
.

The simplest case is when r = 1 and h(y) = y. In this case, the estimand reduces to f(X) = E[Y |X], which is the usual
regression problem for which a plethora of methods exist. Suppose we have a sample {(Xi, Yi)}ni=1. One such regression
method is the Nadaraya-Watson kernel smoother:

f̂(x) =

∑n
i=1 YiK

(
x−Xi
a

)
∑n
i=1K

(
x−Xi
a

) ,

where K is the so-called “smoothing kernel” and a is the bandwidth. This was extended by Stute (1991) to r ≥ 1 and more
general h:

θ̂
(
PY |X

)
(x1, ..., xr) =

∑
h (Yi1 , ..., Yir )

∏r
j=1K

(
xj−Xij

a

)
∑∏r

j=1K
(
xj−Xij

a

) ,

where the sums are over the
(
n
r

)
combinations of r distinct elements {i1, ..., ir} from {1, ..., n} as before. Derumigny (2019)

considers a parametric model of the form

Λ

(
θ
(
PY |X

)
(x1, ..., xr)

)
= ψ (x1, ..., xr)

T
β∗,

where Λ is a strictly increasing and continuously differentiable “link function” such that the range of Λ ◦ θ is exactly R,
β∗ ∈ Rs is the true parameter and ψ(·) =

(
ψ1(·), ..., ψs(·)

)T ∈ Rs is some basis, such as polynomials, exponentials,
indicator functions etc. However, the estimation of β∗ still makes use of the Nadaraya-Watson kernel smoothers considered
above.

Of course, Nadaraya-Watson kernel smoothers are far from being the only method of regression that can be extended to
estimate conditional U-statistics, and in the main body of the paper (Section 5.2), we consider extending kernel ridge
regression for this purpose.
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B. More Details on IHDP Dataset
In this section, we give more details on the data generating process of the semi-synthetic IHDP (Infant Health and
Development Program) dataset that was first used in the treatment effect literature by Hill (2011).

The data consists of 25 covariates: birth weight, head circumference, weeks born preterm, birth order, first born, neonatal
health index, sex, twin status, whether or not the mother smoked during pregnancy, whether or not the mother drank alcohol
during pregnancy, whether or not the mother took drugs during pregnancy, the mother’s age, marital status, education
attainment, whether or not the mother worked during pregnancy, whether she received prenatal care, and 7 dummy variables
for the 8 sites in which the family resided at the start of the intervention.

These covariates are originally taken from a randomised experiment, and included information about the ethnicity of the
mothers. Hill (2011) removed all children with nonwhite mothers from the treatment group, which is clearly a non-random
(biased) portion of the data, thereby imitating an observational study. This leaves 608 children in the control group and 139
in the treatment group. The overlap condition is now only satisfied for the treatment group.

In creating the parallel linear response surfaces, which are used in all three of the settings “SN”, “LN” and “HN”, we let
E[Y0|X] = βX and E[Y1|X] = βX + 4, where the 25-dimensional coefficient vector β is generated in the same way as in
Alaa & Schaar (2018): for the 6 continuous variables (birth weight, head circumference, weeks born preterm, birth order,
neonatal health index, mother’s age), the corresponding coefficients is sampled from {0, 0.1, 0.2, 0.3, 0.4} with probabilities
{0.5, 0.125, 0.125, 0.125, 0.125} respectively, whereas for the other 19 binary variables, the corresponding coefficients are
sampled from {0, 0.1, 0.2, 0.3, 0.4} with probabilities {0.6, 0.1, 0.1, 0.1, 0.1} respectively.

Finally, we generate realisations of the potential outcomes by adding noise to the mean response surfaces. We let
Y0 = βX + ε(X) and Y1 = βX + 4 + ε(X), where ε(X) = εSN in setting “SN”, ε(X) = εLN in setting “LN” and
ε(X) = X6εSN + (1−X6)εLN in setting “HN”, with εSN ∼ N (0, 12) and εLN ∼ N (0, 202). The covariate X6 corresponds
to the sex of the child, and was chosen because there are roughly the same number of each sex in both the control and the
treatment groups.

C. Proofs
Lemma 4.1. For each x ∈ X , we have

Û2
MMD(x) = kT0 (x)W0L0W

T
0 k0(x)− 2kT0 (x)W0LW

T
1 k1(x) + kT1 (x)W1L1W

T
1 k1(x),

where [L0]1≤i,j≤n0
= l(y0

i , y
0
j ), [L]1≤i≤n0,1≤j≤n1

= l(y0
i , y

1
j ) and [L1]1≤i,j≤n1

= l(y1
i , y

1
j ).

Proof. We use the reproducing property ofH and (2) to see that, for any x ∈ X ,

Û2
MMD(x) =

∥∥∥µ̂Y1|X=x − µ̂Y0|X=x

∥∥∥2

H

=
∥∥∥kT0 (x)W0l0 − kT1 (x)W1l1

∥∥∥2

H

=

〈
n0∑
i,j=1

k0(x, x0
i )W0,ij l(y

0
j , ·),

n0∑
p,q=1

k0(x, x0
p)W0,pql(y

0
q , ·)

〉
H

− 2

〈
n0∑
i,j=1

k0(x, x0
i )W0,ij l(y

0
j , ·),

n1∑
p,q=1

k1(x, x1
p)W1,pql(y

1
q , ·)

〉
H

+

〈
n1∑
i,j=1

k1(x, x1
i )W1,ij l(y

1
j , ·),

n1∑
p,q=1

k1(x, x1
p)W1,pql(y

1
q , ·)

〉
H

=

n0∑
i,j,p,q=1

k0(x, x0
i )W0,ij l(y

0
j , y

0
q )WT

0,qpk0(x0
p, x)

− 2

n0∑
i,j=1

n1∑
p,q=1

k0(x, x0
i )W0,ij l(y

0
j , y

1
q )WT

1,qpk1(x1
p, x)
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+

n1∑
i,j,p,q=1

k1(x, x1
i )W1,ij l(y

1
j , y

1
q )WT

1,qpk1(x1
p, x)

= kT0 (x)W0L0W
T
0 k0(x)− 2kT0 (x)W0LW

T
1 k1(x) + kT1 (x)W1L1W

T
1 k1(x).

Theorem 4.2. Suppose that k0, k1 and l are bounded, that Γ0 and Γ1 are universal, and that λ0
n0

and λ1
n1

decay at slower
rates than O(n

−1/2
0 ) and O(n

−1/2
1 ) respectively. Then as n0, n1 →∞,

ψMMD

(
ÛMMD

)
= E

[(
ÛMMD(X)− UMMD(X)

)2
]
P→ 0.

Proof. The simple inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 holds in any Hilbert space. Using this, we see that

ψMMD

(
ÛMMD

)
= E

[(
ÛMMD(X)− UMMD(X)

)2
]

= E

[(∥∥∥µ̂Y1|X − µ̂Y0|X

∥∥∥
H
−
∥∥∥µY1|X − µY0|X

∥∥∥
H

)2
]

≤ E
[∥∥∥µ̂Y1|X − µY1|X − µ̂Y0|X + µY0|X

∥∥∥2

H

]
by the reverse triangle inequality

≤ 2E
[∥∥∥µ̂Y1|X − µY1|X

∥∥∥2

H
+
∥∥∥µ̂Y0|X − µY0|X

∥∥∥2

H

]
by the above inequality.

Hence, it suffices to know that

E
[∥∥∥µ̂Y1|X − µY1|X

∥∥∥2

H

]
p→ 0 and E

[∥∥∥µ̂Y0|X − µY0|X

∥∥∥2

H

]
p→ 0.

But this follows immediately from Park & Muandet (2020b), so the proof is complete.

Lemma 4.3. If l is a characteristic kernel, PY0|X ≡ PY1|X if and only if t = 0.

Proof. We can assume without loss of generality that PY0|X and PY1|X are obtained from a regular version of P (· | X).
Then by (Park & Muandet, 2020a, Theorem 2.9), there exist C0, C1 ∈ F with P (C0) = P (C1) = 1 such that for all
ω ∈ C0, µY0|X(ω) =

∫
Y l(y, ·)dPY0|X(ω)(y) and for all ω′ ∈ C1, µY1|X(ω′) =

∫
Y l(y, ·)dPY1|X(ω′)(y).

Suppose for contradiction that there exists some measurable A ⊆ X with PX(A) > 0 such that for all x ∈ A, µY0|X=x 6=∫
Y l(y, ·)dPY0|X=x(y). Then P (X−1(A)) = PX(A) > 0, and hence P (X−1(A) ∩ C0) > 0. For all ω ∈ X−1(A) ∩ C0,

we have X(ω) ∈ A, and hence

µY0|X(ω) 6=
∫
Y
l(y, ·)dPY0|X=X(ω)(y) =

∫
Y
l(y, ·)PY0|X(ω)(dy) = µY0|X(ω).

This is a contradiction, hence there does not exist a measurable A ⊆ X with PX(A) > 0 such that for all x ∈ A,
µY0|X=x 6=

∫
Y l(y, ·)dPY0|X=x(y). Therefore, there must exist some measurable A0 ⊆ X with PX(A0) = 1 such that for

all x ∈ A0, µY0|X=x =
∫
Y l(y, ·)dPY0|X=x(y). Similarly, there must exist some measurable A1 ⊆ X with PX(A1) = 1

such that for all x ∈ A1, µY1|X=x =
∫
Y l(y, ·)dPY1|X=x(y).

( =⇒ ) Suppose that PY0|X ≡ PY1|X . This means that there exists a measurable A ⊆ X with PX(A) = 1 such that for all
x ∈ A, the measures PY0|X=x(·) and PY1|X=x(·) are the same. Then for all x ∈ A ∩A0 ∩A1,

µY0|X=x =

∫
Y
l(y, ·)dPY0|X=x(y) since x ∈ A0

=

∫
Y
l(y, ·)dPY1|X=x(y) since x ∈ A
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= µY1|X=x since x ∈ A1.

Now, we have PX(A) = PX(A0) = PX(A1) = 1, so PX(A ∩ A0 ∩ A1) = 1. Since µY0|X=x = µY1|X=x for all
x ∈ A ∩A0 ∩A1, we have µY0|X=· = µY1|X=· PX -almost everywhere. Hence,

t = E
[∥∥∥µY1|X − µY0|X

∥∥∥2

H

]
= 0

(⇐= ) Now suppose that t = 0, i.e. µY0|X=· = µY1|X=· PX -almost everywhere, say on a measurable set A ⊆ X with
PX(A) = 1. Suppose x ∈ A ∩A0 ∩A1. Then∫

Y
l(y, ·)dPY0|X=x(y) = µY0|X=x since x ∈ A0

= µY1|X=x since x ∈ A

=

∫
Y
l(y, ·)dPY1|X=x(y) since x ∈ A1.

Since kY is characteristic, this means that PY0|X=x and PY1|X=x are the same measure. As before, we have PX(A ∩
A0 ∩A1) = 1, hence PY0|X ≡ PY1|X .

Lemma 4.4. We have

t̂ =
1

n
Tr
(
K̃0W0L0W

T
0 K̃

T
0

)
− 2

n
Tr
(
K̃0W0LW

T
1 K̃

T
1

)
+

1

n
Tr
(
K̃1W1L1W

T
1 K̃

T
1

)
,

where L0,L1 and L are as defined in Lemma 4.1 and [K̃0]1≤i≤n,1≤j≤n0
= k0(xi, x

0
j ) and [K̃1]1≤i≤n,1≤j≤n1

= k1(xi, x
1
j ).

Proof. See that, using the reproducing property inH again,

t̂ =
1

n

n∑
i=1

∥∥∥µ̂Y1|X=xi − µ̂Y0|X=xi

∥∥∥2

H

=
1

n

n∑
i=1

{∥∥∥µ̂Y1|X=xi

∥∥∥2

H
− 2

〈
µ̂Y1|X=xi , µ̂Y0|X=xi

〉
H

+
∥∥∥µ̂Y0|X=xi

∥∥∥2

H

}

=
1

n

n∑
i=1

{∥∥∥kT0 (xi)W0l0

∥∥∥2

H
− 2

〈
kT0 (xi)W0l0,k

T
1 (xi)W1l1

〉
H

+
∥∥∥kT1 (xi)W1l1

∥∥∥2

H

}

=
1

n

n∑
i=1

〈
n0∑

p,q=1

k0(x0
p, xi)W0,pql(y

0
q , ·),

n0∑
r,s=1

k0(x0
r, xi)W0,rsl(y

0
s , ·)

〉
H

− 2

n

n∑
i=1

〈
n0∑

p,q=1

k0(x0
p, xi)W0,pql(y

0
q , ·),

n1∑
r,s=1

k1(x1
r, xi)W1,rsl(y

1
s , ·)

〉
H

+
1

n

n∑
i=1

〈
n1∑

p,q=1

k1(x1
p, xi)W1,pql(y

1
q , ·),

n1∑
r,s=1

k1(x1
r, xi)W1,rsl(y

1
s , ·)

〉
H

=
1

n

n∑
i=1

n0∑
p,q,r,s=1

k0(xi, x
0
p)W0,pql(y

0
q , y

0
s)WT

0,srk0(x0
r, xi)

− 2

n

n∑
i=1

n0∑
p,q=1

n1∑
r,s=1

k0(xi, x
0
p)W0,pql(y

0
q , y

1
s)WT

1,srk1(x1
r, xi)

+
1

n

n∑
i=1

n1∑
p,q,r,s=1

k1(xi, x
1
p)W1,pql(y

1
q , y

1
s)WT

1,srk1(x1
r, xi)
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=
1

n

{
Tr
(
K̃0W0L0W

T
0 K̃

T
0

)
− 2Tr

(
K̃0W0LW

T
1 K̃

T
1

)
+ Tr

(
K̃1W1L1W

T
1 K̃

T
1

)}

Theorem 4.5. Under the same assumptions as in Theorem 4.2, we have t̂
p→ t as n0, n1 →∞.

Proof. We decompose
∣∣∣t̂− t∣∣∣ as follows using the triangle inequality:

∣∣∣t̂− t∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
i=1

∥∥∥µ̂Y1|X=xi − µ̂Y0|X=xi

∥∥∥2

H
− E

[∥∥∥µY1|X − µY0|X

∥∥∥2

H

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑
i=1

∥∥∥µ̂Y1|X=xi − µ̂Y0|X=xi

∥∥∥2

H
− E

[∥∥∥µ̂Y1|X − µ̂Y0|X

∥∥∥2

H

]∣∣∣∣∣∣
+

∣∣∣∣∣E
[∥∥∥µ̂Y1|X − µ̂Y0|X

∥∥∥2

H

]
− E

[∥∥∥µY1|X − µY0|X

∥∥∥2

H

]∣∣∣∣∣
Here, the first term converges to 0 in probability by the uniform law of large numbers. For the second term, see that∣∣∣∣∣E

[∥∥∥µ̂Y1|X − µ̂Y0|X

∥∥∥2

H

]
− E

[∥∥∥µY1|X − µY0|X

∥∥∥2

H

]∣∣∣∣∣
=

∣∣∣∣∣E
[∥∥∥µ̂Y1|X − µY1|X + µY1|X − µY0|X + µY0|X − µ̂Y0|X

∥∥∥2

H
−
∥∥∥µY1|X − µY0|X

∥∥∥2

H

]∣∣∣∣∣
=

∣∣∣∣∣E
[∥∥∥µ̂Y1|X − µY1|X

∥∥∥2

H
+
∥∥∥µY0|X − µ̂Y0|X

∥∥∥2

H

]
+ 2

〈
µ̂Y1|X − µY1|X , µY1|X − µY0|X

〉
H

+ 2
〈
µ̂Y0|X − µY0|X , µY1|X − µY0|X

〉
H

+ 2
〈
µ̂Y1|X − µY1|X , µ̂Y0|X − µ̂Y0|X

〉
H

∣∣∣∣ .
Here, we have

E
[∥∥∥µ̂Y1|X − µY1|X

∥∥∥2

H

]
p→ 0 and E

[∥∥∥µ̂Y0|X − µY0|X

∥∥∥2

H

]
p→ 0

as in the proof of Theorem 4.2, so we are done.

Theorem 5.1. The solution F̂0 to the problem in (4) is

F̂0 (x1, ..., xr) =

n0∑
i1,...,ir=1

k0

(
x0
i1 , x1

)
...k0

(
x0
ir , xr

)
ci1,...,ir

where the coefficients ci1,...,ir ∈ R are the unique solution of the nr linear equations

n0∑
j1,...,jr=1

(
k0

(
x0
i1 , x

0
j1

)
...k0

(
x0
ir , x

0
jr

)
+

(
n0

r

)
λ0
n0
δi1j1 ...δirjr

)
cj1,...,jr = h

(
y0
i1 , ..., y

0
ir

)
.

Proof. Recall from (4) that

F̂0 = arg min
F∈Hr0

{
1(
n0

r

) ∑(
F
(
x0
i1 , ..., x

0
ir

)
− h

(
y0
i1 , ..., y

0
ir

))2

+ λ0
n0
‖F‖2Hr0

}
,

where the summation is over the
(
n0

r

)
combinations of r distinct elements {i1, ..., ir} from 1, ..., n0. Write

F̂ ′0 (x1, ..., xr) =

n0∑
i1,...,ir=1

k0

(
x0
i1 , x1

)
...k0

(
x0
ir , xr

)
ci1,...,ir
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where the coefficients ci1,...,ir ∈ R are the unique solution of the nr linear equations

n0∑
j1,...,jr=1

(
k0

(
x0
i1 , x

0
j1

)
...k0

(
x0
ir , x

0
jr

)
+

(
n0

r

)
λ0
n0
δi1j1 ...δirjr

)
cj1,...,jr = h

(
y0
i1 , ..., y

0
ir

)
.

Also, for any F ∈ Hr0, write Êreg(F ) for the empirical regularised least-squares risk of F :

Êreg(F ) =
1(
n0

r

) ∑(
F
(
x0
i1 , ..., x

0
ir

)
− h

(
y0
i1 , ..., y

0
ir

))2

+ λ0
n0
‖F‖2Hr0 ,

so that F̂0 = arg minF∈Hr0 Êreg(F ). We will show that F̂ ′0 = F̂0. For any F ∈ Hr0, write G = F − F̂ ′0. Then

Êreg(F ) =
1(
n0

r

) ∑(
F
(
x0
i1 , ..., x

0
ir

)
− h

(
y0
i1 , ..., y

0
ir

))2

+ λ0
n0
‖F‖2Hr0

=
1(
n0

r

) ∑(
F
(
x0
i1 , ..., x

0
ir

)
− F̂ ′0

(
x0
i1 , ..., x

0
ir

)
+ F̂ ′0

(
x0
i1 , ..., x

0
ir

)
− h

(
y0
i1 , ..., y

0
ir

))2

+ λ0
n0
‖F‖2Hr0

= Êreg

(
F̂ ′0

)
+

1(
n0

r

) ∑G
(
x0
i1 , ..., x

0
ir

)2

+
2(
n0

r

) ∑G
(
x0
i1 , ..., x

0
ir

)(
F̂ ′0

(
x0
i1 , ..., x

0
ir

)
− h

(
y0
i1 , ..., y

0
ir

))
+ λ0

n0
‖G‖2Hr0 + 2λ0

n0

〈
G, F̂ ′0

〉
Hr0

≥ Êreg

(
F̂ ′0

)
− 2(

n0

r

) ∑G
(
x0
i1 , ..., x

0
ir

)(
h
(
y0
i1 , ..., y

0
ir

)
− F̂ ′0

(
x0
i1 , ..., x

0
ir

))
+ 2λ0

n0

〈
G, F̂ ′0

〉
Hr0

= Êreg

(
F̂ ′0

)
− 2λ0

n0

∑
G
(
x0
i1 , ..., x

0
ir

)
ci1,...,ir + 2λ0

n0

n0∑
i1,...,ir=1

G
(
x0
i1 , ..., x

0
ir

)
ci1,...,ir

by the reproducing property and the definition of ci1,...,ir

= Êreg

(
F̂ ′0

)
Hence, F̂ ′0 minimises Êreg inHr0, and so F̂ ′0 = F̂0 as required.

Theorem 5.2. Suppose kr0 is a bounded and universal kernel and that λ0
n0

decays at a slower rate than O(n
−1/2
0 ). Then as

n0 →∞,

E
[(
F̂0 (X1, ..., Xr)− F0 (X1, ..., Xr)

)2
]

p→ 0.

Proof. Define

F0,λ0
n0

= arg min
F∈Hr0

{
E
[(
F (X1, ..., Xr)− F0 (X1, ..., Xr)

)2]
+ λ0

n0
‖F‖2Hr0

}
.

By the bias-variance decomposition, this also minimises

Eλ0
n0

(F ) = E
[(
F (X1, ..., Xr)− h (Y1, ..., Yr)

)2]
+ λ0

n0
‖F‖2Hr0 .

Denote the Hilbert space of P rX -square-integrable X r → R functions by L2(X r, P rX), and define the inclusion operator

ι : Hr0 → L2(X r, P rX).

Then we see that

F0,λ0
n0

= arg min
F∈Hr0

{∥∥ι(F )− F0

∥∥2

2
+ λ0

n0
‖F‖2Hr0

}
=⇒ 0 = ι∗(ι(F0,λ0

n0
)− F0) + λ0

n0
F0,λ0

n0
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=⇒ F0,λ0
n0

=
(
ι∗ ◦ ι+ λ0

n0
I
)−1

ι∗F0

Now, for any x0 = (x0
1, ..., x

0
n0

)T ∈ Xn0 , define the sampling operator

Sx0 : Hr0 → R(n0
r ),

(
Sx0(F )

)
i1,...,ir

=
1(
n0

r

)F (x0
i1 , ..., x

0
ir

)
, {i1, ..., ir} ⊂ {1, ..., n0},

with adjoint

S∗x0 (h) =
1(
n0

r

) ∑ k0

(
x0
i1 , ·
)
...k0

(
x0
ir , ·
)
hi1,...,ir , h ∈ R(n0

r );

indeed, for any F ∈ Hr0 and h ∈ R(n0
r ),

〈Sx0F,h〉
R(n0

r ) =
1(
n0

r

) ∑F
(
x0
i1 , ..., x

0
ir

)
hi1,...,ir

=
1(
n0

r

) ∑〈
F, k0

(
x0
i1 , ·
)
...k0

(
x0
ir , ·
)〉
Hr0

hi1,...,ir

=

〈
F,

1(
n0

r

) ∑ k0

(
x0
i1 , ·
)
...k0

(
x0
ir , ·
)
hi1,...,ir

〉
Hr0

.

For y0 ∈ Yn0 , write

h
(
y0
)
∈ R(n0

r ), h
(
y0
)
i1,...,ir

= h
(
y0
i1 , ..., y

0
ir

)
, {i1, ..., ir} ⊂ {1, ..., n0}.

Then we see that

F̂0 = arg min
F∈Hr0


(
n0

r

)∥∥∥∥∥Sx0(F )− 1(
n0

r

)h(y0
)∥∥∥∥∥

2

+ λ0
n0
‖F‖2Hr0


=⇒ 0 =

(
n0

r

)
S∗x0

(
Sx0

(
F̂0

)
− 1(

n0

r

)h(y0
))

+ λ0
n0
F̂0

=⇒ F̂0 =

((
n0

r

)
S∗x0 ◦ Sx0 + λ0

n0
I

)−1

S∗x0h
(
y0
)
.

We consider the following decomposition:

E
[(
F̂0 (X1, ..., Xr)− F0 (X1, ..., Xr)

)2
]

=
∥∥∥ιF̂0 − F0

∥∥∥2

2
≤ 2

∥∥∥ιF̂0 − ιF0,λ0
n0

∥∥∥2

2
(a)

+ 2
∥∥∥ιF0,λ0

n0
− F0

∥∥∥2

2
. (b)

We are done if we show that the terms (a) and (b) separately converge to 0 (in probability, for (a)).

(a) See that

F̂0 − F0,λ0
n0

=

((
n0

r

)
S∗x0 ◦ Sx0 + λ0

n0
I

)−1

S∗x0h
(
y0
)
− F0,λ0

n0

=

((
n0

r

)
S∗x0 ◦ Sx0 + λ0

n0
I

)−1(
S∗x0h

(
y0
)
−
(
n0

r

)
S∗x0 ◦ Sx0F0,λ0

n0
+ ι∗

(
ιF0,λ0

n0
− F0

))
.
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By spectral theorem,

∥∥∥F̂0 − F0,λ0
n0

∥∥∥
H
≤ 1

λ0
n0

∥∥∥∥∥S∗x0h
(
y0
)
−
(
n0

r

)
S∗x0 ◦ Sx0F0,λ0

n0
+ ι∗

(
ιF0,λ0

n0
− F0

)∥∥∥∥∥
H

.

Using this inequality and Chebyshev’s inequality, for any ε > 0,

P

(∥∥∥F̂0 − F0,λ0
n0

∥∥∥
H
≥ ε
)
≤ P

 1

λ0
n0

∥∥∥∥∥S∗x0h
(
y0
)
−
(
n0

r

)
S∗x0 ◦ Sx0F0,λ0

n0
− ι∗

(
F0 − ιF0,λ0

n0

)∥∥∥∥∥
H

≥ ε


≤ 1

(λ0
n0

)2ε2
E

∥∥∥∥∥S∗x0h
(
y0
)
−
(
n0

r

)
S∗x0 ◦ Sx0F0,λ0

n0
− ι∗

(
F0 − ιF0,λ0

n0

)∥∥∥∥∥
2

H


≤ 1

(λ0
n0

)2ε2
(
n0

r

)E
∥∥∥∥∥k0

(
x0
i1 , ·
)
...k0

(
x0
ir , ·
)(

h
(
y0
i1 , ..., y

0
ir

)
− F0,λ0

n0

(
x0
i1 , ..., x

0
ir

))∥∥∥∥∥
2

H


→ 0

as n→∞, since the kernel is bounded.

(b) Take an arbitrary ε > 0. By the denseness ofHr0 in L2(X r, P rX), there exists some Fε ∈ Hr0 with

‖ιFε − F0‖22 = E(Fε)− E(F0) ≤ ε

2
.

Then ∥∥∥ιF0,λ0
n0
− F0

∥∥∥2

2
= E

(
F0,λ0

n0

)
− E (F0)

≤ Eλ0
n0

(
F0,λ0

n0

)
− E (F0)

= Eλ0
n0

(
F0,λ0

n0

)
− Eλ0

n0
(Fε) + Eλ0

n0
(Fε)− E(Fε) + E(Fε)− E (F0)

≤ λ0
n0
‖Fε‖2Hr0 +

ε

2
.

Now let n be large enough for
λ0
n0
‖Fε‖2Hr0 ≤

ε

2

to hold.


