Supplementary Materials for Generative Adversarial Networks for Markovian Temporal Dynamics

Sung Woo Park¹ Dong Wook Shu¹ Junseok Kwon¹

1. Mathematical Backgrounds

1.1. Notations

In this paper, a time-dependent system is defined on probability space $(\mathbb{R}^d, \mathcal{F}, \mathbb{P})$ with filtration \mathcal{F}_t . We assume that generated process X_t is \mathcal{F}_t -adapted for all t.

1.2. Assumptions

For rigorous technical results, we assume the following conditions for both generator and discriminator networks.

Assumptions for Generator Network.

• G-H1:

$$\left\|f^{\theta}(t,x) - f^{\theta}(t,y)\right\|^{2} \vee \|\sigma(x,\theta) - \sigma(y,\theta)\|^{2} \vee \mathbf{Tr}[\sigma(x,\theta)^{T}\sigma(x,\theta)] \le K, \quad \forall x,y \in \mathbb{R}^{d}.$$
 (1)

G-H2: The infinitesimal generator of the parameterized Fokker-Planck equation induces the curvature-dimension condition: CD(κ,∞) (Villani, 2008; Bakry & Émery).

Assumptions for Discriminator Network.

• **D-H1**: The discriminator network is *p*-Lipschitz on \mathcal{T} , and *q*-Lipschitz on \mathbb{R}^d in a global sense:

$$|D(\cdot, t_1) - D(\cdot, t_2)| \le p |t_1 - t_2|, \quad |D(X_1, \cdot) - D(X_2, \cdot)| \le q ||X_1 - X_2||$$
(2)

for all $t_1 \neq t_2 \in \mathcal{T}$ and $X_1 \neq X_2 \in \mathbb{R}^d$.

• **D-H2**: The norm of second derivatives for the discriminator network is always bounded for some value \hat{q} : *i.e.*, $\sup_{i,j} \|\partial_i \partial_j D(x, \cdot)\| \leq \hat{q}$.

1.3. Stochastic Differential Equations

In the main paper, we use the integral formulation, but it is generally written as Itô's diffusion:

$$dX_t = f^{\theta}(X_t, t)dt + \sigma(X_t)dW_t, \tag{3}$$

where $X_t \in \mathbb{R}^d$ and $f : \mathbb{R}^d \times \mathbf{U} \to \mathbb{R}^d$ is a neural network parameterized by θ .

By the Lipschitz continuity (*i.e.*, **G-H1**) of both drift and diffusion functions, the solution to (3), X_t , is always a Markov process (Øksendal, 2003).

2. Proofs

Proposition 1. (Controlled Stability of Discriminator) Let $G(X_0, s) = X_s$ be a generated sample obtained by the generator G. For simple analysis, let us consider $\sigma(X) \coloneqq \sigma$ for some positive scalar $\sigma > 0$.¹ Then, the following probability

¹The result of this proposition can be easily extended to general measurable $\sigma(\cdot)$, if we clarify the explicit condition on σ .

inequality is satisfied:

$$\mathbb{P}\left[\sup_{0\leq s\leq t} \|D(X_s,s) - D(X_0,0)\| \geq \epsilon\right] \leq \frac{2}{3\epsilon} \Big\{ (p \lor q) \mathbb{E} \|X_t - X_0\| + tC \Big\},\tag{4}$$

where the numerical constant C is linearly dependent on σ . In other words, $C \propto \sigma$.

Proof. It is difficult to directly analyse the time-inhomogeneous Feller process, X_t , without appropriate and complicated assumptions on f^{θ} . Because using a time-variable is to generate high-dimensional and complex data, we transform the time-inhomogeneous Markov process, X_t , into a desirable form and analyze probabilistic properties of X_t . Let $\tilde{X}_t = (X_t, t)$ be a time-augmented stochastic process suggested in (Bossy & Champagnat, 2010; Böttcher, 2014), it is easily shown that the aforementioned time-augmented Markov semigroup can be defined. Let $\mathcal{F}_t = \sigma(X_s; s \leq t)$ be a canonical filtration of X_t . Let $\mu \in \mathcal{P}(\mathbb{R}^d)$ be a probability measure and define $\mathbb{P} := \mathbb{P}^{\mu}(X_0 \in A) \otimes \mathcal{T}(t_0 \in T)$ for all $A \in \Sigma(\mathbb{R}^d \times \mathcal{T})$.

Theorem 1. (Böttcher, 2014) Let $\mathcal{T} = [0, C]$, assume that X_t is a time-inhomogeneous Feller process and has rightcontinuous infinitesimal generator A_s^+ . Let $f \in C_{\infty}(\mathbb{R}^d \times \mathcal{T}), \pi_1 \circ f \in C^1(\mathcal{T}), \pi_2 \circ f \in \mathcal{D}(A_s^+)$. Then, \tilde{X}_t is a time-homogeneous Feller process with generator \tilde{L} defined as follows:

$$Lf(X) = \partial_s f(s, x) + A_s^+ f(s, x), \tag{5}$$

where $A_s^+f(s,\cdot) = \frac{\sigma}{2}\sum_i^d \nabla_i^2 f(s,\cdot) + \nabla^T f(s,\cdot).$

Based on the tools above, we reveal the impact to the probabilistic bound of perturbation according to varying magnitudes of σ in our SDE model. Let us first define the stochastic process $M_t^D : \mathbb{R}^d \times \mathcal{T} \to \mathbb{R}$ as follows:

$$M_t^D = D(\hat{X}_t) - D(\hat{X}_0) - \int_0^t (\partial_u + A_u^+) D(X_u, u) du.$$
(6)

This form is the time-inhomogeneous type of martingale formulation (Bossy & Champagnat, 2010) for itó's formula over discriminator D, *i.e.*, $\mathbb{E}[M_t^D | \mathcal{F}_s] = M_s^D$. In this form, the distortions induced by inhomogeneity are compensated by differential operator ∂_s . As M_t^D is martingale, one can induce the following probability inequality by applying Doob's maximal martingale inequality (Øksendal, 2003) to M_t^D :

$$\mathbb{P}\left[\sup_{0\leq s\leq t}\left\|M_{s}^{D}\right\|_{2}\geq\epsilon\right]\leq\frac{1}{\epsilon^{2}}\mathbb{E}\left[\left\|M_{t}^{D}\right\|\right].$$
(7)

From (7), we can obtain the following inequality:

$$\epsilon \leq \sup_{0 \leq s \leq t} \left\| M_s^D \right\|_2 \leq \sup_{0 \leq s \leq t} \left[\left\| D(X_s, s) - D(X_{s=0}, s=0) \right\|_2 + \left\| \int_0^t -\partial_u D(X_u, u) du \right\|_2 + \left\| \int_0^t -A_u^+ D(X_u, u) du \right\|_2 \right]$$

$$\leq \sup_{0 \leq s \leq t} \left\| D(X_s, s) - D(X_{s=0}, s=0) \right\|_2 + \sup_{0 \leq s \leq t} \int_0^t \left\| -\partial_u D(X_u, u) \right\|_2 du + \sup_{0 \leq s \leq t} \int_0^t \left\| -A_u^+ D(X_u, u) \right\|_2 du.$$
(8)

The second inequality is induced by applying Jensen's inequality to Lebesgue measure du with convex function $\|\cdot\|_2$, and the inequality $\sup_s [A(s) + B(s) + C(s)] \leq \sup_s A(s) + \sup_s B(s) + \sup_s C(s)$.

$$\frac{1}{\epsilon^2} \mathbb{E}\left[\left\| M_t^D \right\| \right] \ge \mathbb{P}\left[\epsilon \le \sup_{0 \le s \le t} \left\| M_s^D \right\|_2 \right] \ge \mathbb{P}\left[\frac{\epsilon}{3} \le \sup_{0 \le s \le t} \left\| D(X_s, s) - D(X_0, 0) \right\|_2 \right] + \mathbb{P}\left[\frac{\epsilon}{3} \le \sup_{0 \le s \le t} B(t) \right] + \mathbb{P}\left[\frac{\epsilon}{3} \le \sup_{0 \le s \le t} C(t) \right].$$
(9)

By rewriting inequality above using $\mathbb{P}(A^c) = 1 - \mathbb{P}(A), \forall A \in \Sigma$, and rescaling dummy variable $\epsilon \to 3\epsilon$, we get

$$\mathbb{P}\left[\epsilon \leq \sup_{0 \leq s \leq t} \left\| D(\tilde{X}_s) - D(\tilde{X}_0) \right\|_2 \right] \leq \frac{1}{3\epsilon} \mathbb{E}\left[\left\| M_t^D \right\| \right] + \mathbb{P}\left[\epsilon \geq \sup_{0 \leq s \leq t} B(t) \right] + \mathbb{P}\left[\epsilon \geq \sup_{0 \leq s \leq t} C(t) \right] - 2.$$
(10)

Then, we use the assumptions to remove second and third term in (10). While we assume that D is global *p*-Lipschitz continuous on \mathcal{T} , the following inequality is induced by **D-H1**.

$$\mathbb{P}\left[\left|D(X,t_1) - D(X,t_2)\right| \le p \left\|(X,t_1) - (X,t_2)\right\| = p \left|t_1 - t_2\right|\right] = 1.$$
(11)

Let us assume $\epsilon \leq pt$. As the inequality in (11) is equivalent to $\|\partial_u D\| \leq p$ iff D is p-Lipschitz continuous, the second term in right-hand side of (10) is naturally bounded above with the following inequality because we assume that $\epsilon \leq pt$. Subsequently, we get followings:

$$\mathbb{P}\left[\sup_{0\leq s\leq t} B(t) \leq \epsilon\right] \leq \mathbb{P}\left[\sup_{0\leq s\leq t} \int_{0}^{t} \|\partial_{u} D(G(X_{0}, u), u)\| \, du \leq \sup_{0\leq s\leq t} \int_{0}^{t} p \, du = pt\right] \\
\leq \mathbb{P}\left[\sup_{0\leq s\leq t} \int_{0}^{t} \|\partial_{u} D(X_{u}, u)\| \, du \leq pt\right] = 1.$$
(12)

As our discriminator is assumed to be q-Lipschitz on data dimension, the following inequality is naturally induced. The probability densities, P and Q induced by both $d\mathbb{P}_t = p_t(x)d\mathcal{L}(x)$, $d\mathbb{Q}_t = q_t(x)d\mathcal{L}(x)$ for Lebesgue measure $\mathcal{L}(x)$ with respect to \mathbb{R}^d , and $U_{P,Q} := \operatorname{supp}(p_t) \cup \operatorname{supp}(q_t) \subset \mathbb{R}^d$. Based on the assumption that $D(\cdot, t)$ is global p-Lipschitz continuous for any $t \in \mathcal{T}$, we can induce the following set inclusion:

$$\{w: D\left[G(X_0, t)(w), t\right] \in \mathbf{Lip}_p(U_{P,Q})\} \subset \{w: D(Y(w), t) \in \mathbf{Lip}_p(\mathbb{R}^d), \forall Y \in \mathbb{R}^d\}.$$
(13)

Assume that $D(\cdot, t)$ vanishes outside of $supp(p_t)$. Then, in probability, we can induce

$$\mathbb{P}\left[D\left[G(X(w),t),t\right] \in \mathbf{Lip}_p(\mathbf{supp}(P))\right] \le \mathbb{P}\left[D(X,t) \in \mathbf{Lip}_p(\mathbb{R}^d)\right] = \mathbb{P}\left[\|\nabla_i D(X,t)\| \le q\right] = 1.$$
(14)

$$\left\|A_{s}^{+}D(X_{s},s)\right\| \leq \frac{\sigma}{2} \underbrace{\left\|\sum_{i}^{d} \nabla_{i}^{2}D(X_{s},s)\right\|}_{\text{bounded second derivative}} + \underbrace{\left\|\sum_{i}^{d} \nabla_{i}D(X_{s},s)\right\|}_{q\text{-Lipschitz on data space}} \leq 2^{-1}\sigma d \sup_{0 \leq i \leq d} \hat{q}_{i} + q.$$
(15)

We denote $\hat{q} = \sup_{0 \le i \le d} \hat{q}_i$ for simplicity. The following equality is naturally induced by the assumption **D-H2**.

$$\mathbb{P}\left[\left\|A_s^+ D(X_s, s)\right\| \le 2^{-1} \sigma d\hat{q} + q\right] = 1, \ \forall \ 0 \le s \le t.$$

$$\tag{16}$$

If $\epsilon \leq 2^{-1}\sigma d\hat{q} + q$, this naturally induces the following probability inequality:

$$\mathbb{P}\left[\sup_{0\leq s\leq t} C(t)\leq \epsilon\right]\leq \mathbb{P}\left[\sup_{0\leq s\leq t} \int_0^t \left\|A_u^+ D(X_u, u)\right\| du\leq (2^{-1}\sigma d\hat{q}+q)t\right]=1.$$
(17)

Lemma 1. The discriminator network D is $2(p \lor q)$ -Lipschitz on $\mathbb{R}^d \times \mathcal{T}$.

Proof. The proof is trivial by the triangle inequality.

$$|D(X_{1},t_{1}) - D(X_{2},t_{2})| \leq |D(X_{1},t_{1}) - D(X_{1},t_{2})| + |D(X_{1},t_{2}) - D(X_{2},t_{2})|$$

$$\leq p |t_{1} - t_{2}| + q ||X_{1} - X_{2}||$$

$$\leq 2(p \lor q) [|t_{1} - t_{2}| + ||X_{1} - X_{2}||] = 2(p \lor q) ||(X_{1},t_{1}) - (X_{2},t_{2})||.$$
(18)

By integrating inequalities in (17) and (12) into (10), we can obtain the following inequality:

$$\mathbb{P}\left[\sup_{0\leq s\leq t} \|D(X_s,s) - D(X_0,0)\| \geq \epsilon\right] \leq \frac{1}{3\epsilon} \mathbb{E}\left[\|M_t^D\|\right] \leq \frac{1}{3\epsilon} \Big\{\mathbb{E}\|D(X_t,t) - D(X_0,0)\| + t\left[p+q+2^{-1}\sigma d\hat{q}\right]\Big\} \\ \leq \frac{2}{3\epsilon} \Big\{(p\vee q)\mathbb{E}\|X_t - X_0\| + t\left[2(p\vee q) + 4^{-1}\sigma d\hat{q}\right]\Big\}, \tag{19}$$

where $\epsilon = [p \land (2^{-1}\sigma d\hat{q} + q)]t$. The second inequality induced by the fact that D is global $2(p \lor q)$ -Lipschitz continuous by Lemma 1, and the metric on $\mathbb{R}^d \times \mathcal{T}$ can be decomposed into metrics on \mathbb{R}^d and \mathcal{T} .

$$\left\|\mathbb{E}\left[D(X_t,t) - D(X_0,0)\right]\right\| \le \mathbb{E}\left\|D(X_t,t) - D(X_0,0)\right\| \le 2(p \lor q)\mathbb{E}\left\|\hat{X}_t - \hat{X}_0\right\| \le 2(p \lor q)\left(\mathbb{E}\left\|X_t - X_0\right\| + t\right).$$
 (20)

The proof is completed by setting $C(p, q, \sigma, d, \|\nabla^2 D\|) = 2(p \lor q) + 4^{-1}\sigma d\hat{q}$. Please note that this numerical constant is linearly dependent on σ .

Proposition 2. (Controlled Stability of Wasserstein distance) Let us define the spatial-temporal gradient operator as $\tilde{\nabla}_{x,t} = \nabla_x + \partial_t$. Then, the expectation norm of the spatial-temporal gradient for the conditional distance is bounded as follows:

$$\mathbb{E}\left[\left\|\tilde{\nabla}_{x,t}\mathcal{W}^{\varphi}(\mathbb{P}_{t}|x,\mathbb{Q}_{t})\right\|\right] \leq C + (p \lor q)(1+e^{-\kappa t})$$
(21)

for some numerical constants $\kappa, C > 0$.

Proof. The left-hand side of inequality in (21) can be divided into two terms as follows:

$$\mathbb{E}\left[\left\|\tilde{\nabla}_{x,t}\mathcal{W}^{\varphi}(\mathbb{P}_{t}|x,\mathbb{Q}_{t})\right\|\right] \leq \mathbb{E}\left[\left\|\nabla\mathcal{W}^{\varphi}(\mathbb{P}_{t}|x,\mathbb{Q}_{t})\right\|\right] + \left[\left\|\partial_{t}\mathcal{W}^{\varphi}(\mathbb{P}_{t}|x,\mathbb{Q}_{t})\right\|\right].$$
(22)

First, We investigate the first term of right-hand side in (22):

$$\mathbb{E}_{x} \|\nabla \mathcal{W}^{\varphi}(\mathbb{P}_{t}|x,\mathbb{Q}_{t})\| = \int \|\nabla M_{t}D^{\varphi}(x,0) - \nabla \mathbb{E}_{Y_{t}\sim\mathbb{Q}_{t}}D^{\varphi}(Y_{t},t)\| d\mathbb{P}_{0}(x) \leq \int e^{-\kappa t}\mathbb{E}_{x}M_{t}\left(\|\nabla D(x)\|\right) d\mathbb{P}_{0}(x)$$
$$= e^{-\kappa t}\int \|\nabla D_{1}\| (x)p(t,y|0,x)p_{0}(x)d\mathcal{L}(x) = e^{-\kappa t}\int \|\nabla D_{1}\| d\mathbb{P}_{t} = e^{-\kappa t}\mathbb{E}\left[\|\nabla D(X_{t})\|\right]$$
(23)
$$\leq e^{-\kappa t}q.$$

The first inequality is induced by the assumption **G-H2** on curvature-dimension condition $CD(\kappa, \infty)$ of our parameterized Fokker-Planck equation. By the spatial constraints assumption **D-H2**, The last inequality is induced as $\|\nabla D\| \leq q$, $d\mathbb{P}_t(x)$ -almost surely. Subsequently, we investigate the second term of right-hand side in (22):

$$\mathbb{E}_{x} \left\| \partial_{t} \mathcal{W}^{\varphi}(\mathbb{P}_{t} | x, \mathbb{Q}_{t}) \right\| = \int \left\| \partial_{t} M_{t} D^{\varphi}(x, 0) - \partial_{t} \mathbb{E}_{Y_{t} \sim \mathbb{Q}_{t}} D^{\varphi}(Y_{t}, t) \right\| d\mathbb{P}_{0}(x, 0)$$

$$= \int \left\| M_{t} L D^{\varphi}(x, 0) - \mathbb{E} \left[\partial_{t} D^{\varphi}(Y_{t}, t) \right] \right\| d\mathbb{P}_{0}(x)$$

$$\leq \int \left\| M_{t} L D^{\varphi}(x, 0) \right\| d\mathbb{P}_{0}(x) + \int \mathbb{E} \left[\left\| \partial_{t} D^{\varphi}(Y_{t}, t) \right\| \right] d\mathbb{P}_{0}(x)$$

$$\leq \int M_{t} \left[\left\| \partial_{t} D(x, t) \right\| + \frac{\sigma}{2} d \sup_{0 \leq i \leq d} \hat{q}_{i} + \left\| \nabla D(X) \right\| \right] d\mathbb{P}_{0}(x)$$

$$= p + \frac{\sigma}{2} d \sup_{0 \leq i \leq d} \hat{q}_{i} + \mathbb{E} \left\| \nabla D(X_{t}) \right\| \leq p + q + 2^{-1} \sigma d\hat{q}.$$
(24)

The first inequality is induced by the dual identity of Fokker-Planck equation: $\partial_t M_t f = M_t L f$ for Markovian generator L, and we use the fact that $\partial_t \mathbb{E} f(x,t) = \mathbb{E} \partial_t f(x,t)$ for bounded and second differentiable f(x,t). The second inequality is induced by dividing L defined in Theorem 1 into two terms. The third equality holds as $\mathbb{E}_{x_0} M_t ||\nabla D(X_0)|| = \mathbb{E} ||\nabla D(X_t)||$, which is bounded above q almost surely. Combining these results, it is easy to see that the following inequality is isatisfied: $2^{-1}\sigma d\hat{q} + p + (1 + e^{-\kappa t})q \leq 2^{-1}\sigma d\hat{q} + (p \vee q)(1 + e^{-\kappa t})$ where $C = 2^{-1}\sigma d\hat{q}$. By the fact that $\int e^{-\kappa t} dt \leq \frac{1 - e^{-\kappa T}}{\kappa}$, the proof is completed.

Proposition 3. Let V^{λ} be the function defined above, and x, \hat{x} be two initial states such that $\hat{\mathbb{P}}_t = h_{\#}[\mathbb{P}_t]$. If the generator solves the regularization term in (25), such that

$$\min_{\theta} \mathbb{E}_{X_t \sim \mathbb{P}_t, Z_t \sim \hat{\mathbb{P}}_t} V^{\lambda}(\theta, X_t, Z_t) = 0,$$
(25)

the following inequality holds:

$$\mathcal{W}_2(\mathbb{P}_t, \hat{\mathbb{P}}_t) \le \sqrt{A + e^{-2\lambda t} \|h\|_{\mathbf{L}_2(\mathbb{P})}},\tag{26}$$

where $\|\cdot\|_{\mathbf{L}_2(\mathbb{P})}$ denotes L_2 -norm over probability measure \mathbb{P} , for some A > 0.

Proof. Assume that the function V^{λ} vanishes for some for some fixed x, y and parameter θ^{\star} . That is, $V^{\lambda}(\theta^{\star}, x, y) \coloneqq 0$. In this case, (25) indicates the following inequality:

$$(x-y)^T \left[\nabla f_{\alpha x+(1-\alpha)y}^{\theta^*}\right] (x-y) \le -\lambda (x-y)^T I(x-y), \tag{27}$$

where we simply denote $\nabla f^{\theta^*} = \nabla_x f(\theta^*, x, t)$ for the fixed t. The drift function satisfying the inequality above is called *contraction function*. By the Theorem 2 (Pham et al., 2009), this property gives powerful stochastic contraction for processes X_t^x, X_t^y starting at different initial states $x \sim \mu, y \sim \nu$. In particular, any diffusion Markov process of which drift functions satisfy inequality in (27) can induce the following property:

$$\mathbb{E} \left\| X_t^x - X_t^y \right\|^2 \le \frac{K}{\lambda} + e^{-2\lambda t} \int_{\mathcal{A}} \left\| x - y \right\|^2 d(\mu \otimes \nu), \tag{28}$$

where $\mathcal{A} = \operatorname{supp}(\mu_0) \cup \operatorname{supp}(\nu_0) \subset \mathbb{R}^d$. Let us consider $\hat{x} = x + h(x)$ for some measurable h. As the optimal transport between \mathbb{P}^x_t , \mathbb{P}^y_t always exists, which is denoted as $\pi^{x,y}_t$, inducing the followings are straightforward.

We consider the system of SDEs consist of trained drift, diffusion functions $f(\theta^*)$, $and\sigma(\theta^*)$ with different initial states.

$$\begin{cases} dX_t = f(\theta^\star, X_t, t) + \sigma(X_t) dW_t^1 \\ d\hat{X}_t = f(\theta^\star, \hat{X}_t, t) + \sigma(\hat{X}_t) dW_t^2 \end{cases}$$
(29)

with i.i.d Wiener processes W_t^1, W_t^2 . In this case, it is easy to see that $Z_t = (X_t, \hat{X}_t)$ is also a Markov process on $\mathbb{R}^d \times \mathbb{R}^d$. We define $\iota(Z_t) = d^2(X_t, \hat{X}_t)$ for the Euclidean metric d on \mathbb{R}^d and define Π as an optimal transport between initial state measures μ and ν . Expectation of Markov semi-group $M_t \iota$ over π yields followings:

$$\int_{\mathcal{A}^2} M_t \iota(z) d\Pi = \int_{\mathcal{A}^2} \mathbb{E}[\iota(Z_t)|z = (x, y)] d\Pi(x, y) = \int_{\mathcal{A}^2} \mathbb{E}\left[d^2 (X_t, \hat{X}_t)^2 \middle| (X_0, \hat{X}_0) = (x, y)\right] d\Pi(x, y)$$

$$\leq \frac{K}{\lambda} + e^{-2\lambda t} \int_{\mathcal{A}^2} \int_{\mathcal{A}} \iota(Z_0) d(\mu \otimes \nu) d\Pi(x, y) = \frac{K}{\lambda} + e^{-2\lambda t} \mathcal{W}_2^2(\mu, \nu) = \frac{K}{\lambda} + e^{-2\lambda t} \left\|h\right\|_{\mathbf{L}_2(\mu)}^2.$$
(30)

 $\Gamma_t = \mathbb{E}_{z \sim \Pi} p(t, z, \cdot)$ denotes a push forward of Π through transition kernel. Then, for the any Z_t ,

$$\mathcal{W}_2^2(\mathbb{P}_t^{x\sim\mu},\mathbb{P}_t^{\hat{x}\sim\nu}) = \inf_{\Pi_t} \int \iota(Z_t) d\Pi_t(Z_t) \le \int \iota d\Gamma_t.$$
(31)

By combining two inequalities above and the fact that $\mathbb{E}_{\Pi}[M_t \iota] = \mathbb{E}_{\Gamma_t}[\iota]$, we can conclude that $\mathcal{W}_2(\mathbb{P}_t^x, \mathbb{P}_t^{\hat{x}}) \leq \sqrt{\frac{K}{\lambda} + e^{-2\lambda t} \|h\|_{\mathbf{L}_2(\mu)}^2}$, where $A = K\lambda^{-1}$.

References

Bakry, D. and Émery, M. Diffusions hypercontractives. Séminaire de probabilités de Strasbourg, pp. 177-206.

Bossy, M. and Champagnat, N. Markov processes and parabolic partial differential equations. In *Encyclopedia of Quantitative Finance*, pp. 1142–1159. 2010.

Böttcher, B. Feller evolution systems: Generators and approximation. Stochastics and Dynamics, 14(03):1350025, 2014.

- Øksendal, B. Stochastic differential equations. In Stochastic differential equations, pp. 65-84. Springer, 2003.
- Pham, Q.-C., Tabareau, N., and Slotine, J.-J. A contraction theory approach to stochastic incremental stability. *IEEE Transactions on Automatic Control*, 54(4):816–820, 2009.
- Villani, C. Optimal Transport: Old and New. Springer Berlin Heidelberg, 2008.