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Abstract
Promoting behavioural diversity is critical for
solving games with non-transitive dynamics
where strategic cycles exist, and there is no con-
sistent winner (e.g., Rock-Paper-Scissors). Yet,
there is a lack of rigorous treatment for defining
diversity and constructing diversity-aware learn-
ing dynamics. In this work, we offer a geometric
interpretation of behavioural diversity in games
and introduce a novel diversity metric based on de-
terminantal point processes (DPP). By incorporat-
ing the diversity metric into best-response dynam-
ics, we develop diverse fictitious play and diverse
policy-space response oracle for solving normal-
form games and open-ended games. We prove
the uniqueness of the diverse best response and
the convergence of our algorithms on two-player
games. Importantly, we show that maximising the
DPP-based diversity metric guarantees to enlarge
the gamescape – convex polytopes spanned by
agents’ mixtures of strategies. To validate our
diversity-aware solvers, we test on tens of games
that show strong non-transitivity. Results suggest
that our methods achieve at least the same, and
in most games, lower exploitability than PSRO
solvers by finding effective and diverse strategies.

1. Introduction
Nature exhibits a remarkable tendency towards diversity
(Holland et al., 1992). Over the past billions of years, natural
evolution has discovered a vast assortment of unique species.
Each of them is capable of orchestrating, in different ways,
the complex biological processes that are necessary to sus-
tain life. Equally, in computer science, machine intelligence
can be considered as the ability to adapt to a diverse set
of complex environments (Hernández-Orallo, 2017). This
suggests that the intelligence of AI evolves with environ-
ments of increasing diversity. In fact, recent successes in
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developing AIs that achieve super-human performance on
sophisticated battle games (Vinyals et al., 2019b; Ye et al.,
2020) have provided factual justifications for promoting
behavioural diversity in training intelligent agents.

In game theory, the necessity of pursuing behavioural diver-
sity is also deeply rooted in the non-transitive structure of
games (Balduzzi et al., 2019). In general, an arbitrary game,
of either the normal-form type (Candogan et al., 2011) or
the differential type (Balduzzi et al., 2018a), can always be
decomposed into a sum of two components: a transitive
part and a non-transitive part. The transitive part of a game
represents the structure in which the rule of winning is tran-
sitive (i.e., if strategy A beats B, B beats C, then A beats C),
and the non-transitive part refers to the structure in which
the set of strategies follows a cyclic rule (e.g., the endless
cycles among Rock, Paper and Scissors). Diversity matters
especially for the non-transitive part simply because there
is no consistent winner in such part of a game: if a player
only plays Rock, he can be exploited by Paper, but not so if
he has a diverse strategy set of Rock and Scissor.

In fact, many real-world games demonstrate strong non-
transitivity (Czarnecki et al., 2020); therefore, it is critical to
design objectives in the learning framework that can lead to
behavioural diversity. In multi-agent reinforcement learning
(MARL) (Yang & Wang, 2020), promoting diversity not
only prevents AI agents from checking the same policies
repeatedly, but more importantly, helps them discover niche
skills, avoid being exploited and maintain robust perfor-
mance when encountering unfamiliar types of opponents.
In the examples of StarCraft (Vinyals et al., 2019b), Soccer
(Kurach et al., 2020) and autonomous driving (Zhou et al.,
2020), learning a diverse set of strategies has been reported
as an imperative step in strengthening AI’s performance.

Despite the importance of diversity (Yang et al., 2021), there
is very little work that offers a rigorous treatment in even
defining diversity. The majority of work so far has followed
a heuristic approach. For example, the idea of co-evolution
(Durham, 1991; Paredis, 1995) has drawn forth a series of
effective methods, such as open-ended evolution (Standish,
2003; Banzhaf et al., 2016; Lehman & Stanley, 2008), pop-
ulation based training methods (Jaderberg et al., 2019; Liu
et al., 2018), and auto-curricula (Leibo et al., 2019; Baker
et al., 2019). Despite many empirical successes, the lack
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of rigorous treatment for behavioural diversity still hinders
one from developing a principled approach.

In this work, we introduce a rigorous way of modelling
behavioural diversity for learning in games. Our approach
offers a new geometric interpretation, which is built upon
determinantal point processes(DPP) that have origins in
modelling repulsive quantum particles (Macchi, 1977) in
physics. A DPP is a special type of point process, which
measures the probability of selecting a random subset from a
ground set where only diverse subsets are desired. We adapt
DPPs to games by formulating theexpected cardinalityof a
DPP as the diversity metric. The proposed diversity metric
is a general tool for game solvers; we incorporate our di-
versity metric into the best-response dynamics, and develop
diversity-aware extensions of�ctitious play (FP) (Brown,
1951) andpolicy-space response oracles(PSRO) (Lanctot
et al., 2017). Theoretically, we show that maximising the
DPP-based diversity metric guarantees an expansion of the
gamescape spanned by agents' mixtures of policies. Mean-
while, we prove the convergence of our diversity-aware
learning methods to the respective solution concept of Nash
equilibrium and� -Rank (Omidsha�ei et al., 2019) in two-
player games. Empirically, we evaluate our methods on tens
of games that show strong non-transitivity, covering both
normal-form games and open-ended games. Results con�rm
the superior performance of our methods, in terms of lower
exploitability, against the state-of-the-art game solvers.

2. Related Work
Diversity has been extensively studied in evolutionary com-
putation (EC) (Fogel, 2006) where the central focus is mim-
icking the natural evolution process. One classic idea in
EC is novelty search(Lehman & Stanley, 2011a), which
searches for models that lead to different outcomes. Quality-
diversity (QD) (Pugh et al., 2016) hybridises novelty search
with a �tness objective; two resulting methods areNov-
elty Search with Local Competition(Lehman & Stanley,
2011b) andMAP-Elites(Mouret & Clune, 2015). For solv-
ing games, QD methods were applied to ensure policy di-
versi�cation among learning agents (Gangwani et al., 2020;
Banzhaf et al., 2016). Despite remarkable successes (Jader-
berg et al., 2019; Cully et al., 2015), quantifying diversity
in EC is often task-dependent and hand-crafted; as a re-
sult, building a theoretical understanding of how diversity is
generated during learning is non-trivial (Brown et al., 2005).

Searching for behavioural diversity is also a common topic
in reinforcement learning (RL). Speci�cally, it is studied
under the names of skill discovery (Eysenbach et al., 2018;
Hausman et al., 2018), intrinsic exploration (Gregor et al.,
2017; Bellemare et al., 2016; Barto, 2013), or maximum-
entropy learning (Haarnoja et al., 2017; 2018; Levine, 2018).
These solutions can still be regarded as QD methods, in the

sense that the quality refers to the cumulative reward, and
dependent on the context, diversity could refer to policies
that visit new states (Eysenbach et al., 2018) or have a
large entropy (Levine, 2018). Two related works in RL,
yet with a different scope, are Q-DPP (Yang et al., 2020b),
which adopts DPP to factorise agents' joint Q-functions in
MARL, and DvD (Parker-Holder et al., 2020), which studies
diversity based on the ensembles of policy embeddings.

For two-player zero-sum games, smooth FP (Fudenberg &
Levine, 1995) is a solver that accounts for diversity through
adopting a policy entropy term in the original FP (Brown,
1951). When the game size is large,Double Oracle(DO)
(McMahan et al., 2003) provides an iterative method where
agents progressively expand their policy pool by, at each
iteration, adding one best response versus the opponent's
Nash strategy. Online DO (Dinh et al., 2021) considers
a no-regret best response. PSRO generalises FP and DO
via adopting a RL subroutine to approximate the best re-
sponse (Lanctot et al., 2017). Pipeline-PSRO (McAleer
et al., 2020) trains multiple best responses in parallel and
ef�ciently solves games of size1050. PSROrN (Balduzzi
et al., 2019) is a speci�c variation of PSRO that accounts
for diversity; however, it suffers from poor performance in a
selection of tasks (Muller et al., 2019). Since computing NE
is PPAD-Hard (Daskalakis et al., 2009), another important
extension of PSRO is� -PSRO(Muller et al., 2019), which
replaces NE with� -Rank(Omidsha�ei et al., 2019; Yang
et al., 2020a), a solution concept that has polynomial-time
solutions on general-sum games. Yet, how to promote di-
versity in the context of� -PSRO is still unknown. In this
work, we develop diversity-aware extensions of FP, PSRO
and� -PSRO, and show on tens of games that our diverse
solvers achieve signi�cantly lower exploitability than the
non-diverse baselines.

3. Notations & Preliminary
We consider normal-form games (NFGs), denoted by
hN; S; Gi , where each playeri 2 N has a �nite set of
pure strategiesSi . Let S =

Q
i 2N Si denote the space

of joint pure-strategy pro�les, andS� i denote the set of
joint strategy pro�les except thei -th player. A mixed
strategy of playeri is written by � i 2 � Si where� is
a probability simplex. A joint mixed-strategy pro�le is
� 2 � S, and� (S) =

Q
i 2N � i (Si ) represents the prob-

ability of joint strategy pro�leS. For eachS 2 S, let
G(S) =

�
G1(S); :::; GN (S)

�
2 RN denote the vector of

payoff values for each player. The expected payoff of player
i under a joint mixed-strategy pro�le� is thus written as
G i (� ) =

P
S2 S � (S)G i (S), also asG i (� i ; � � i ).

3.1. Solution Concepts of Games
Nash equilibrium (NE) exists in all �nite games (Nash et al.,
1950); it is a joint mixed-strategy pro�le� in which each
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playeri 2 N plays thebest responseto other players s.t.
� i 2 BR i (� � i ) := arg max � 2 � S i

�
G i (� ; � � i )

�
. For

� > 0, an � -best response to the� � i is BR i
� (�

� i ) :=�
� i : G i

�
� i ; � � i

�
� G i

�
BR i (� � i ); � � i

�
� �

	
, and an

� -NE is a joint pro�le � s.t. � i 2 BR i
� (� ); 8i 2 N . The

exploitability(Davis et al., 2014) measures the distance of a
joint strategy pro�le� to a NE, written as

Exploit :
�
�

�
=

X

i 2N

h
G i � BR i (� � i ); � � i � � G i � �

� i
: (1)

When the exploitability reaches zero, all players reach their
best responses, and thus� is a NE.

Computing NE in multi-player general-sum games is PPAD-
Hard (Daskalakis et al., 2009). No polynomial-time solution
is available even in two-player cases (Chen et al., 2009).
Additionally, NE may not be unique.� -Rank (Omidsha�ei
et al., 2019) is an alternative solution concept, which is
built on theresponse graphof a game. Speci�cally,� -Rank
de�nes the so-calledsink strongly-connected components
(SSCC) nodes on the response graph that have only incom-
ing edges but no outgoing edges. The SSCC of� -Rank
serves as a promising replacement for NE; the key asso-
ciated bene�ts are its uniqueness, and its polynomial-time
solvability inN -player general-sum games. A more detailed
description of� -Rank can be found in Appendix A.

3.2. Open-Ended Meta-Games
The framework of NFGs is often limited in describing real-
world games. In solving games like StarCraft or GO, it is
inef�cient to list all atomic actions; instead, we are more
interested in games at the policy level where a policy can
be a “higher-level” strategy (e.g., a RL model powered by a
DNN), and the resulting game is ameta-game, denoted by
hN; S; M i . A meta-game payoff tableM is constructed by
simulating games that cover different policy combinations.
With slight abuse of notation1, in meta-games, we respec-
tively useSi to denote the policy set (e.g., a population of
deep RL models), and use� i 2 � Si to denote the meta-
policy (e.g., playeri plays [RL-Model 1, RL-Model 2] with
probability [0.3, 0.7]), and thus� = ( � 1; :::; � N ) is a joint
meta-policy pro�le. Meta-games are oftenopen-endedbe-
cause there could exist an in�nite number of policies to play
a game. The openness also refers to the fact that new strate-
gies will be continuously discovered and added to agents'
policy sets during training; the dimension ofM will grow.

In the meta-game analysis (a.k.a.empirical game-theoretic
analysis) (Wellman, 2006; Tuyls et al., 2018), traditional
solution concepts (e.g., NE or� -Rank) can still be computed
based onM , even in a more scalable manner, this is because
the number of “higher-level” strategies in the meta-game
is usually far smaller than the number of atomic actions of

1NFGs and meta-games are different by the payoffG vs. M .

the underlying game. For example, in tackling StarCraft
(Vinyals et al., 2019a), hundreds of deep RL models were
trained, which is a trivial amount compared to the number
of atomic actions:1026 at every time-step.

Many real-world games (e.g., Poker, GO and StarCraft) can
be described through an open-ended zero-sum meta-game.
Given a game engine� : S1 � S2 ! R where� (S1; S2) > 0
if S1 2 S1 beatsS2 2 S2, and� < 0; � = 0 refers to losses
and ties, the meta-game payoff is

M =
�

� (S1 ; S2) : ( S1 ; S2) 2 S1 � S2 	
: (2)

A game is symmetric if S1 = S2 and � (S1; S2) =
� � (S2; S1); 8S1; S2 2 S1; it is transitive if there is a
monotonicrating functionf such that� (S1; S2)= f (S1) �
f (S2); 8S1; S2 2 S1, meaning that performance on the
game is the difference in ratings; it isnon-transitiveif �
satis�es

P
S2 2 S2 � (S1; S2) = 0 ; 8S1 2 S1, meaning that

winning against some strategies will be counterbalanced by
losses against others; the game has no consistent winner.
Lastly, thegamescapeof a population of strategies (Bal-
duzzi et al., 2019) in a meta-game is de�ned as the convex
hull of the payoff vectors of all policies inS, written as:

Gamescape
�
S
�

:=
n X

i

� i � m i : � � 0; � > 1 = 1 ; m i = M [i; :]

o
: (3)

3.3. Game Solvers
In solving NFGs,Fictitious play(FP) (Brown, 1951) de-
scribes the learning process where each player chooses a
best response to their opponents' time-average strategies,
and the resulting strategies guarantee to converge to the NE
in two-player zero-sum, or potential games.Generalised
weakened �ctitious play(GWFP) (Leslie & Collins, 2006)
generalises FP by allowing for approximate best responses
and perturbed average strategy updates. It is de�ned by:

De�nition 1 (GWFP) GWFP is a process off � t gt � 0 with
� t 2

Q
i 2N � Si ; following the below updating rule:

� i
t +1 2

�
1 � � t +1

�
� i

t + � t +1
�
BR i

� t (� � i
t ) + M i

t +1

�
: (4)

Ast ! 1 , � t ! 0; � t ! 0 and
P

t � 1 � n = 1 . f M t gt � 1

is a sequence of perturbations that satis�es:8T > 0,

lim
t !1

sup
k

� 






k � 1X

i = t

� i +1 M i +1






 s.t.

k � 1X

i = n

� i � T
�

= 0 : (5)

GWFP recovers FP if� t = 1=t, � t = 0 andM t = 0 ; 8t.

A general solver for open-ended (meta-)games involves an
iterative process of solving the equilibrium (meta-)policy
�rst, and then based on the (meta-)policy, �nding a new
better-performing policy to augment the existing popula-
tion (see the pseudocode in Appendix B. The (meta-)policy
solver, denoted asS(�), computes a joint (meta-)policy pro-
�le � based on the current payoffM (or, G) where different
solution concepts can be adopted (e.g., NE or� -Rank).
With � , each agent then �nds a new best-response policy,
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Table 1.Variations of Different (Meta-)Game Solvers
Method (Meta-)Policy S Oracle O Game type

Self-play (Fuden-
berg et al., 1998)

[0; :::; 0; 1]N BR (�) N -player
potential

GWFP (Leslie &
Collins, 2006)

UNIFORM BR � (�) 2-player
zero-sum or
potential

D.O. (McMahan
et al., 2003)

NE BR (�) 2-player
zero-sum

PSRON (Lanctot
et al., 2017)

NE BR � (�) 2-player
zero-sum

PSROrN (Bal-
duzzi et al., 2019)

NE Eq. (8) Symmetric
zero-sum

� -PSRO (Muller
et al., 2019)

� -Rank Eq. (6) N -player
general-sum

Our Methods NE / � -Rank Eq. (13) / (14) 2-player
general-sum

which is equivalent to solving a single-player optimisation
problem against opponents' (meta-)policies� � i . One can
regard a best-response policy as given by anOracle, denoted
by O. In two-player zero-sum cases, an Oracle represents
O1(� 2) = f S1 :

P
S2 2 S2 � 2(S2) � � (S1; S2) > 0g. Gen-

erally, Oracles can be implemented through optimisation
subroutines such as gradient-descent methods or RL algo-
rithms. After a new policy is learned, the payoff table is
expanded, and the missing entries will be �lled by running
new game simulations. The above process loops over each
player at every iteration, and it terminates if no players can
�nd new best-response policies (i.e., Eq. (1) reaches zero).

With correct choices of (meta-)policy solverS and Oracle
O, various types of (meta-)game solvers can be summarised
in Table 1. For example, it is trivial to see that GWFP is
recovered whenS = UNIFORM( �) andOi = BR i

� (�).
Double Oracle (D.O.) and PSRO methods refer to the cases
when the (meta-)solver computes NE. Notably, whenS = � -
Rank, Muller et al. (2019) showed that the standard best
response fails to converge to the SSCC of� -Rank; instead,
they propose� -PSRO where the Oracle is computed by the
so-calledPreference-based Best Response(PBR), that is,

O i � � � i � � arg max
� 2 Si

E� � i

h
1

�
M i (�; S � i ) > M i (Si ; S� i )

� i
:

(6)

3.4. Existing Diversity Measures
Promoting behavioural diversity can lead to learning more
effective strategies and achieving lower exploitability in per-
formance. The smooth FP method (Fudenberg & Levine,
1995) incorporates the policy entropyH(� ) when �nding
the best response to advocate diversity, written as� i 2
BR i

� (�
� i ) = arg max � 2 � S i

�
G i (�; � � i ) + � � H (� )

�

where� is a weighting hyper-parameter. In the case of
� ! 0 as training goes on, smooth FP converges to the
GWFP process almost surely (Leslie & Collins, 2006).

Entropy measures the diversity of a policy in terms of its

randomness; however, when it comes to solving open-ended
(meta-)games, measuring diversity against peer models in
the population becomes critical. Towards this end,effective
diversity(ED) (Balduzzi et al., 2019) is proposed to quantify
the diversity for a population of policiesSby

ED
�
S
�

= � � > bM c+ � � ; bxc+ := x if x � 0 else0: (7)

M is the meta-payoff table ofS, and� � is the NE ofM .
The intuition of ED is that, using the Nash distribution en-
sures that the diversity is only related to the best-responding
models, and therecti�er bxc+ quanti�es the number of
variations of how those “winner” models (those within the
support of NE) beat each other. Under this design, if there
is only one dominant policy inS, thenED(S) = 0 , thus no
diversity. To promote ED in training, a variation of PSRO –
PSROrN – is introduced, written as:

O1(� 2) =
n

S1 :
X

S 2 2 S2

� 2; � (S2) � b� (S1 ; S2)c+ > 0
o

: (8)

In short, the ED in PSROrN encourages players to amplify
its strengths and ignore its weaknesses in �nding a new
policy. On symmetric zero-sum games, if both players play
their Nash strategy (this assumption will be removed by our
method), then Eq. (8) guarantees to enlarge the gamescape.

Nonetheless, focusing only on the winners can sometimes
be problematic, since weak agents may still hold the promise
of tackling niche tasks, and they can serve as stepping stones
for discovering stronger policies later during training. For
example, when training StarCraft AIs, overcoming agents'
weaknesses was found to be more important than amplify-
ing strengths (Vinyals et al., 2019b), a completely oppo-
site result to PSROrN . Another counter example that fails
PSROrN is the RPS-X game (McAleer et al., 2020):

G =

2

6
4

0 � 1 1 � 2=5
1 0 � 1 � 2=5

� 1 1 0 � 2=5
2=5 2=5 2=5 0

3

7
5 : (9)

In RPS-X, if the initial strategy pool of PSROrN starts from
eitherf Rg, f Pg or f Sg, then the algorithm will terminate
without exploring the fourth strategy because the best re-
sponse tof R,P,Sg is still in f R,P,Sg; however, the fourth
strategy alone can still exploit the population off R,P,Sg by
getting a positive payoff of2=5. Also see in Appendix C
how our method can tackle this problem.

4. Our Methods
Instead of choosing between amplifying strengths or over-
coming weaknesses, we take an altogether different ap-
proach of modelling the behavioural diversity in games.
Speci�cally, we introduce a new diversity measure based
on a geometric interpretation of games modelled by a de-
terminantal point process (DPP). Due to the space limit, all
proofs in this section are provided in Appendix D.
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Figure 1.G-DPP. The squared volume of the grey cube equals to
det(L f S i

1 ;S i
2 ;S i

3 g ). The probability of selectingf Si
2 ; Si

3g from

G-DPP (the yellow area) is smaller than that of selectingf Si
1 ; Si

2g
which has orthogonal payoff vectors. The diversity in Eq. (11) of
the populationf Si

1g,f Si
1 ; Si

2g,f Si
1 ; Si

2 ; Si
3g are0; 1; 1:21.

4.1. Determinantal Point Process
Originating in quantum physics for modelling repulsive
Fermion particles (Macchi, 1977; Kulesza et al., 2012), a
DPP is a probabilistic framework that characterises how
likely a subset of items is to be sampled from a ground set
where diverse subsets are preferred. Formally, we have

De�nition 2 (DPP) For a ground setY = f 1; 2; :::; M g, a
DPP de�nes a probability measureP on the power set ofY
(i.e.,2Y ), such that, given anM � M positive semi-de�nite
(PSD) kernelL that measures the pairwise similarity for
items inY, and letY be a random subset drawn from the
DPP, the probability of sampling8Y � Y is written as

DPP( L ) := PL
�
Y = Y

�
/ det

�
L Y

�
= Volume 2 �

f w i gi 2 Y
�

whereL Y := [ L i;j ]i;j 2 Y denotes a submatrix ofL whose
entries are indexed by the items included inY . Given a
PSD kernelL = WW > ; W 2 RM � P ; P � M , each row
w i represents aP-dimensional feature vector of itemi 2
Y, then the geometric meaning ofdet(L Y ) is the squared
volume of the parallelepiped spanned by the rows ofW that
correspond to the sampled items inY .

A PSD matrix ensures all principal minors ofL are non-
negative (i.e.,det(L Y ) � 0; 8Y � Y ), which suf�ces
to be a proper probability distribution. The normaliser
of PL (Y = Y) can be computed by

P
Y �Y det(L Y ) =

det(L + I ), whereI is theM � M identity matrix.

The entries ofL are pairwise inner products between item
vectors. The kernelL can intuitively be thought of as rep-
resenting dual effects – the diagonal elementsL i;i aim to
capture the quality of itemi , whereas the off-diagonal ele-
mentsL i;j capture the similarity between the itemsi andj .
A DPP models therepulsiveconnections among the items
in a sampled subset. For example, in a two-item subset,

sincePL
�
f i; j g

�
/

�
�
�
�

L i;i L i;j

L j;i L j;j

�
�
�
� = L i;i L j;j � L i;j L j;i ,

we know that if itemi and itemj are perfectly similar such
thatw i = w j , and thusL i;j =

p
L i;i L j;j , then these two

items will not co-occur, hence such a subset ofY = f i; j g
will be sampled with probability zero.

4.2. Expected Cardinality: A New Diversity Measure
Our target is to �nd a population of diverse policies, with
each of them performing differently from other policies due
to their unique characteristics. Therefore, when modelling
the behavioural diversity in games, we can naturally use the
payoff matrix to construct the DPP kernel so that the simi-
larity between two policies depends on their performance in
terms of payoffs against different types of opponents.

De�nition 3 (G-DPP, Fig. (1)) A G-DPP for each player
is a DPP in which the ground set is the strategy population
Y = S, and the DPP kernelL is written by Eq. (10), which
is a Gram matrix based on the payoff tableM .

L S = MM > (10)

For learning in open-ended games, we want to keep adding
diverse policies to the population. This is equivalent to
say, at each iteration, if we take a random sample from the
G-DPP that consists of all existing policies, we hope the
cardinality of such a random sample is large (since policies
with similar payoff vectors will be unlikely to co-occur!).
In this sense, we can design a diversity measure based on
the expected cardinality of random samples from a G-DPP,
i.e.,EY � PL S

�
jY j

�
. By the following proposition, we show

that computing such a diversity measure is tractable.

Proposition 4 (G-DPP Diversity Metric) The diversity
metric, de�ned as the expected cardinality of a G-DPP, can
be computed inO(jSj3) time by the following equation:

Diversity
�
S
�

= EY � PL S

�
jY j

�
= Tr

�
I � (L S + I ) � 1 �

: (11)

A nice property of our diversity measure is that it is well-
de�ned even in the case whenY has duplicated policies,
as dealing with redundant policies turns out to be a criti-
cal challenge for game evaluation (Balduzzi et al., 2018b).
In fact, redundancy also prevents us from directly using
det

�
L S

�
as the diversity measure because the determinant

value becomes zero with duplicated entries.

Expected Cardinality vs.Matrix Rank. There is a funda-
mental difference between using expected cardinality and
using the rank of a payoff matrix as the diversity measure.
The matrix rank is the maximal number of linearly indepen-
dent columns, though it can measure thedifferencebetween
the columns, it cannot model thediversity. For example, in
RPS, a strategy of [99%Rock,1% Scissor] and a strategy
of [98% Rock,2% Scissor] are different but they are not
diverse as they both favour playing Rock. If one strategy
is added into the population whilst the other already exists,
the rank of the payoff matrix will increase by one, but the
increment on expected cardinality is minor. In Fig. (1),
adding the green strategy only contributes to the expected
cardinality by0:21. This property is particularly important
for learning in games, in the sense that �nding adiverse
policy is often harder than �nding just adifferentpolicy. To
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summarise, we show the following proposition.

Proposition 5 (Maximum Diversity) The diversity of a
populationS is bounded byDiversity

�
S
�

� rank(M ),
and if M is normalised (i.e.,jjM [i; :] jj = 1 ; 8i ), we have
Diversity

�
S
�

� rank(M )=2. In both cases, maximal di-
versity is reached if and only ifM is orthogonal.

Expected Cardinality vs.Effective Diversity. We also ar-
gue that the principles that underpin Eq. (7) and Eq. (11) are
different. Here we illustrate from the perspective of matrix
norm. Notably, maximising the effective diversity in Eq. (7)
is equivalent to maximising a matrix norm, in the sense that
ED(S) = 1

2 k� � � M � � � k1;1 where� is the Hadamard
product andkA k1;1 :=

P
ij jaij j. In comparison, the propo-

sition below shows that maximising our diversity measure
in Eq. (11) will also maximise the Frobenius norm ofM .

Proposition 6 (Diversity vs. Matrix Norm) Maximising
the diversity in Eq. (11) also maximises the Frobenius norm
of kM kF , but NOT vice versa.

Geometrically, for a given matrixM , considering the box
which is the image of a unit cube (in the 3D case) that is
stretched byM , the Frobenius norm represents the sum
of lengths of all diagonals in that box regardless of their
directions (the orange lines in Fig. (1)). Therefore, whilst
the k � k1;1 norm re�ects the idea thatED(S) in Eq. (7)
accounts for the winners within the Nash support only, the
Frobenius norm, on the contrary, considers all strategies'
contribution to diversity. We show later that this results in
signi�cant performance improvements over PSROrN .

Notably, it is worth highlighting that the opposite direction
of Proposition 6 is not correct, that is, maximisingkM kF

will NOT necessarily lead to a large diversity. A counter-
example in Fig. (1) is that, if one of the orange lines is long
but the rest are short, though the Frobenius norm is large,
the expected cardinality is still small. Thus, the diversity
metric in Eq. (11) cannot simply be replaced bykM kF . We
also provide empirical evidence in Appendix F.

4.3. Diverse Fictitious Play
With the newly proposed diversity measure of Eq. (11), we
can now design diversity-aware learning algorithms. We
start by extending the classical FP to a diverse version such
that at each iteration, the player not only considers a best
response, but also considers how this new strategy can help
enrich the existing strategy pool after the update. Formally,
our diverse FPmethod maintains the same update rule as
Eq. (4), but with the best response changing into

BR i
� (� � i )

= arg max
� 2 � Si

h
G i � � ; � � i � + � � Diversity

�
Si [ f � g

� i
(12)

where� is a tunable constant. A nice property of diverse FP
is that the expected cardinality is guaranteed to be a strictly

concave function; therefore, Eq. (12) has a unique solution
at each iteration. We have the following proposition:

Proposition 7 (Uniqueness of Diverse Best Response)
Eq. (11) is a strictly concave function. The resulting best
response in Eq. (12) has a unique solution.

Intuitively, the diverse FP process will almost surely con-
verge to a GWFP process as long as� ! 0 and thus will
enjoy the same convergence guarantees as GWFP (i.e., to a
NE in two-player zero-sum or potential games). However,
in order to prove such connection rigorously, we need to
show the sequence of expected changes in strategy, which
is induced by �nding a strategy that maximises Eq. (12) at
each iteration, is actually a uniformly bounded martingale
sequence that satis�es Eq. (5). We show the below theorem:

Theorem 8 (Convergence of Diverse FP)The perturba-
tion sequence induced by diverse FP process is a uniformly
bounded martingale difference sequence; therefore, diverse
FP shares the same convergence property as GWFP.

4.4. Diverse Policy-Space Oracle
When solving NFGs, the total number of pure strategies is
known and thus a best response in Eq. (12) can be computed
through a direct search, and the uniqueness of the solution
is guaranteed by Proposition 7. When it comes to solving
open-ended (meta-)games, the total number of policies is
unknown and often in�nitely many. Therefore, a best re-
sponse has to be computed through optimisation subroutines
such as gradient-based methods or RL algorithms. Here we
extend our diversity measure to the policy space and develop
diversity-aware solvers for open-ended (meta-)games.

In solving open-ended games, at thet-th iteration, the algo-
rithm maintains a population of policiesSi

t learned so far by
playeri . Our goal here is to design an Oracle to train a new
strategyS� , parameterised by� 2 Rd (e.g., a deep neural
net), which both maximises playeri 's payoff and is diverse
from all strategies inSi

t . Therefore, we de�ne the ground
set of the G-DPP at iterationt to be the union of the existing
Si

t and the new model to add:Yt = Si
t [

�
S�

	
:

With the ground set at each iteration, we can compute the
diversity measure by Eq. (11). Subsequently, the objective
of an Oracle can be written as

O1(� 2) = arg max
� 2 Rd

X

S 2 2 S2

� 2 �
S2 �

� �
�
S� ; S2 �

(13)

+ � � Diversity
�

S1 [
�

S�
	 �

where� 2(�) is the policy of the player two; depending on
the game solvers, it can be NE,UNIFORM , etc.

Based on Eq. (13), we can tell that the diversity of policies
during training comes from two aspects. The obvious aspect
is from the expected cardinality of the G-DPP that forces
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Figure 2.Exploitability and diversityvs. training iterations (num-
ber of times a solution concept is computed) on the AlphaStar
meta-game (size888 � 888). Our method achieves the lowest
exploitability by �nding a diverse population of50 policies.

agents to �nd diverse policies. The less obvious aspect is
from how the opponents are treated. Although the (meta-
)policy of player2 is determined by� 2(�), the learning
player will have to focus on exploiting certain aspects of
� 2(�) in order to acquire diversity. This is similar in manner
to selecting a diverse set of opponents. Theoretically, we
are able to show that our diversity-aware Oracle can strictly
enlarge the gamescape. Unlike PSROrN (see Proposition 6
in Balduzzi et al. (2019)), we doNOT need to assume the
opponents are playing NE before reaching the result below.

Proposition 9 (Gamescape Enlargement)Adding a new
best-response policyS� via Eq. (13) strictly enlarges the
gamescape. Formally, we have

Gamescape
�
S
�

( Gamescape
�

S[
�

S�
	 �

:

Implementation of Oracles. When the game engine� is
differentiable, we can directly apply gradient-based methods
to solve Eq. (13). In general, many real-world games are
black-box, thus we have to seek for gradient-free solutions
or model-free RL algorithms. To tackle this, we provide
zero-order Oracle and RL-based Oracle as approximation
solutions to Eq. (13), and list their pseudocode and time
complexity in Appendix H.

4.5. Diverse Oracle for� -Rank
We also develop diverse Oracles that suit� -Rank. Note that
� -Rank is a replacement solution concept for NE onN -

player general-sum games; therefore, the goal of learning is
�nding all SSCCs on the response graph. Since the standard
best response does not have convergence guarantees, we
introduce a diversity-aware extension based on� -PSRO
(Muller et al., 2019) whose Oracle is written in Eq. (6).
Speci�cally, we adopt the quality-diversity decomposition
of DPP (Affandi et al., 2014) to unify Eq. (6) and Eq. (11).
GivenL = WW > , we can rewrite thei -th row of W to
be the product of a quality termqi 2 R+ and a diversity
featurew i 2 RP , thusL ij = qi w i w >

j qj . We design the
quality term to be the exponent of the PBR value in Eq. (6),
and the diversity feature follows G-DPP in Eq. (10), that is,

qi = exp
�

E� � i

�
1[M i (�; S � i ) > M i (Si ; S� i )]

� �
; w i =

M [i; :]

kM kF
:

The resulting diversity-aware Oracle that suits� -Rank is:

O i
t (�

� i ) = arg max
� 2 � Si

Tr
�

I �
�
L Si

t [f � g + I
� � 1

�
: (14)

The following theorem shows the convergence result of our
diverse� -PSRO to SSCC on two-player symmetric NFGs.

Theorem 10 (Convergence of Diverse� -PSRO)
Diverse � -PSRO with the Oracle of Eq. (14) con-
verges to the sub-cycle of the unique SSCC in the
two-player symmetric games.

5. Experiments & Results
We compare our diversity-aware solvers with state-of-the-
art game solvers including self-play, PSRO (Lanctot et al.,
2017), Pipeline-PSRO (McAleer et al., 2020), recti�ed
PSRO (Balduzzi et al., 2019), and� -PSRO (Muller et al.,
2019). We investigate the performance of these algorithms
on both NFGs and open-ended games. Our selected games
involve both transitive and non-transitive dynamics. If an
algorithm fails to discover a diverse set of policies, it will
be trapped in some local strategy cycles that are easily ex-
ploitable (e.g., recall the illustrative example of the RPS-X
game in Section 3.4, and see how our method can tackle this
game in Appendix C. Therefore, we focus on the evaluation
metrics of exploitability in Eq. (1) and how extensively the
gamescapes are explored. We note that the con�dence inter-
vals represented in Figs. (2, 4a, 4b) represent the standard
deviation in the exploitability at each iteration over multiple
seeds, where the number of seeds is reported in Appendix G.
One exception is the comparison between� -PSRO and di-
verse� -PSRO, since the solution concept is� -Rank, instead
of exploitability that measures distance to a NE, we apply
the metric of PCS-score (Muller et al., 2019) – the number
of SSCC that has been found – for fair comparison. We
provide an exhaustive list of hyper-parameter and reward
settings in Appendix G.

Real-World Meta-Games. We test our methods on the
meta-games that are generated during the process of solving
28 real-world games (Czarnecki et al., 2020), including




