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1. Mathematical Backgrounds
1.1. Notations

In this paper, a time-dependent system is defined on probability space (Rd,F ,P) with filtration Ft. We assume that
generated process Xt is Ft-adapted for all t.

1.2. Assumptions

For rigorous technical results, we assume the following conditions for both generator and discriminator networks.

Assumptions for Generator Network.

• G-H1: ∥∥fθ(t, x)− fθ(t, y)
∥∥2 ∨ ‖σ(x, θ)− σ(y, θ)‖2 ∨Tr[σ(x, θ)Tσ(x, θ)] ≤ K, ∀x, y ∈ Rd. (1)

• G-H2: The infinitesimal generator of the parameterized Fokker-Planck equation induces the curvature-dimension
condition: CD(κ,∞) (Villani, 2008; Bakry & Émery).

Assumptions for Discriminator Network.

• D-H1: The discriminator network is p-Lipschitz on T , and q-Lipschitz on Rd in a global sense:

|D(·, t1)−D(·, t2)| ≤ p |t1 − t2| , |D(X1, ·)−D(X2, ·)| ≤ q ‖X1 −X2‖ (2)

for all t1 6= t2 ∈ T and X1 6= X2 ∈ Rd.

• D-H2: The norm of second derivatives for the discriminator network is always bounded for some value q̂:
i.e., supi,j ‖∂i∂jD(x, ·)‖ ≤ q̂.

1.3. Stochastic Differential Equations

In the main paper, we use the integral formulation, but it is generally written as Itô’s diffusion:

dXt = fθ(Xt, t)dt+ σ(Xt)dWt, (3)

where Xt ∈ Rd and f : Rd ×U→ Rd is a neural network parameterized by θ.

By the Lipschitz continuity (i.e., G-H1) of both drift and diffusion functions, the solution to (3), Xt, is always a Markov
process (Øksendal, 2003).

2. Proofs
Proposition 1. (Controlled Stability of Discriminator) Let G(X0, s) = Xs be a generated sample obtained by the generator
G. For simple analysis, let us consider σ(X) := σ for some positive scalar σ > 0.1 Then, the following probability

1The result of this proposition can be easily extended to general measurable σ(·), if we clarify the explicit condition on σ.
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inequality is satisfied:

P
[

sup
0≤s≤t

‖D(Xs, s)−D(X0, 0)‖ ≥ ε
]
≤ 2

3ε

{
(p ∨ q)E ‖Xt −X0‖+ tC

}
, (4)

where the numerical constant C is linearly dependent on σ. In other words, C ∝ σ.

Proof. It is difficult to directly analyse the time-inhomogeneous Feller process, Xt, without appropriate and complicated
assumptions on fθ. Because using a time-variable is to generate high-dimensional and complex data, we transform the
time-inhomogeneous Markov process, Xt, into a desirable form and analyze probabilistic properties of Xt. Let X̃t = (Xt, t)
be a time-augmented stochastic process suggested in (Bossy & Champagnat, 2010; Böttcher, 2014), it is easily shown that
the aforementioned time-augmented Markov semigroup can be defined. Let Ft = σ(Xs; s ≤ t) be a canonical filtration of
Xt. Let µ ∈ P(Rd) be a probability measure and define P := Pµ(X0 ∈ A)⊗ T (t0 ∈ T ) for all A ∈ Σ(Rd × T ).

Theorem 1. (Böttcher, 2014) Let T = [0, C], assume that Xt is a time-inhomogeneous Feller process and has right-
continuous infinitesimal generator A+

s . Let f ∈ C∞(Rd × T ), π1 ◦ f ∈ C1(T ), π2 ◦ f ∈ D(A+
s ). Then, X̃t is a

time-homogeneous Feller process with generator L̃ defined as follows:

Lf(X̃) = ∂sf(s, x) +A+
s f(s, x), (5)

where A+
s f(s, ·) = σ

2

∑d
i ∇2

i f(s, ·) +∇T f(s, ·).

Based on the tools above, we reveal the impact to the probabilistic bound of perturbation according to varying magnitudes
of σ in our SDE model. Let us first define the stochastic process MD

t : Rd × T → R as follows:

MD
t = D(X̂t)−D(X̂0)−

∫ t

0

(∂u +A+
u )D(Xu, u)du. (6)

This form is the time-inhomogeneous type of martingale formulation (Bossy & Champagnat, 2010) for itó’s formula over
discriminator D, i.e.,E[MD

t |Fs] = MD
s . In this form, the distortions induced by inhomogeneity are compensated by

differential operator ∂s. As MD
t is martingale, one can induce the following probability inequality by applying Doob’s

maximal martingale inequality (Øksendal, 2003) to MD
t :

P
[

sup
0≤s≤t

∥∥MD
s

∥∥
2
≥ ε
]
≤ 1

ε2
E
[∥∥MD

t

∥∥] . (7)

From (7), we can obtain the following inequality:

ε ≤ sup
0≤s≤t

∥∥MD
s

∥∥
2
≤ sup

0≤s≤t

[
‖D(Xs, s)−D(Xs=0, s = 0)‖2 +

∥∥∥∥∫ t

0

−∂uD(Xu, u)du

∥∥∥∥
2

+

∥∥∥∥∫ t

0

−A+
uD(Xu, u)du

∥∥∥∥
2

]
≤ sup

0≤s≤t
‖D(Xs, s)−D(Xs=0, s = 0)‖2 + sup

0≤s≤t

∫ t

0

‖−∂uD(Xu, u)‖2 du+ sup
0≤s≤t

∫ t

0

∥∥−A+
uD(Xu, u)

∥∥
2
du.

(8)

The second inequality is induced by applying Jensen’s inequality to Lebesgue measure du with convex function ‖·‖2, and
the inequality sups [A(s) +B(s) + C(s)] ≤ supsA(s) + supsB(s) + sups C(s).

1

ε2
E
[∥∥MD

t

∥∥] ≥ P
[
ε ≤ sup

0≤s≤t

∥∥MD
s

∥∥
2

]
≥ P

[
ε

3
≤ sup

0≤s≤t
‖D(Xs, s)−D(X0, 0)‖2

]
+ P

[
ε

3
≤ sup

0≤s≤t
B(t)

]
+ P

[
ε

3
≤ sup

0≤s≤t
C(t)

]
. (9)

By rewriting inequality above using P(Ac) = 1− P(A),∀A ∈ Σ, and rescaling dummy variable ε→ 3ε, we get

P
[
ε ≤ sup

0≤s≤t

∥∥∥D(X̃s)−D(X̃0)
∥∥∥

2

]
≤ 1

3ε
E
[∥∥MD

t

∥∥]+ P
[
ε ≥ sup

0≤s≤t
B(t)

]
+ P

[
ε ≥ sup

0≤s≤t
C(t)

]
− 2. (10)
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Then, we use the assumptions to remove second and third term in (10). While we assume that D is global p-Lipschitz
continuous on T , the following inequality is induced by D-H1.

P
[
|D(X, t1)−D(X, t2)| ≤ p ‖(X, t1)− (X, t2)‖ = p |t1 − t2|

]
= 1. (11)

Let us assume ε ≤ pt. As the inequality in (11) is equivalent to ‖∂uD‖ ≤ p iff D is p-Lipschitz continuous, the second
term in right-hand side of (10) is naturally bounded above with the following inequality because we assume that ε ≤ pt.
Subsequently, we get followings:

P
[

sup
0≤s≤t

B(t) ≤ ε
]
≤ P

[
sup

0≤s≤t

∫ t

0

‖∂uD(G(X0, u), u)‖ du ≤ sup
0≤s≤t

∫ t

0

pdu = pt

]
≤ P

[
sup

0≤s≤t

∫ t

0

‖∂uD(Xu, u)‖ du ≤ pt
]

= 1.

(12)

As our discriminator is assumed to be q-Lipschitz on data dimension, the following inequality is naturally induced. The
probability densities, P and Q induced by both dPt = pt(x)dL(x), dQt = qt(x)dL(x) for Lebesgue measure L(x) with
respect to Rd, and UP,Q := supp(pt) ∪ supp(qt) ⊂ Rd. Based on the assumption that D(·, t) is global p-Lipschitz
continuous for any t ∈ T , we can induce the following set inclusion:

{w : D [G(X0, t)(w), t] ∈ Lipp(UP,Q)} ⊂ {w : D(Y (w), t) ∈ Lipp(Rd),∀ Y ∈ Rd}. (13)

Assume that D(·, t) vanishes outside of supp(pt). Then, in probability, we can induce

P
[
D [G(X(w), t), t] ∈ Lipp(supp(P ))

]
≤ P

[
D(X, t) ∈ Lipp(Rd)

]
= P [‖∇iD(X, t)‖ ≤ q] = 1. (14)

∥∥A+
s D(Xs, s)

∥∥ ≤ σ

2

∥∥∥∥∥
d∑
i

∇2
iD(Xs, s)

∥∥∥∥∥︸ ︷︷ ︸
bounded second derivative

+

∥∥∥∥∥
d∑
i

∇iD(Xs, s)

∥∥∥∥∥︸ ︷︷ ︸
q-Lipschitz on data space

≤ 2−1σd sup
0≤i≤d

q̂i + q. (15)

We denote q̂ = sup0≤i≤d q̂i for simplicity. The following equality is naturally induced by the assumption D-H2.

P
[∥∥A+

s D(Xs, s)
∥∥ ≤ 2−1σdq̂ + q

]
= 1, ∀ 0 ≤ s ≤ t. (16)

If ε ≤ 2−1σdq̂ + q, this naturally induces the following probability inequality:

P
[

sup
0≤s≤t

C(t) ≤ ε
]
≤ P

[
sup

0≤s≤t

∫ t

0

∥∥A+
uD(Xu, u)

∥∥ du ≤ (2−1σdq̂ + q)t

]
= 1. (17)

Lemma 1. The discriminator network D is 2(p ∨ q)-Lipschitz on Rd × T .

Proof. The proof is trivial by the triangle inequality.

|D(X1, t1)−D(X2, t2)| ≤ |D(X1, t1)−D(X1, t2)|+ |D(X1, t2)−D(X2, t2)|
≤ p |t1 − t2|+ q ‖X1 −X2‖
≤ 2(p ∨ q) [|t1 − t2|+ ‖X1 −X2‖] = 2(p ∨ q) ‖(X1, t1)− (X2, t2)‖ .

(18)

By integrating inequalities in (17) and (12) into (10), we can obtain the following inequality:

P
[

sup
0≤s≤t

‖D(Xs, s)−D(X0, 0)‖ ≥ ε
]
≤ 1

3ε
E
[∥∥MD

t

∥∥] ≤ 1

3ε

{
E ‖D(Xt, t)−D(X0, 0)‖+ t

[
p+ q + 2−1σdq̂

] }
≤ 2

3ε

{
(p ∨ q)E ‖Xt −X0‖+ t

[
2(p ∨ q) + 4−1σdq̂

] }
,

(19)
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where ε = [p ∧ (2−1σdq̂ + q)]t. The second inequality induced by the fact that D is global 2(p ∨ q)-Lipschitz continuous
by Lemma 1, and the metric on Rd × T can be decomposed into metrics on Rd and T .

‖E [D(Xt, t)−D(X0, 0)]‖ ≤ E ‖D(Xt, t)−D(X0, 0)‖ ≤ 2(p∨q)E
∥∥∥X̂t − X̂0

∥∥∥ ≤ 2(p∨q) (E ‖Xt −X0‖+ t) . (20)

The proof is completed by setting C
(
p, q, σ, d,

∥∥∇2D
∥∥) = 2(p ∨ q) + 4−1σdq̂. Please note that this numerical constant is

linearly dependent on σ.

Proposition 2. (Controlled Stability of Wasserstein distance) Let us define the spatial-temporal gradient operator as
∇̃x,t = ∇x + ∂t. Then, the expectation norm of the spatial-temporal gradient for the conditional distance is bounded as
follows:

E
[∥∥∥∇̃x,tWϕ(Pt|x,Qt)

∥∥∥] ≤ C + (p ∨ q)(1 + e−κt) (21)

for some numerical constants κ,C > 0.

Proof. The left-hand side of inequality in (21) can be divided into two terms as follows:

E
[∥∥∥∇̃x,tWϕ(Pt|x,Qt)

∥∥∥] ≤ E [‖∇Wϕ(Pt|x,Qt)‖] + [‖∂tWϕ(Pt|x,Qt)‖] . (22)

First, We investigate the first term of right-hand side in (22):

Ex ‖∇Wϕ(Pt|x,Qt)‖ =

∫
‖∇MtD

ϕ(x, 0)−∇EYt∼QtDϕ(Yt, t)‖ dP0(x) ≤
∫
e−κtExMt (‖∇D(x)‖) dP0(x)

= e−κt
∫
‖∇D1‖ (x)p(t, y|0, x)p0(x)dL(x) = e−κt

∫
‖∇D1‖ dPt = e−κtE [‖∇D(Xt)‖]

≤ e−κtq.

(23)

The first inequality is induced by the assumption G-H2 on curvature-dimension condition CD(κ,∞) of our parameterized
Fokker-Planck equation. By the spatial constraints assumption D-H2, The last inequality is induced as ‖∇D‖ ≤ q,
dPt(x)-almost surely. Subsequently, we investigate the second term of right-hand side in (22):

Ex ‖∂tWϕ(Pt|x,Qt)‖ =

∫
‖∂tMtD

ϕ(x, 0)− ∂tEYt∼QtDϕ(Yt, t)‖ dP0(x, 0)

=

∫
‖MtLD

ϕ(x, 0)− E [∂tD
ϕ(Yt, t)]‖ dP0(x)

≤
∫
‖MtLD

ϕ(x, 0)‖ dP0(x) +

∫
E [‖∂tDϕ(Yt, t)‖] dP0(x)

≤
∫
Mt

[
‖∂tD(x, t)‖+

σ

2
d sup

0≤i≤d
q̂i + ‖∇D(X)‖

]
dP0(x)

= p+
σ

2
d sup

0≤i≤d
q̂i + E ‖∇D(Xt)‖ ≤ p+ q + 2−1σdq̂.

(24)

The first inequality is induced by the dual identity of Fokker-Planck equation: ∂tMtf = MtLf for Markovian generator L,
and we use the fact that ∂tEf(x, t) = E∂tf(x, t) for bounded and second differentiable f(x, t). The second inequality is
induced by dividing L defined in Theorem 1 into two terms. The third equality holds as Ex0

Mt ‖∇D(X0)‖ = E ‖∇D(Xt)‖,
which is bounded above q almost surely. Combining these results, it is easy to see that the following inequality is satisfied:
2−1σdq̂ + p+ (1 + e−κt)q ≤ 2−1σdq̂ + (p ∨ q)(1 + e−κt) where C = 2−1σdq̂. By the fact that

∫
e−κtdt ≤ 1−e−κT

κ , the
proof is completed.

Proposition 3. Let V λ be the function defined above, and x, x̂ be two initial states such that P̂t = h#[Pt]. If the generator
solves the regularization term in (25), such that

min
θ

EXt∼Pt,Zt∼P̂tV
λ(θ,Xt, Zt) = 0, (25)
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the following inequality holds:
W2(Pt, P̂t) ≤

√
A+ e−2λt ‖h‖L2(P), (26)

where ‖·‖L2(P) denotes L2-norm over probability measure P, for some A > 0.

Proof. Assume that the function V λ vanishes for some for some fixed x, y and parameter θ?. That is, V λ(θ?, x, y) := 0. In
this case, (25) indicates the following inequality:

(x− y)T
[
∇fθ

?

αx+(1−α)y

]
(x− y) ≤ −λ(x− y)T I(x− y), (27)

where we simply denote∇fθ? = ∇xf(θ?, x, t) for the fixed t. The drift function satisfying the inequality above is called
contraction function. By the Theorem 2 (Pham et al., 2009), this property gives powerful stochastic contraction for processes
Xx
t , X

y
t starting at different initial states x ∼ µ, y ∼ ν. In particular, any diffusion Markov process of which drift functions

satisfy inequality in (27) can induce the following property:

E ‖Xx
t −X

y
t ‖

2 ≤ K

λ
+ e−2λt

∫
A
‖x− y‖2 d(µ⊗ ν), (28)

where A = supp(µ0) ∪ supp(ν0) ⊂ Rd. Let us consider x̂ = x+ h(x) for some measurable h. As the optimal transport
between Pxt ,P

y
t always exists, which is denoted as πx,yt , inducing the followings are straightforward.

We consider the system of SDEs consist of trained drift, diffusion functions f(θ?), andσ(θ?) with different initial states.{
dXt = f(θ?, Xt, t) + σ(Xt)dW

1
t

dX̂t = f(θ?, X̂t, t) + σ(X̂t)dW
2
t

(29)

with i.i.d Wiener processes W 1
t ,W

2
t . In this case, it is easy to see that Zt = (Xt, X̂t) is also a Markov process on Rd × Rd.

We define ι(Zt) = d2(Xt, X̂t) for the Euclidean metric d on Rd and define Π as an optimal transport between initial state
measures µ and ν. Expectation of Markov semi-group Mtι over π yields followings:

∫
A2

Mtι(z)dΠ =

∫
A2

E[ι(Zt)|z = (x, y)]dΠ(x, y) =

∫
A2

E
[
d2(Xt, X̂t)

2
∣∣∣(X0, X̂0) = (x, y)

]
dΠ(x, y)

≤ K

λ
+ e−2λt

∫
A2

∫
A
ι(Z0)d(µ⊗ ν)dΠ(x, y) =

K

λ
+ e−2λtW2

2 (µ, ν) =
K

λ
+ e−2λt ‖h‖2L2(µ) .

(30)

Γt = Ez∼Πp(t, z, ·) denotes a push forward of Π through transition kernel. Then, for the any Zt,

W2
2 (Px∼µt ,Px̂∼νt ) = inf

Πt

∫
ι(Zt)dΠt(Zt) ≤

∫
ιdΓt. (31)

By combining two inequalities above and the fact that EΠ[Mtι] = EΓt [ι], we can conclude that W2(Pxt ,Px̂t ) ≤√
K
λ + e−2λt ‖h‖2L2(µ), where A = Kλ−1.
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