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Abstract

Promoting behavioural diversity is critical for
solving games with non-transitive dynamics
where strategic cycles exist, and there is no con-
sistent winner (e.g., Rock-Paper-Scissors). Yet,
there is a lack of rigorous treatment for defining
diversity and constructing diversity-aware learn-
ing dynamics. In this work, we offer a geometric
interpretation of behavioural diversity in games
and introduce a novel diversity metric based on de-
terminantal point processes (DPP). By incorporat-
ing the diversity metric into best-response dynam-
ics, we develop diverse fictitious play and diverse
policy-space response oracle for solving normal-
form games and open-ended games. We prove
the uniqueness of the diverse best response and
the convergence of our algorithms on two-player
games. Importantly, we show that maximising the
DPP-based diversity metric guarantees to enlarge
the gamescape — convex polytopes spanned by
agents’ mixtures of strategies. To validate our
diversity-aware solvers, we test on tens of games
that show strong non-transitivity. Results suggest
that our methods achieve at least the same, and
in most games, lower exploitability than PSRO
solvers by finding effective and diverse strategies.

1. Introduction

Nature exhibits a remarkable tendency towards diversity
(Holland et al., 1992). Over the past billions of years, natural
evolution has discovered a vast assortment of unique species.
Each of them is capable of orchestrating, in different ways,
the complex biological processes that are necessary to sus-
tain life. Equally, in computer science, machine intelligence
can be considered as the ability to adapt to a diverse set
of complex environments (Herndndez-Orallo, 2017). This
suggests that the intelligence of Al evolves with environ-
ments of increasing diversity. In fact, recent successes in
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developing Als that achieve super-human performance on
sophisticated battle games (Vinyals et al., 2019b; Ye et al.,
2020) have provided factual justifications for promoting
behavioural diversity in training intelligent agents.

In game theory, the necessity of pursuing behavioural diver-
sity is also deeply rooted in the non-transitive structure of
games (Balduzzi et al., 2019). In general, an arbitrary game,
of either the normal-form type (Candogan et al., 2011) or
the differential type (Balduzzi et al., 2018a), can always be
decomposed into a sum of two components: a transitive
part and a non-transitive part. The transitive part of a game
represents the structure in which the rule of winning is tran-
sitive (i.e., if strategy A beats B, B beats C, then A beats C),
and the non-transitive part refers to the structure in which
the set of strategies follows a cyclic rule (e.g., the endless
cycles among Rock, Paper and Scissors). Diversity matters
especially for the non-transitive part simply because there
is no consistent winner in such part of a game: if a player
only plays Rock, he can be exploited by Paper, but not so if
he has a diverse strategy set of Rock and Scissor.

In fact, many real-world games demonstrate strong non-
transitivity (Czarnecki et al., 2020); therefore, it is critical to
design objectives in the learning framework that can lead to
behavioural diversity. In multi-agent reinforcement learning
(MARL) (Yang & Wang, 2020), promoting diversity not
only prevents Al agents from checking the same policies
repeatedly, but more importantly, helps them discover niche
skills, avoid being exploited and maintain robust perfor-
mance when encountering unfamiliar types of opponents.
In the examples of StarCraft (Vinyals et al., 2019b), Soccer
(Kurach et al., 2020) and autonomous driving (Zhou et al.,
2020), learning a diverse set of strategies has been reported
as an imperative step in strengthening Al’s performance.

Despite the importance of diversity (Yang et al., 2021), there
is very little work that offers a rigorous treatment in even
defining diversity. The majority of work so far has followed
a heuristic approach. For example, the idea of co-evolution
(Durham, 1991; Paredis, 1995) has drawn forth a series of
effective methods, such as open-ended evolution (Standish,
2003; Banzhaf et al., 2016; Lehman & Stanley, 2008), pop-
ulation based training methods (Jaderberg et al., 2019; Liu
et al., 2018), and auto-curricula (Leibo et al., 2019; Baker
et al., 2019). Despite many empirical successes, the lack
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of rigorous treatment for behavioural diversity still hinders sense that the quality refers to the cumulative reward, and
one from developing a principled approach. dependent on the context, diversity could refer to policies
that visit new states (Eysenbach et al., 2018) or have a

In thls. work, we |r_1troduce a rigorous way of modelling large entropy (Levine, 2018). Two related works in RL,
behavioural diversity for learning in games. Our approach

offers a new geometric interpretation, which is built uponye}t.wIth a different scope, are Q'DPP,(.YQng etal, .2020_b)’
determinantal point processé®PP) that have origins in which adopts DPP to factorise agents' joint Q-functions in

modelling repulsive quantum particles (Macchi, 1977) inMARL’ and DvD (Parker-Holder et al., 2020), which studies

physics. A DPP is a special type of point process, Whichdlversny based on the ensembles of policy embeddings.

measures the probability of selecting a random subset from Bor two-player zero-sum games, smooth FP (Fudenberg &
ground set where only diverse subsets are desired. We adalpgvine, 1995) is a solver that accounts for diversity through
DPPs to games by formulating tegpected cardinalitpfa  adopting a policy entropy term in the original FP (Brown,
DPP as the diversity metric. The proposed diversity metricl951). When the game size is larg@uble Oracle(DO)
is a general tool for game solvers; we incorporate our ditMcMahan et al., 2003) provides an iterative method where
versity metric into the best-response dynamics, and developgents progressively expand their policy pool by, at each
diversity-aware extensions dftitious play (FP) (Brown, iteration, adding one best response versus the opponent's
1951) andpolicy-space response oracl@BSRO) (Lanctot Nash strategy. Online DO (Dinh et al., 2021) considers
et al., 2017). Theoretically, we show that maximising thea no-regret best response. PSRO generalises FP and DO
DPP-based diversity metric guarantees an expansion of théa adopting a RL subroutine to approximate the best re-
gamescape spanned by agents' mixtures of policies. Measponse (Lanctot et al., 2017). Pipeline-PSRO (McAleer
while, we prove the convergence of our diversity-awareet al., 2020) trains multiple best responses in parallel and
learning methods to the respective solution concept of Naskf ciently solves games of siz&0°°. PSRQy (Balduzzi
equilibrium and -Rank (Omidsha ei et al., 2019) in two- et al., 2019) is a speci c variation of PSRO that accounts
player games. Empirically, we evaluate our methods on tenor diversity; however, it suffers from poor performance in a
of games that show strong non-transitivity, covering bothselection of tasks (Muller et al., 2019). Since computing NE
normal-form games and open-ended games. Results con ris PPAD-Hard (Daskalakis et al., 2009), another important
the superior performance of our methods, in terms of loweextension of PSRO is-PSRO(Muller et al., 2019), which
exploitability, against the state-of-the-art game solvers. replaces NE with -Rank(Omidsha ei et al., 2019; Yang

et al., 2020a), a solution concept that has polynomial-time
2. Related Work solutions on general-sum games. Yet, how to promote di-
. . : N . versity in the context of -PSRO is still unknown. In this
Diversity has been extensively studied in evolutionary ComWork we develop diversity-aware extensions of P, PSRO
putation (EC) (Fogel, 2006) where the central focus is mim- ' ’

C . L .and -PSRO, and show on tens of games that our diverse
icking the natural evolution process. One classic idea in

EC is novelty searcl{Lehman & Stanley, 2011a), which solvers achieve signi cantly lower exploitability than the

. .. non-diverse baselines.
searches for models that lead to different outcomes. Quality-

diversity (QD) (Pugh et al., 2016) hybridises novelty search . o
with a tness objective; two resulting methods axev- 3. Notations & Preliminary

elty Search with Local Competitiof,ehman & Stanley, We consider normal-form games (NFGs), denoted by
2011b) andMAP-Elites(Mouret & Clune, 2015). For solv- hN; S;Gi, where each pIay@r 2 N has a nite set of
ing games, QD methods were applied to ensure policy dpure strategieS'. LetS = ~,,, S denote the space
versi cation among learning agents (Gangwani et al., 2020pf joint pure-strategy pro les, an&@ ' denote the set of
Banzhaf et al., 2016). Despite remarkable successes (Jad@int strategy pro les except thé-th player. A mixed
berg et al., 2019; Cully et al., 2015), quantifying diversity strategy of player is written by ' 2 g where is

in EC is often task-dependent and hand-crafted; as a re- probability simplerA joint mixed-strategy pro le is
sult, building a theoretical understanding of how diversityis 2 s, and (S) = ",y '(S') represents the prob-
generated during learning is non-trivial (Brown et al., 2005) ability of joint strategy proleS. For eachS 2 S, let
G(S)= GYS);:GN(S) 2 RN denote the vector of

Searching for behavioural diversity is also a common tOp'Cpayofr values for each player. The expected payoff of player

in reinforcement learning (RL). Speci cally, it is studied i under aFioint mixed-strategy pro le is thus written as

under the names of skill discovery (Eysenbach et al., 2014 i _ i i
Hausman et al., 2018), intrinsic exploration (Gregor et aI.,G ()= sos (S)G(S),alsoa!( 1 ).

2017; Bellemare et al., 2016; Barto, 2013), or maximums3, 1. Solution Concepts of Games

entropy learning (Haarnoja etal., 2017; 2018; Levine, 2018) 45 equilibrium (NE) exists in all nite games (Nash et al.,
These solutions can still be regarded as QD methods, in thf950); it is a joint mixed-strategy pro le in which each
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playeri 2 N plays thebest response other players s.t. the underlying game. For example, in tackling StarCraft

"2 BR'( '):=argmax , , G'(; ). For (Vinyalsetal,2019a), hundreds of deep RL models were
> 0, an -best response to the ' isBR'( ) := trained, which is a trivial amount compared to the number
i.Gghoi; F 0 GiEBRI( 1) ,andan of atomic actions10?® at every time-step.

-NEisajointprole st '2BR'( );8 2N.The Many real-world games (e.g., Poker, GO and StarCraft) can
exploitability (Davis et al., 2014) measures the distance of &e described through an open-ended zero-sum meta-game.
joint strategy pro le H to a NE, written as . Givenagameengine: St ! Rwhere (S;S?2)> 0

Exploit: = X G BR'( ) | G ': @ st 2 St beatsS? 2 &, and < 0; =0 refersto losses
(N and ties, the meta-game payoff is
When the exploitability reaches zero, all players reach their M= (S:8%):(shsh)2s & 2

best responses, and thuss a NE. A game issymmetricif St = S and (S%:S?) =

Computing NE in multi-player general-sum games is PPAD-  (S?;S');8S%;S2 2 S it is transitive if there is a

Hard (Daskalakis et al., 2009). No polynomial-time solution monotonicrating functionf such that (S*; S?)= f (S?)

is available even in two-player cases (Chen et al., 2009§.(S%);8S%;S? 2 S', meaning that performance on the
Additionally, NE may not be unique.-Rank (Omidsha ei ~ game isghe difference in ratings; it fn-transitive if

et al., 2019) is an alternative solution concept, which issatises g, (S*;S?)=0;8S! 2 S, meaning that

built on theresponse grapbf a game. Speci cally, -Rank  winning against some strategies will be counterbalanced by
de nes the so-calledink strongly-connected components losses against others; the game has no consistent winner.
(SSCC) nodes on the response graph that have only incorhastly, thegamescapef a population of strategies (Bal-

ing edges but no outgoing edges. The SSCC-#tank duzzietal., 2019) in a meta-game is de ned as the convex
serves as a promising replacement for NE; the key asstwll of the payoff vectors of all policies i8, written as:

ciated bene ts are its unigueness, and its polynomial-time
solvability inN -player general-sum games. A more detailed o
description of -Rank can be found in Appendix A. = iomi: 0 “1=1;mi=Mg;; @ (3)

Gamescape S
nx

3.2. Open-Ended Meta-Games 3.3. Game Solvers

The framework of NFGs is often limited in describing real- |n solving NFGs,Fictitious play (FP) (Brown, 1951) de-
world games. In solving games like StarCraft or GO, it isscribes the learning process where each player chooses a
inef cient to list all atomic actions; instead, we are more pest response to their opponents' time-average strategies,
interested in games at the policy level where a policy camnd the resulting strategies guarantee to converge to the NE
be a “higher-level” strategy (e.g., a RL model powered by ain two-player zero-sum, or potential game3eneralised
DNN), and the resulting game ismeta-gamedenoted by weakened ctitious plagGWFP) (Leslie & Collins, 2006)

hN; S;Mi. A meta-game payoff tablel is constructed by generalises FP by allowing for approximate best responses
simulating games that cover different policy combinationsand perturbed average strategy updates. It is de ned by:
With slight abuse of notatidnin meta-games, we respec- De ni&'pn 1 (GWFP) GWFP is a process df (g, o with

tively useS to denote the policy set (e.g., a population of 2 £ ; ; .
. . i ; following the below updating rule:
deep RL models), and usé 2 g to denote the meta- ' N9 g P g

policy (e.g., playei plays [RL-Model 1, RL-Model 2] with w2 1w ot BRUC D) Min 0 (4)
probability [0.3, 0.7]), and thus = ( %;:;; N)isajoint  Ast!l , (! O ¢! Oand , ; n=1.fMg 1
meta-policy pro le. Meta-games are oftepen-endede- is a sequence of perturbations that satis & > 0,
cause there could exist an in nite number of policies to play i 1 K 1

a game. The openness also refers to the fact that new strate- lim sup i+1 Mis1 st i T =0: (5

k i=t i=n

gies will be continuously discovered and added to agents' i .
policy sets during training; the dimension df will grow. GWFP recovers FP ify = 1=t, =0 andM = 0; 8t.

In the meta-game analysia.k.a.empirical game-theoretic A general solver for oper_1-ended (m_efca-_)games involve_s an
analysis) (Wellman, 2006; Tuyls et al., 2018), traditional iterative process of solving the equilibrium (meta-)policy

solution concepts (e.g., NE orRank) can still be computed 'St @nd then based on the (meta-)policy, nding a new
based oM, even in a more scalable manner, this is becaus@€tter-performing policy to augment the existing popula-
the number of “higher-level” strategies in the meta-gamd!©n (Sé€ the pseudocode in Appendix B. The (meta-)policy

is usually far smaller than the number of atomic actions ofSIVer: denoted (), computes a joint (meta-)policy pro-
I based on the current paydff (or, G) where different

INFGs and meta-games are different by the pagoffs. M . solution concepts can be adopted (e.g., NE eRank).
With |, each agent then nds a new best-response policy,
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Table 1.variations of Different (Meta-)Game Solvers randomness; however, when it comes to solving open-ended
Method (Meta-)PolicyS ~ OracleO  Game type (meta-)games, measuring diversity against peer models in
Self-play (Fuden-  [0;:::;0; 1] BR () N -player the population becomes critical. Towards this egftective
berg etal., 1998) potential diversity(ED) (Balduzzi et al., 2019) is proposed to quantify
GWFP (Leslie &  UNIFORM BR () 2-player the diversity for a population of policieSby
Collins, 2006) zero-sum or

potential ED S = 7~bMc, ;hxc, :=xifx Oelsed: (7)
D.O. (McMahan NE BR () 2-player . .
etal., 2003) zero-sum M is the meta-payoff table d, and is the NE ofM.
PSRQ. (Lanctot NE BR () 2-player The intuition of ED is that, using the Nash distribution en-
etal., 2017) zero-sum sures that the diversity is only related to the best-responding
PSROy (Bal- NE Eq. (8) Symmetric models, and theecti er bxc, quanti es the number of
duzzi et al., 2019) zero-sum variations of how those “winner” models (those within the
-PSRO (Muller -Rank Eq. (6) N -player support of NE) beat each other. Under this design, if there
etal., 2019) general-sum is only one dominant policy i, thenED(S) = 0, thus no
Our Methods NE/ -Rank  Eq.(13)/(14) 2-player diversity. To promote ED in training, a variation of PSRO —
general-sum PSRQy - is introduced, written as:
n 0]
which is equivalent to solving a single-player optimisation O'( %)= S": “(s®) b (shis?)c. >0 : (8)
S22

problem against opponents' (meta-)policies’. One can
regard a best-response policy as given bpaacle, denoted  |n short, the ED in PSRQ encourages players to amplify

by O. In two-pla¥5ar zero-sum cases, an Oracle represenigs strengths and ignore its weaknesses in nding a new
Ol( 2)=fst: q,e %S? (S%S?) > 0g. Gen-  policy. On symmetric zero-sum games, if both players play
erally, Oracles can be implemented through optimisationheir Nash strategy (this assumption will be removed by our
subroutines such as gradient-descent methods or RL algfrethod), then Eq. (8) guarantees to enlarge the gamescape.
rithms. After a new policy is learned, the payoff table is

expanded, and the missing entries will be lled by running Nonetheless, focusing only on the winners can sometimes

new game simulations. The above process loops over ea proplemqtic, since weak agents may still hold thg promise
player at every iteration, and it terminates if no players carf! t2ckling niche tasks, and they can serve as stepping stones

nd new best-response policies (i.e., Eq. (1) reaches Zero)f_or discovering stronger policies later during trgining. For
example, when training StarCraft Als, overcoming agents'

With correct choices of (meta-)policy solvrand Oracle  weaknesses was found to be more important than amplify-
O, various types of (meta-)game solvers can be summarise@g strengths (Vinyals et al., 2019b), a completely oppo-
in Table 1. For example, it is trivial to see that GWFP is sjte result to PSR . Another counter example that fails
recovered whers = UNIFORM( ) andO' = BR'(). PSRQy isthe RPS-X game (McAleer et al., 2020):

Double Oracle (D.0O.) and PSRO methods refer to the cases 0 1 1 o5 3

when the (meta-)solver computes NE. Notably, wBen - _§ 1 0 1 25 7.
Rank, Muller et al. (2019) showed that the standard best G = 1 1 0 2=5 ©)
response fails to converge to the SSCC dRank; instead, 2=5 25 25 0

they propose -PSRO where the Oracle is computed by theln RPS-X, if the initial strategy pool of PSR starts from
so-calledPreference-based Best Respo(2BR), that is, eitherf Rg, f Pg or f Sg, then the algorithm will terminate
h ! without exploring the fourth strategy because the best re-
sponse td R,P, Sy is still in f R,P,S); however, the fourth
(6) strategy alone can still exploit the populationf&t,P, Sy by
getting a positive payoff 02=5. Also see in Appendix C

3.4. Existing Diversity Measures :
. . . . . how our method can tackle this problem.
Promoting behavioural diversity can lead to learning more

effective strategies and achieving lower exploitability in per-
formance. The smooth FP method (Fudenberg & Levine?" Our Methods
1995) incorporates the policy entropl( ) when nding  Instead of choosing between amplifying strengths or over-
the best response to advocate diversity, written 'a® coming weaknesses, we take an altogether different ap-
BR'( ) = argmax » o Gi(; N+ H() proach of modelling the behavioural diversity in games.
where is a weighting hyper-parameter. In the case ofSpeci cally, we introduce a new diversity measure based

! 0 as training goes on, smooth FP converges to th@n a geometric interpretation of games modelled by a de-
GWEFP process almost surely (Leslie & Collins, 2006).  terminantal point process (DPP). Due to the space limit, all
proofs in this section are provided in Appendix D.

o ' argmaxE i 1 M'(;S )>M'(S;s )
29

Entropy measures the diversity of a policy in terms of its
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4.2. Expected Cardinality: A New Diversity Measure

Our target is to nd a population of diverse policies, with

each of them performing differently from other policies due

to their unique characteristics. Therefore, when modelling

the behavioural diversity in games, we can naturally use the

payoff matrix to construct the DPP kernel so that the simi-
Figure 1.G-DPP. The squared volume of the grey cube equals tdarity between two policies depends on their performance in
det(L {sis;:s14)- The probability of selecting Sy;Si3g from  terms of payoffs against different types of opponents.

G-DPP (the yellow area) is smaller than that of selectis; Shg . .
which has orthogonal payoff vectors. The diversity in Eq. (11) ofpe nition 3 (G-DPP, Fig. (1)) A G-DPP for each player

the populatiorf S, g,f Si; Shg,f S : Sb; Skg are0; 1; 1:21. is a DPP in which the ground set is the strategy population
Y = S, and the DPP kerndl is written by Eq. (10), which

is a Gram matrix based on the payoff talle
4.1. Determinantal Point Process Ls= MM~ (20)

Originating in quantum physics for modelling repulsive po jearning in open-ended games, we want to keep adding
Fermion particles (Macchi, 1977; Kulesza et al., 2012), &jjverse policies to the population. This is equivalent to
DPP is a probabilistic framework that characterises hovxéay, at each iteration, if we take a random sample from the
likely a subset of items is to be sampled from a ground seg_ppp that consists of all existing policies, we hope the
where diverse subsets are preferred. Formally, we have  cardinality of such a random sample is large (since policies
with similar payoff vectors will be unlikely to co-occurl!).
De nition 2 (DPP) Foragroundsely = f1;2;:::;;Mg, a In this sense, we can design a diversity measure based on
DPP de nes a probability measure on the power set of the expected cardinality of random samples from a G-DPP,
(i.e.,2¥), such that, givenaM M positive semi-de nite i.e.,Ey PLg jYj . By the following proposition, we show
(PSD) kerneL that measures the pairwise similarity for that computing such a diversity measure is tractable.
items inY, and letY be arandom subset drawn from the
DPP, the probability of samplingY Y is written as Proposition 4 (G-DPP Diversity Metric) The  diversity
metric, de ned as the expected cardinality of a G-DPP, can

- _ - 2 o
DPP(L):= P Y =¥ [ det Ly =Volume™ fwigizy be computed iD(jSj®) time by the following equation:

whereL vy :=[Lj; Jij 2v denotes a submatrix &f whose o o L
entries are indexed by the items includedvin Given a  Diversity S =Evy p _jYj =Tr | (Ls+1) = : (11)
PSD kerneL = WW ;W 2 RM P.:p M, each row
w; represents & -dimensional feature vector of iten®
Y, then the geometric meaningaét(L v ) is the squared
volume of the parallelepiped spanned by the rowd/othat
correspond to the sampled items¥n

A nice property of our diversity measure is that it is well-
de ned even in the case wher has duplicated policies,

as dealing with redundant policies turns out to be a criti-
cal challenge for game evaluation (Balduzzi et al., 2018Db).
In fact, redundancy also prevents us from directly using
det Ls as the diversity measure because the determinant

A PSD matrix ensures all principal minors bf are non- ; . .
value becomes zero with duplicated entries.

negative (i.e.det(L y) 0;8Y Y ), which suf ces

to be a proper probability distribufion. The normaliser Expected Cardinality vs. Matrix Rank. There is a funda-

of PL (Y = Y) can be computed by  ,, det(Ly) = mental difference between using expected cardinality and

det(L + 1), wherel istheM M identity matrix. using the rank of a payoff matrix as the diversity measure.

The matrix rank is the maximal number of linearly indepen-
dent columns, though it can measure differencebetween

the columns, it cannot model thgversity. For example, in
RPS, a strategy 0BP% Rock, 1% Scissor] and a strategy

of [98% Rock, 2% Scissor] are different but they are not
diverse as they both favour playing Rock. If one strategy

eis added into the population whilst the other already exists,
tthe rank of the payoff matrix will increase by one, but the

The entries of. are pairwise inner products between item
vectors. The kerndl can intuitively be thought of as rep-
resenting dual effects — the diagonal eleménts aim to

capture the quality of iterit whereas the off-diagonal ele-
mentsL j; capture the similarity between the itemand; .

A DPP models theepulsive connections among the items
in a sampled subset. For example, in a two-item subs

. .. L i L i . . . . . .
sinceP. fi;jg / L ij; = Liily  LiLi,  increment on expected cardinality is minor. In Fig. (1),
we know that if itemi and item}, are perfectly similar such adding the green strategy only contributes to the expected
thatw; = w;,andthus ;; = L Lj; , then these two cardinality by0:21. This property is particularly important

items will not co-occur, hence such a subseYof fi;jg  for learning in games, in the sense that ndingliaerse
will be sampled with probability zero. policy is often harder than nding justdifferentpolicy. To
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summarise, we show the following proposition. concave function; therefore, Eq. (12) has a unique solution

. _ . . . . at each iteration. We have the following proposition:
Proposition 5 (Maximum Diversity) The diversity of a ! ! v Wing propost

populationS is bounded byiversity S rank(M),  propgsition 7 (Uniqueness of Diverse Best Response)
and if M is normalised (i.e.jjMp; 5ji = 1;8i), we have  gq "(11) js a strictly concave function. The resulting best
Diversity S rank(M)=2. In both cases, maximal di- response in Eq. (12) has a unique solution.

versity is reached if and only M is orthogonal.

. . ) ) Intuitively, the diverse FP process will almost surely con-
Expected Cardinality vs. Effective Diversity. We also ar- verge to a GWFP process as long as 0 and thus will

gue that the principles that underpin Eg. (7) and Eq. (11) ar%njoy the same convergence guarantees as GWFP (i.e., to a
different. Here we illustrate from the perspective of matrix\ = i, two-player zero-sum or potential games) Howe\;er
norm. Notably, maximising the effective diversity in Eq. (7) in order to prove such connection rigorously, we need to

is equivalent to maximising a matrix norm, in the sense thatShOW the se . .
1 . quence of expected changes in strategy, which
ED(S) = 3k M p Kk where isthe Hadamard 4,4 ced by nding a strategy that maximises Eq. (12) at

p_rt(_)duzt &:nd<Arl]<1;1 ::th K Jaj J. In compag;on, Fthe PropO- o ach iteration, is actually a uniformly bounded martingale
sition below shows thal maximising our diversity measuresequence that satis es Eq. (5). We show the below theorem:
in Eg. (11) will also maximise the Frobenius normaf

Theorem 8 (Convergence of Diverse FPYhe perturba-
tion sequence induced by diverse FP process is a uniformly

"hounded martingale difference sequence; therefore, diverse
FP shares the same convergence property as GWFP.

Proposition 6 (Diversity vs. Matrix Norm) Maximising
the diversity in Eq. (11) also maximises the Frobenius nor
of kM kg , but NOT vice versa.

Geometrically, for a given matrikl, considering the box
which is the image of a unit cube (in the 3D case) that is4 4. Diverse Policy-Space Oracle

stretched byM, the Frobenius norm represents the SuMyhen solving NFGs, the total number of pure strategies is
of lengths of all diagonals in that box regardless of theiryqyn and thus a best response in Eq. (12) can be computed
directions (the orange lines in Fig. (1)). Therefore, whilsty, o,gh a direct search, and the uniqueness of the solution
thek ky; norm re ects the idea thaD(S) in Eq. (7) s guaranteed by Proposition 7. When it comes to solving
accounts for the winners within the Nash support only, theopen-ended (meta-)games, the total number of policies is
Frobenius norm, on the contrary, considers all strategie$,nxnown and often in nitely many. Therefore, a best re-
c.ont'ribution to diversity.. We show later that this results insponse has to be computed through optimisation subroutines
signi cant performance improvements over PSRO such as gradient-based methods or RL algorithms. Here we

Notably, it is worth highlighting that the opposite direction €xtend our diversity measure to the policy space and develop
of Proposition 6 is not correct, that is, maximisiki ke~ diversity-aware solvers for open-ended (meta-)games.

will NOT necessarily lead to a large diversity. A counter-j, solving open-ended games, at thth iteration, the algo-
example in Fig. (1) is that, if one of the orange lines is 10ng ity m maintains a population of policied learned so far by
but the rest are short, though the Frobenius norm is 1argeyaveri - Our goal here is to design an Oracle to train a new
the expected cardinality is still small. Thus, the d'VerS'tystrategyS , parameterised by 2 RY (e.g., a deep neural
metric in Eq. (11) cannot simply be replacedkMkr . We ey which both maximises playés payoff and is diverse
also provide empirical evidence in Appendix F. from all strategies it§,. Therefore, we de ne the ground
set of the G-DPP at iteratidrto be the union of the existing

4.3. Diverse Fictitious Play .

With the newly proposed diversity measure of Eq. (11), wesl‘ and the new modelto addt; = S [ S

can now design diversity-aware learning algorithms. WeWith the ground set at each iteration, we can compute the
start by extending the classical FP to a diverse version suctliversity measure by Eq. (11). Subsequently, the objective
that at each iteration, the player not only considers a begif an Oracle can be written as

response, bufc a]so considers how this new strategy can help O'( ?) = argmax 2 g2 s :s? (13)
enrich the existing strategy pool after the update. Formally, 2R oy
our diverse FPmethod maintains the same update rule as o
Eq. (4), but with the best response changing into + Diversiy S'[ S

BRI( 1) where ?() is the policy of the player two; depending on

h _ _ [ the game solvers, it can be NENIFORM , etc.
=argmax G' ; ' +  Diversiy S[f g (12) ) ) o
2 g Based on Eq. (13), we can tell that the diversity of policies

where is a tunable constant. A nice property of diverse FPduring training comes from two aspects. The obvious aspect
is that the expected cardinality is guaranteed to be a strictlis from the expected cardinality of the G-DPP that forces
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player general-sum games; therefore, the goal of learning is
nding all SSCCs on the response graph. Since the standard
best response does not have convergence guarantees, we
introduce a diversity-aware extension based eRSRO
(Muller et al., 2019) whose Oracle is written in Eq. (6).
Speci cally, we adopt the quality-diversity decomposition
of DPP (Affandi et al., 2014) to unify Eq. (6) and Eq. (11).
GivenL = WW ~, we can rewrite thé-th row of W to

be the product of a quality terig 2 R* and a diversity
featurew; 2 R”, thusLj = gw;w; g. We design the
quality term to be the exponent of the PBR value in Eq. (6),
and the diversity feature follows G-DPP in Eqg. (10), that is,
Mii g
KMkg
The resulting diversity-aware Oracle that suitRank is:

Gg=exp E i 1M'(;S )>M(S;S ) ;wi=

Of( y=zargmax Tr | Lgy +1 ' : (14)
; SIf o

2
The following theorem shows the convergence result of our
diverse -PSRO to SSCC on two-player symmetric NFGs.

Theorem 10 (Convergence of Diverse-PSRO)

Diverse -PSRO with the Oracle of Eq. (14) con-
Figure 2.Exploitability and diversitys. training iterations (num- verges to the sub-cycle of the unique SSCC in the
ber of times a solution concept is computed) on the AlphaStatwo-player symmetric games.
meta-game (siz888 888). Our method achieves the lowest
exploitability by nding a diverse population &0 policies. 5. Experiments & Results

agents to nd diverse policies. The less obvious aspect igye compare our diversity-aware solvers with state-of-the-
from how the opponents are treated. Although the (metayt game solvers including self-play, PSRO (Lanctot et al.,
)policy of player2 is determined by 2(), the learning  017), Pipeline-PSRO (McAleer et al., 2020), recti ed
player will have to focus on exploiting certain aspects ofpgro (Balduzzi et al., 2019), andPSRO (Muller et al.,

?() in order to acquire diversity. This is similar in manner 2019). We investigate the performance of these algorithms
to selecting a diverse set of opponents. Theoretically, wg, hoth NFGs and open-ended games. Our selected games
are able to show that our diversity-aware Oracle can strictlyyyolve both transitive and non-transitive dynamics. If an
enlarge the gamescape. Unlike PSRR@see Proposition 6 g1gorithm fails to discover a diverse set of policies, it will
in Balduzzi et al. (2019)), we dNOT need to assume the e trapped in some local strategy cycles that are easily ex-
opponents are playing NE before reaching the result belowsitaple (e.g., recall the illustrative example of the RPS-X
game in Section 3.4, and see how our method can tackle this
game in Appendix C. Therefore, we focus on the evaluation
metrics of exploitability in Eq. (1) and how extensively the
gamescapes are explored. We note that the con dence inter-

Gamescape S ( Gamescape S[ S vals represented in Figs. (2, 4a, 4b) represent the standard

) o deviation in the exploitability at each iteration over multiple

Implementation of Oracles. When the game engineis  ggeds where the number of seeds is reported in Appendix G.
differentiable, we can directly apply gradient-based methodgy o exception is the comparison betweeRSRO and di-
to solve Eq. (13). In general, many real-world games arggrse _pSRO, since the solution concept ilRank, instead
black-box, thus we havg to seek for gradlent—free solutllon%f exploitability that measures distance to a NE, we apply
or model-free RL algorithms. To tackle this, we provide iha metric of PCS-score (Muller et al., 2019) — the number
zero-order Oracle and RL-based Oracle as approximatios sscc that has been found — for fair comparison. We

solutions to Eq. (13), and list their pseudocode and time, oyide an exhaustive list of hyper-parameter and reward
complexity in Appendix H. settings in Appendix G.

Proposition 9 (Gamescape EnlargementAdding a new
best-response policy via Eq. (13) strictly enlarges the
gamescape. Formally, we have

4.5. Diverse Oracle for -Rank Real-World Meta-Games. We test our methods on the
We also develop diverse Oracles that suiRank. Note that meta-games that are generated during the process of solving
-Rank is a replacement solution concept for NEMA 28 real-world games (Czarnecki et al., 2020), including






