Supplementary Material for
CombOptNet: Fit the Right NP-Hard Problem

by Learning Integer Programming Constraints

Anselm Paulus! Michal Rolinek ! Vit Musil> Brandon Amos> Georg Martius '

A. Demonstrations

The code for all demonstrations is available at
github.com/martius-lab/CombOptNet.

A.1. Implementation Details

When learning multiple constraints, we replace the mini-
mum in definition (5) of mismatch function Pa, with its
softened version. Therefore, not only the single closest con-
straint will shift towards yfg, but also other constraints close
to y;, will do. For the softened minimum we use

softmin(x) = —7 - 10g< exp Ik >7 (S1)
S (-2)

which introduces the temperature 7, determining the soften-
ing strength.

In all experiments, we normalize the cost vector ¢ before
we forward it to the CombOptNet module. For the loss we
use the mean squared error between the normalized pre-
dicted solution y and the normalized ground-truth solution
y*. For normalization we apply the shift and scale that
translates the underlying hypercube of possible solutions
([0, 1]™ in binary or [—5, 5]™ in dense case) to a normalized
hypercube [—0.5,0.5]™.

The hyperparameters for all demonstrations are listed in
Tab. S1. We use Adam (Kingma & Ba, 2014) as the op-
timizer for all demonstrations. Gurobi parameters for all
experiments are kept to default.

Random Constraints. For selecting the set of constraints
for data generation, we uniformly sample constraint ori-
gins oy, in the center subcube (halved edge length) of the
underlying hypercube of possible solutions. The constraint
normals aj, and the cost vectors ¢ are randomly sampled
normalized vectors and the bias terms are initially set to
br, = 0.2. The signs of the constraint normals a;, are flipped
in case the origin is not feasible, ensuring that the prob-
lem has at least one feasible solution. We generate 10 such
datasets for m = 1,2,4,8 constraints in n = 16 dimen-
sions. The size of each dataset is 1 600 train instances and
1 000 test instances.

Table S1: Hyperparameters for all demonstrations.

WSC & Random Keypoint
. Knapsack .

Constraints Matching
Learning rate 5x 1074 5x107% 1x107*
Batch size 8 8 8
Train epochs 100 100 10
T 0.5 0.5 0.5
Backbone Ir - - 2.5 x107°

For learning, the constraints are initialised in the same way
except for the feasibility check, which is skipped since
CombOptNet can deal with infeasible regions itself.

KNAPSACK from Sentence Description. Our method
and CVXPY use a small neural network to extract weights
and prices from the 4 096-dimensional embedding vectors.
We use a two-layer MLP with a hidden dimension of 512,
ReLU nonlinearity on the hidden nodes, and a sigmoid non-
linearity on the output. The output is scaled to the ground-
truth price range [10, 45] for the cost ¢ and to the ground-
truth weight range [15, 35] for the constraint a@. The bias
term is fixed to the ground-truth knapsack capacity b = 100.
Item weights and prices as well as the knapsack capacity are
finally multiplied by a factor of 0.01 to produce a reasonable
scale for the constraint parameters and cost vector.

The CVXPY baseline implements a greedy rounding proce-
dure to ensure the feasibility of the predicted integer solution
with respect to the learned constraints. Starting from the
item with the largest predicted (noninteger) value, the proce-
dure adds items to the predicted (integer) solution until no
more items can be added without surpassing the knapsack
capacity.

The MLP baseline employs an MLP consisting of three
layers with dimensionality 100 and ReLU activation on the
hidden nodes. Without using an output nonlinearity, the
output is rounded to the nearest integer point to obtain the
predicted solution.

Deep Keypoint Matching. We initialize a set of con-
straints exactly as in the binary case of the Random Con-

https://github.com/martius-lab/CombOptNet

Supplementary for: CombOptNet: Fit the Right NP-Hard Problem

Table S2: Average runtime for training and evaluating a
model on a single Tesla-V100 GPU. For Keypoint Matching,
the runtime for the largest model (p = 7) is shown.

Welghte'd Knapsack Keypqmt
Set Covering Matching
CombOptNet 1h 30m 3h 50m 5h 30m
CVXPY 1h 2h 30m -
MLP 10m 20m -
BB-GM - - 55m

straints demonstration. We use the architecture described
by Rolinek et al. (2020), only replacing the dedicated solver
module with CombOptNet.

We train models for varying numbers of keypoints p =
4,5,6, 7 in the source and target image, resulting in varying
dimensionalities n = p? and number of constraints m =
2p. Consistent with Rolinek et al. (2020), all models are
trained for 10 epochs, each consisting of 400 iterations with
randomly drawn samples from the training set. We discard
samples with fewer keypoints than what is specified for the
model through the dimensionality of the constraint set. If
the sample has more keypoints, we chose a random subset
of the correct size.

After each epoch, we evaluate the trained models on the
validation set. Each model’s highest-scoring validation stage
is then evaluated on the test set for the final results.

A.2. Runtime analysis.

The runtimes of our demonstrations are reported in Tab. S2.
Random Constrains demonstrations have the same runtimes
as Weighted Set Covering since they share the architecture.

Unsurprisingly, CombOptNet has higher runtimes as it relies
on ILP solvers which are generally slower than LP solvers.
Also, the backward pass of CombOptNet has negligible
runtime compared to the forward-pass runtime. In Random
Constraints, Weighted Set Covering and KNAPSACK demon-
stration, the increased runtime is necessary, as the baselines
simply do not solve a hard enough problem to succeed in
the tasks.

In the Keypoint Matching demonstration, CombOptNet
slightly drops behind BB-GM and requires higher runtime.
Such drawback is outweighed by the benefit of employing
a broad-expressive model that operates without embedded
knowledge of the underlying combinatorial task.

A.3. Additional Results

Random Constraints & Weighted Set Covering. We
provide additional results regarding the increased amount
of learned constraints in Tab. S3 and S4) and the choice of
the loss function Tab. S5.

Table S3: Random Constraints demonstration with multiple
learnable constraints. Using a dataset with m ground-truth
constraints, we train a model with k& x m learnable con-
straints. Reported is evaluation accuracy (y = y* in %) for
m =1, 2,4, 8. Statistics are over 20 restarts (2 for each of
the 10 dataset seeds).

m 1 2 4 8

= Ixm* 978 £ 0.7 942 £ 10.1 77.4 £ 13.5 46.5 + 12.4
.g 2xm 973 £09 951 £16 878 £52 63.1 70
S 4xm 969 + 07 951 + 1.2 88.7 + 2.3 77.7 + 3.2
o 1xm* 873 £25 702 £11.629.6 £ 104 23 + 1.2
>
S 2xm 878 £ 1.7 734 £24 327 +7.6 24+08

4xm 850 £26 646 £39 283 £27 29+ 13

With a larger set of learnable constraints the model is able
to construct a more complex feasible region. While in gen-
eral this tends to increase performance and reduce variance
by increasing robustness to bad initializations, it can also
lead to overfitting similarly to a neural net with too many
parameters.

Table S4: Weighted set covering demonstration with multi-
ple learnable constraints.

k 4 6 8 10

1* 100 + 0.0 972 £ 64 79.7 £ 12.1 56.7 £ 14.8
2 100 £ 0.0 99.5 £ 1.9 99.3 + 0.8 80.4 £ 13.0
4 100 £ 0.0 99.9 + 0.0 979 + 64 85.2 + 8.1

In the dense case, we also compare different loss functions
which is possible because CombOptNet can be used as an ar-
bitrary layer. As shown in Tab. S5, this choice matters, with
the MSE loss, the L1 loss and the Huber loss outperforming
the LO loss. This freedom of loss function choice can prove
very helpful for training more complex architectures.

KNAPSACK from Sentence Description. As for the Ran-
dom Constraints demonstration, we report the performance
of CombOptNet on the KNAPSACK task for a higher number
of learnable constraints. The results are listed in Tab. S6.
Similar to the binary Random Constraints ablation with

*Used in the main demonstrations.

Table S5: Random Constraints dense demonstration with
various loss functions. For the Huber loss we set 3 = 0.3.
Statistics are over 20 restarts (2 for each of the 10 dataset
seeds).

Loss 1 2 4 8

MSE* 873 +25 702 +11.6 296 &£ 104 23 £+ 1.2
Huber 883 £40 754 4+93 250 £ 11.8 2.6 &+ 2.7
LO 859 £ 34 658 +£35 153 £43 1.1 £ 0.3
L1 89.2 + 1.6 758 +£10.8 30.2 =165 2.1 £ 1.2

Supplementary for: CombOptNet: Fit the Right NP-Hard Problem

Table S6: Knapsack demonstration with more learnable
constraints. Reported is evaluation accuracy (y = y* in %)
form =1, 2,4, 8 constraints. Statistics are over 10 restarts.

1 2 4 8
64.7 £ 2.8 635 £ 3.7 657 £ 3.1 626 £ 44

m = 1, increasing the number of learnable constraints does
not result in strongly increased performance.

Additionally, we provide a qualitative analysis of the results
on the KNAPSACK task. In Fig. S1 we compare the total
ground-truth price of the predicted instances to the total
price of the ground-truth solutions on a single evaluation of
the trained models.

The plots show that CombOptNet is achieving much better
results than CVXPY. The total prices of the predictions are
very close to the optimal prices and only a few predictions
are infeasible, while CVXPY tends to predict infeasible
solutions and only a few predictions have objective values
matching the optimum.

In Fig. S2 we compare relative errors on the individual item
weights and prices on the same evaluation of the trained
models as before. Since (I)LP costs are scale invariant, we
normalize predicted price vector to match the size of the
ground-truth price vector before the comparison.

CombOptNet shows relatively small normally distributed
errors on both prices and weights, precisely as expected
from the prediction of a standard network. CVXPY reports
much larger relative errors on both prices and weights (note
the different plot scale). The vertical lines correspond to the
discrete steps of ground-truth item weights in the dataset.
Unsurprisingly, the baseline usually tends to either overesti-
mate the price and underestimate the item weight, or vice
versa, due to similar effects of these errors on the predicted
solution.

c

.0

5 200 200

3 4

3

5 150 150

s ; - optimal

3 100 Vi 100 feasible

a ' ' - infeasible

C100 150 200 T1000 150 200
Price of GT solution Price of GT solution
(a) CombOptNet (b) CVXPY

Figure S1: Prices analysis for the KNAPSACK demonstra-
tion. For each test set instance, we plot the total price of the
predicted solution over the total price of the ground-truth
solution. Predicted solutions which total weight exceeds the
knapsack capacity are colored in red (cross).

feasible

=
o

« infeasible

Relative price error
o
o

—0.2
—0.2 0.0 0.2 —-0.5 00 0.5
Relative weight error Relative weight error
(a) CombOptNet (b) CVXPY

Figure S2: Qualitative analysis of the errors on weights and
prices in the KNAPSACK demonstration. We plot the relative
error between predicted and ground-truth item prices over
the relative error between predicted and ground-truth item
weights. Colors denote whether the predicted solution is
feasible in terms of ground-truth weights.

A.4. Ablations

We ablate the choices in our architecture and model design
on the Random Constraints (RC) and Weighted Set Cover-
ing (WSC) tasks. In Tab. S7 and S8 we report constraint
parametrization, choice of basis, and minima softening ab-
lations.

The ablations show that our parametrization with learnable
origins is consistently among the best ones. Without learn-
able origins, the performance is highly dependend on the
origin of the coordinate system in which the directly learned
parameters (A, b) are defined.

The choice of basis in the gradient decomposition shows
a large impact on performance. Our basis A (9) is out-
performing the canonical one in the binary RC and WSC
demonstration, while showing performance similar to the
canonical basis in the dense RC case. The canonical basis
produces directions for the computation of y;, that in many
cases point in very different directions than the incoming
descent direction. As a result, the gradient computation
leads to updates that are very detached from the original
incoming gradient.

Finally, the softened minimum leads to increased perfor-
mance in all demonstrations. This effect is apparent particu-
larly in the case of a binary solution space, as the constraints
can have a relevant impact on the predicted solution y over
large distances. Therefore, only updating the constraint
which is closest to the predicted solution vy, as it is the case
for a hard minimum, gives no gradient to constraints that
may potentially have had a huge influence on y.

Supplementary for: CombOptNet: Fit the Right NP-Hard Problem

Table S7: Ablations of CombOptNet on Random Constraints demonstration. Reported is
evaluation accuracy (y = y* in %) for m = 1, 2,4, 8 ground-truth constraints. Statistics are
over 20 restarts (2 for each of the 10 dataset seeds).

Method 1 2 4 8
g learnable origins* 978 £ 0.7 942 +10.1 774 +13.5 46.5 + 124
g direct (origin at corner) 974 + 1.0 949 + 7.0 59.0 £ 26.8 269 + 10.3
S direct (origin at center) 98.0 £ 0.5 97.1 + 0.6 70.5 £ 19.1 446 + 5.9
=
_§ -2 A basis* 978 £ 0.7 942 + 101 774 +13.5 46.5 + 124
= £ canonical 963 + 19 70.8 + 4.1 144 + 3.2 2.7 + 09
- hard 83.1 + 132 554 +£18.9 37.7 + 8.7
‘g soft (7 = 0.5)* 97.8 £ 0.7 942 +10.1 774 +£13.5 465 + 124
soft (T = 1.0) 95.7 £ 22 702 + 141 36.0 £ 9.7
g learnable origins* 873+ 25 702 +11.6 29.6 £ 104 23+ 1.2
g direct (origin at corner) 86.7 £ 3.0 74.6 + 3.6 32.6 + 13.7 2.8 + 0.5
S direct (origin at center) 83.0 + 6.1 43.8 £ 132 11.6 £ 3.1 1.1 £0.5
Y
§ -2 A basis* 873 +25 702 £11.6 29.6 + 104 23+ 1.2
53 g canonical 88.6 + 14 71.6 + 1.6 26.8 + 4.1 4.0 + 0.7
- hard 70.8 £ 15.1 214 £+ 10.7 22 + 2.1
‘g soft (r = 0.5)" 89.1 £ 28 702 £11.6 29.6 + 104 23 + 1.2
soft (r = 1.0) 73.0 + 12.1 319 + 11.7 22+ 1.5

Table S8: Ablations of CombOptNet on Weighted Set Covering. Reported is evaluation
accuracy (y = y* in %) for m = 4, 6, 8, 10 ground-truth constraints. Statistics are over 20
restarts (2 for each of the 10 dataset seeds).

Method 4 6 8 10
g learnable origins* 100 + 0.0 97.2 + 64 79.7 + 12.1 56.7 + 14.8
g direct (origin at corner) 994 4+ 29 94.1 4+ 16.4 78.5 + 15.7 47.7 +£ 179
= direct (fixed origin at 0) 99.9 4+ 0.6 87.6 £ 64 653 £ 119 467 £ 11.5
-2 A basis* 100 + 0.0 97.2 + 64 79.7 + 12.1 56.7 + 14.8
£ canonical 84 + 13.3 2.0 + 2.6 02 + 03 0.0 + 0.1
hard 882 + 134 643 £ 146 451 £+ 14.1 323+ 174
- soft (1 = 0.5)" 100 + 0.0 97.2 + 64 79.7 £ 121 56.7 + 14.8
g soft (7 = 1.0) 99.9 + 04 95.6 + 9.6 703 £ 155 512 £ 164
soft (7 = 2.0) 98.8 + 3.1 90.6 + 14.3 66.4 + 12.5 512 £ 9.5
soft (7 = 5.0) 97.5 £ 11.1 90.2 + 9.1 642 + 11.8 49.7 +£ 104
B. Method y(x — £) and the target y(x) — dy, i.e.

To recover the situation from the method section, set x as
one of the inputs A, b, or c. e = Hy(a: —&) —y(x) + dyH

Proposition S1. Let y: R® — R™ be differentiable at x €] .

R and let L: R™ — R be differentiable at y = y(x) € R», ~ There is nothing to prove when dy = 0 as y(o) = y—dy
Denote dy = OL /0y at y. Then the distance between y(x) and'tbere is no room fpr any 1mpr9vement. Otherwise, ¢ is
and y — dy is minimized along the direction OL/Ow, where ~ POSItVE and differentiable in a neighborhood of zero. The

OL/Ox stands for the derivative of L(y(x)) at x. Fréchet derivative of (reads as

—[y(x — &) —y(x) +dy] - L (z —¢)

Ple) = y(z —¢) — y(z) + dy|

Proof. For £ € RY, let (&) denote the distance between

Supplementary for: CombOptNet: Fit the Right NP-Hard Problem

1 9L dy 1 oL

! = - = Y 2
PO =%y 92~ Tagloa &

where the last equality follows by the chain rule. There-
fore, the direction of the steepest descent coincides with the
direction of the derivative L /0x, as ||dyl|| is a scalar. [

Proof of Proposition 1. We prove that

n n
E Ujekj = E)\jAj —
j=t j=L

for every £ = 1,...,n, where we abbreviate u; = dy;.
The claimed equality (3) then follows from (S3) in the spe-
cial case ¢/ = 1.

g_
ue| > sign(uy)er, (S3)
j=1

We proceed by induction. In the first step we show (S3) for
¢ = n. Definition of A,, (9) yields

n—1
Ay — Jugl Z sign(u;)ey
j=1
n n—1
lun| Y sign(uy)er, — |un| > sign(u;)ex
j=1 j=1

Un€k,, -

Now, assume that (S3) holds for / + 1 > 2. We show that
(S3) holds for ¢ as well. Indeed,

n —1
Z MO — gl Z:sign(uj)e;.c
j=t j=1
n 4
= > N4 -

|twey1] Z sign(u;)ex; + XAy
j=t+1 j=1
¢

el Y sign(us)en, — fu zmgn w)e
j=1
= Z ujer, + (Jue| — |weg] Zs1gn uj)e

j=l+1
ex; — |ue Zsign(uj)ek

E ujekj7

¢
+ | D sign(uy)

j=1

E ujer, + sign(ue)|ueler, =
j=L+1

where we used the definitions of A, and A,. O

