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Abstract

In this paper we investigate the Follow the Regu-
larized Leader dynamics in sequential imperfect
information games (IIG). We generalize existing
results of Poincaré recurrence from normal-form
games to zero-sum two-player imperfect informa-
tion games and other sequential game settings.
We then investigate how adapting the reward (by
adding a regularization term) of the game can
give strong convergence guarantees in monotone
games. We continue by showing how this reward
adaptation technique can be leveraged to build
algorithms that converge exactly to the Nash equi-
librium. Finally, we show how these insights can
be directly used to build state-of-the-art model-
free algorithms for zero-sum two-player Imper-
fect Information Games (IIG).

1. Introduction
This paper addresses the problem of learning a Nash equilib-
rium in several classes of games. Learning Nash equilibria
in competitive games is complex as agents no longer share
information but behave independently. Various techniques
have been proposed to solve these games, with the current
state-of-the-art usually guaranteeing average-time conver-
gence of the learned policy to a Nash equilibrium, but not
necessarily convergence of the policy itself to Nash. Unfor-
tunately, these convergence guarantees are not conducive
to learning in large games, which rely on general function
approximation techniques (e.g., deep neural networks) that
are inherently difficult to time-average. Moreover, the real-
time behaviors of the policy can be quite distinctive from its
time-average counterpart, and can even diverge away from
Nash equilibria (Bailey & Piliouras, 2018).
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In some adversarial games, Follow the Regularized
Leader (FoReL) is known to be convergent if the equilib-
rium is deterministic, and recurrent if the equilibrium is
mixed with full support (Mertikopoulos et al., 2018). A spe-
cial case of FoReL dynamics is replicator dynamics (Taylor
& Jonker, 1978), the main dynamic of evolutionary game
theory, whose recurrent behavior in zero-sum games and
generalizations is well studied (Piliouras & Shamma, 2014;
Boone & Piliouras, 2019). More generally, value-based
methods have been well-studied in multi-agent reinforce-
ment learning (Littman, 1994; 2001; Hu & Wellman, 2003)
but numerous issues of convergence have been noticed. But
a notable empirical finding shows that regularization of
Q-learning in matrix games can induce the policy to con-
verge in real-time to a Nash equilibrium (Tuyls et al., 2003;
Kaisers & Tuyls, 2010; 2011) or in the replicator dynamics
to Quantal-Response-Equilibrium (Ortega & Legg, 2018;
McKelvey & Palfrey, 1995; Tuyls & Nowé, 2005). Other
theoretical investigations show that softmax best response
can guarantee convergence in Q-learning (Leslie & Collins,
2005).

Motivated by these findings, this paper formally analyzes
the impact of regularization on learning dynamics, extend-
ing beyond the simple case of matrix games and focusing
particularly on the application of FoReL to imperfect in-
formation games. The contributions of the paper are as
follows:

• We generalize the Poincaré recurrence result (Mer-
tikopoulos et al., 2018) to the case of sequential im-
perfect information games. This proves that strategies
can cycle in IIG when using FoReL (e.g., similar to the
normal form game case Fig. 1, (a)).

• We prove that changing the reward structure of the
game improves convergence guarantees at the cost of
slightly modifying the equilibrium of the game (e.g.,
as in Fig. 1, (b), (c), (d)).

• We show that this reward adaptation method can be
used to build a sequence of closer and closer pseudo-
solutions converging onto a Nash equilibrium.
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Figure 1. The trajectory plots for FoReL (plot (a)) and for the ver-
sion with a reward transform with a parameter η multipliers 0.5, 1
and 10 (plots (b), (c), (d) respectively) in a biased matching pennies
game (the payoff table for the first player is [[1,−1], [−1, 10]]).
The red dot is the equilibrium policies of the original game.

• We illustrate that by using these theoretical findings,
we improve the state-of-the-art of deep reinforcement
learning in some imperfect information games.

1.1. Related Work

We discuss related work along three axes: (i) follow the reg-
ularized leader and regret minimization, (ii) gradient based
methods in differentiable games, and (iii) dynamic program-
ming and reinforcement learning approaches in games.

FoReL and regret minimization in Games. There exists
a large corpus of literature providing evidence that minimax
equilibria (or Nash equilibria) in normal form zero-sum
two-player games are often unstable rest points of FoReL
(or at best neutrally stable). In evolutionary game theory, the
replicator dynamics (Zeeman, 1980; 1981; Weibull, 1997;
Gintis, 2009) are known to be unstable in the case of an
interior equilibrium in zero-sum two-player normal form
games (Bloembergen et al., 2015). Many machine learning
approaches can be used in self-play to learn an equilibrium:
regret minimization methods have been extensively studied
in zero-sum games (Cesa-Biachi & Lugosi, 2006; Syrgkanis
et al., 2015; Fudenberg & Levine, 1998; Zinkevich et al.,
2008; Hofbauer et al., 2009; Cesa-Biachi & Lugosi, 2006),
for which the average policy played over time converges
to an equilibrium, but the actual policy is known to be re-
current (Piliouras & Shamma, 2014; Mertikopoulos et al.,
2018). The convergence of the actual policy can be ob-
tained when the opponent plays a best response (Waugh
& Bagnell, 2015; Abernethy et al., 2018) but not in the
self-play setting. The best response sequences of Fictitious

Play (Brown, 1951) and smoother variants (Hofbauer &
Sandholm, 2002) converge in time-average. Polymatrix
games can be solved by linear programming (Cai et al.,
2016) (we will study a generalization of this class). Regret
minimization techniques can be used to learn a Nash equi-
librium, 1 but also in this setting, the convergence to a Nash
equilibrium requires to compute a time-average policy, and
the policy itself is recurrent (Mertikopoulos et al., 2018).

Gradient Based Methods in Differentiable Games.
Differentiable games (e.g. GANs) trained by gradient de-
scent present many failure modes (Balduzzi et al., 2018).
In (Balduzzi et al., 2018) the authors prove that learning
dynamics of gradient descent can cycle in some classes
of games. This problem can be resolved by introducing
second-order optimization (Balduzzi et al., 2018; Foerster
et al., 2017; Mescheder et al., 2017; Letcher et al., 2019),
negative momentum (Gidel et al., 2019) or game theoretic
algorithms (Oliehoek et al., 2017; Grnarova et al., 2018).

Reinforcement Learning in Games. In sequential imper-
fect information games RL methods have been applied with
mild success. Independent reinforcement learning has many
failure modes under these sequential imperfect informa-
tion settings, as demonstrated in (Lanctot et al., 2017). In
zero-sum sequential imperfect information games, the pol-
icy can cycle around the minimax equilibrium without ever
converging, even in simple single-state games (Piliouras
& Shamma, 2014; Mertikopoulos et al., 2018; Singh et al.,
2000; Bloembergen et al., 2015; Bailey & Piliouras, 2018).
In cooperative settings, players tend to overfit to the oppo-
nent while learning, without being able to generalize to other
opponents’ behaviors (Matignon et al., 2012). Generally
speaking, in the sequential setting, learning in games can
be addressed by either approximate dynamic programming
in the perfect information case (Lagoudakis & Parr, 2002;
Pérolat et al., 2015; 2016; Pérolat et al., 2016; 2017; Geist
et al., 2019), regret minimization algorithms (Zinkevich
et al., 2008; Lanctot, 2013; Lanctot et al., 2009) (which suf-
fer from the aforementioned time-averaging problem), best
response algorithms (Heinrich et al., 2015; Lanctot et al.,
2017; Heinrich & Silver, 2016), model free reinforcement
learning methods (Srinivasan et al., 2018; Heinrich & Silver,
2016) or policy gradient in the worst case (Lockhart et al.,
2019). However, the previous model free RL methods are
not flawless: Neural Fictitious Self Play (NFSP) (Heinrich
& Silver, 2016) maintains two data sets of respectively 600
and 2000 times the size of the game, the methods presented
in (Srinivasan et al., 2018) empirically show a convergence
in time-average without formal proof, and (Lockhart et al.,
2019) require the exact computation of a best response.

1Since for a coarse correlated equilibrium, the marginals with
respect to the players are a Nash equilibrium (Cai et al., 2016)



Finding Equilibrium via Regularization

2. Warming up: Normal Form Games
We first sketch our main results in repeated zero-sum two-
player normal form games.

Background. In a zero-sum two-player normal form
game, two players select their actions ai ∈ A (a =
(a1, a2) = (ai, a−i)) according to a policy πi ∈ ∆A
(π = (π1, π2) = (πi, π−i), where −i encodes the op-
ponent of player i), and as a result will receive a reward
riπ(a1, a2). The reward is policy-independent (ri(a1, a2))
if it is only a function of the actions of the players and not
of their policies; policy-independent reward is a standard
assumption in the literature. If policy π is played we de-
fine the Q-function to be the expected reward for player
i for action ai (i.e. Qiπ(ai) = Ea−i∼π−i [riπ(ai, a−i)])
and the value function to be the expected reward (i.e.
V iπ = Ea∼π[riπ(a)] = Eai∼πi [Qiπ(ai)]).

By definition, a policy π∗ is a Nash equilibrium if for all
π and for all i we have V iπi,π∗−i − V

i
π∗ ≤ 0. In other words,

a Nash equilibrium is a joint policy such that no player has
an incentive to change its policy if all the other players stick
to their policy.

Follow the Regularized Leader (FoReL). FoReL is an
exploration-exploitation algorithm that maximizes the cu-
mulative payoff of the player (exploitation) minus a regular-
ization term (exploration). The continuous time version of
this algorithm is defined as follows:

yit(a
i) =

t∫
0

Qiπs(a
i)ds and πit = arg max

p∈∆A
Λi(p, yit)

where Λi(p, y) = 〈y, p〉 − φi(p) and φi is the regularizer, a
function which is assumed to be: (1) continuous and strictly
convex on ∆A and (2) smooth on the relative interior of
every face of ∆A (including ∆A itself). Standard choices
of φi include: (1) entropy φi(p) =

∑
a p(a) log p(a), and

(2) `2-norm φi(p) =
∑
a |p(a)|2. The choice of the regu-

larizer lead to different dynamics: entropy regularization
yields the replicator dynamics and l2-norm regularization
yields the projection dynamics (Mertikopoulos et al., 2018).

We will write φ∗i (y) = maxp Λi(p, y) and we have the prop-
erty that arg maxp∈∆A Λi(p, y) = ∇yφ∗i (y) (maximizing
argument Shalev-Shwartz et al. (2012, p.147)).

If π∗ is a Nash equilibrium, a useful measure of interest that
measures the distance to a Nash equilibrium is

J(y) =
2∑
i=1

[
φ∗i (yi)− 〈yi, π∗i 〉

]
.

This quantity (and its generalization introduced in sec-
tion. 3) will be used to construct strong Lyapunov functions

in many games of interest. As a warm up, this section will
explore these convergence results in the normal form case.

Recurrence. If the reward is policy-independent and if
there exists an interior equilibrium, it is known that the pol-
icy under FoReL will be recurrent (Mertikopoulos et al.,
2018). We will generalize this result to sequential Imperfect
Information Games in section 4. Crucially, this strong neg-
ative result indicates that convergence cannot be achieved
with FoReL in games with a mixed strategy equilibrium, so
long as the reward is policy-independent. Thus, in the rest
of the paper, we will explore how to transform the reward by
adding a policy-dependent term to guarantee convergence
(see section 5,6).

Reward transformation and convergence in normal-
form games. Section 5 explores the idea of reward trans-
formation by adding a policy dependent term. If the reward
is not policy-independent, one can show that:

d

dt
J(y) =

2∑
i=1

[V iπit,π∗−i
− V iπ∗ ]︸ ︷︷ ︸

≤0 because π∗ is a Nash

+

2∑
i=1

Ea∼(π∗i,π−it )[r
i
π∗i,π−it

(a)− riπt(a)]

We later generalize this result in lemma 3.1. As an example,
consider the following policy dependent reward, which also
preserves the zero-sum property for any policy µ with a full
support:

riπ(a) = ri(ai, a−i)− η log
πi(ai)

µi(ai)
+ η log

π−i(a−i)

µ−i(a−i)

Given the above reward, we can show that:

d

dt
J(y) =

2∑
i=1

[V iπit,π∗−i
− V iπ∗ ]︸ ︷︷ ︸

≤0 because π∗ is a Nash

−η
2∑
i=1

KL(π∗i, πit)

This inequality ensures that πt will converge to π∗, the Nash
of the game defined by riπ(a), using Lyapunov arguments.
Note that π∗ will depend on µ and η. Transforming the
reward improves the convergence property of the game but
will shift the equilibrium, a phenomena illustrated in figure 1
where φi is the entropy for all players. Thus, this technique
does not directly guarantee convergence to the Nash of the
original game. We next introduce a technique to adapt the
policy-dependent term in the reward, thereby guaranteeing
convergence to the actual Nash equilibrium of the game.

Direct Convergence. Solving the original game can be
achieved by iteratively solving the game with the reward
rik,π(h, a) = ri(ai, a−i)−η log πi(ai)

πik−1(ai)
+η log π−i(a−i)

π−ik−1(a−i)
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and use the Nash of that game πk to modify the reward of the
next game (starting with π0 as the uniform policy). The se-
quence of policies (πk)k≥0 converges to π∗, the equilibrium
of the policy-independent reward ri(ai, a−i). Specifically,
we can show that:

2∑
i=1

[
KL(π∗i, πi

k) −KL(π∗i, πi
k−1)

]
≤ −

2∑
i=1

KL(πi
k, π

i
k−1)

which is enough to prove that (πk)k≥0 converges to π∗,
using Lyapunov-style arguments (this result is proved in
section 6). This set of results establishes a foundation for
convergent learning in the normal-form case. We next lay
out the principles necessary for generalizing to the IIG set-
ting, with our main result detailed in section 6.

3. Background in Sequential Imperfect
Information Games

In a sequential imperfect information game, N players and
a chance player (written c) interact sequentially starting
from a history hinit. The set of all possible histories is
written H = ∪i∈{1,...,N,c}Hi. The sets Hi are the set of
histories at player’s i turn (all Hi are disjoint). The set of
terminal historiesZi is a subset ofHi in which the game has
ended (Z = ∪i∈{1,...,N,c}Zi). In each history h ∈ H , the
current player will observe an information state x ∈ X =
∪i∈{1,...,N,c}Xi. The function τ(h) 7→ i ∈ {1, . . . , N, c}
provides the player’s turn at a given history. We will also
write x(h) ∈ X for the information state corresponding to
an history h. We will write h ∈ x if x(h) = x.

At each history h ∈ H\Z , the current player will play an
action a ∈ A. As a result, each player i ∈ {1, . . . , N}
will receive a reward ri(h, a) and the state will transition to
h′ = ha. We will write h @ h′ if there exists a sequence of
k actions (ai)0≤i≤k such that ha0 · · · ak = h′. The history
h is then said to be a prefix of h′.

A policy π(a|x) maps an information state x to a distribution
over actions ∆A. The restriction of π over Xi is written πi

and π−i is the restriction of π overX\Xi. We will write π =
(πi, π−i). As in section. 2, we consider a policy dependent
reward (written riπ(h, a)), which can be dependent on the
full policy. The rest of this section introduces reinforcement
learning tools used to define FoReL in IIG and used in the
proofs.

Value function on the histories. The value of a policy
for player i at history h is defined as follow:

V iπ(h) = E
[∑
n≥0

riπ(hn, an)|h0 = h, hn+1 = hn an,

an ∼ π(.|x(hn))
]

=
∑
a

π(a|x(h))
[
riπ(h, a) + V iπ(ha)

]

The value of a policy for player i at history h while taking
action a is defined as follow:

Qiπ(h, a) = E
[∑
n≥0

riπ(hn, an)|h0 = h, a0 = a,

hn+1 = hn an, an ∼ π(.|x(hn))
]

= riπ(h, a) + V iπ(ha)

Reach probabilities. The reach probability of a history h
is (note that this product may include the chance player):

ρπ(h) =
∏
h′a@h

π(a|x(h′))

The reach probability of player i of a history h is:

ρπ
i

(h) =
∏

h′a@h, τ(h′)=i

π(a|x(h′))

The reach probability of player −i of a history h is (this
product may include the chance player too):

ρπ
−i

(h) =
∏

h′a@h, τ(h′)6=i

π(a|x(h′))

In the end, ∀h ∈ H:ρπ(h) = ρπ
i

(h)ρπ
−i

(h)

The reach probability of an information state x ∈ X is
defined as follows:

ρπ(x) =
∑
h∈x

ρπ(h) and ρπ
−i

(x) =
∑
h∈x

ρπ
−i

(h)

Under perfect recall (M. Zinkevich, 2007), we can write for
any h ∈ x:

ρπ(x) = ρπ
i

(h)ρπ
−i

(x)

And under perfect recall we will write for all h ∈
x, ρπ

i

(x) = ρπ
i

(h) Furthermore, V iπ(hinit) =∑
h∈H

ρπ(h)
∑
a∈A

π(a|x(h))riπ(h, a)

Value Function on the information states. The only in-
formation available to a player is the information state. We
define the expected value of the game given such an infor-
mation state x as follows:

V iπ(x) =

∑
h∈x

ρπ(h)V iπ(h)∑
h∈x

ρπ(h)
=︸︷︷︸

perfect recall

∑
h∈x

ρπ
−i

(h)V iπ(h)∑
h∈x

ρπ−i(h)

And the expected Q-function given x and a is:

Qiπ(x, a) =

∑
h∈x

ρπ(h)Qiπ(h, a)∑
h∈x

ρπ(h)
=

∑
h∈x

ρπ
−i

(h)Qiπ(h, a)∑
h∈x

ρπ−i(h)

Now we can define a Nash equilibrium in the sequential
imperfect information game setting. Formally:
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Definition 3.1. A strategy π is a Nash equilibrium if for
all i ∈ {1, . . . , N} and for all π′i: V iπ′i,π−i(hinit) ≤
V iπi,π−i(hinit)

3.1. Monotone Games

In this paper, we are interested in: (i) zero-sum two-player
games, i.e., V 1

π = −V 2
π (many games implemented in

OpenSpiel (Lanctot et al., 2019) fall in that category); (ii)
in zero-sum N -player polymatrix games, i.e., when the
value can be decomposed in a sum of pairwise interactions
V iπ =

∑
j 6=i

Ṽ iπi,πj with Ṽ iπi,πj = −Ṽ jπj ,πi generalizing Cai

et al. (2016); Mertikopoulos et al. (2018); and finally (iii) in
games where the profit of one player is decoupled from the
interaction with the opponents, i.e., when the value can be
decomposed in V iπ = V̄ iπi + V̄ iπ−i . All these settings can be
captured by the following monotonicity condition:
Definition 3.2. Let us define Ωi(π, µ) = V iπi,π−i(hinit) −
V iµi,π−i(hinit) − V iπi,µ−i(hinit) + V iµi,µ−i(hinit). A game is
monotone if for all policies π, µ, π 6= µ:∑

i∈{1,...,N}

Ωi(π, µ) ≤ 0

This condition is slightly difficult to interpret but as men-
tioned above, it captures a wide class of games (zero-sum
two-player, polymatrix zero-sum games etc.). See proof in
appendix I.

3.2. Follow the Regularized Leader

Follow the Regularized Leader in imperfect information
games defines a sequence of policies (πs)s≥0 for all i ∈
{1, . . . , N} and x ∈ Xi as follow:

yit(x, a) =

t∫
0

ρπ
−i
s (x)Qiπs(x, a)ds

πit(.|x) = arg max
p∈∆A

Λi(p, yit(x, .))

We define the following quantity for any Nash equilibrium
π∗ of the game:

J(y) =

N∑
i=1

∑
x∈Xi

ρπ
∗i

(x)[φ∗i (y
i(x, .))− 〈π∗(.|x), yi(x, .)〉]

This quantity will be at the center of our analysis of Follow
the Regularized Leader in sections 4 and 5. The following
lemma shows how this quantity evolves if both players learn
using Follow the Regularized Leader updates. We will
use this quantity to create a Lyapunov function for policy-
dependent reward and use it to bound the trajectories of
FoReL to prove Poincaré recurrence; intuitively, that “most”
trajectories do not converge to equilibria.

Lemma 3.1. If yt is defined as the follow the regularized
leader dynamics we have:

d

dt
J(y) =

N∑
i=1

[V iπit,π∗−i
− V iπ∗ ]︸ ︷︷ ︸

≤0

+

N∑
i=1

Ωi(π, π∗)︸ ︷︷ ︸
≤ 0 for a monotone game

+

N∑
i=1

∑
h∈H\Z

ρπ
−i
t (h)ρπ

∗i
(h)×

Ea∼(π∗i,π−it )(..|x(h))[r
i
π∗i,π−it

(h, a)− riπt(h, a)]

(proof in appendix A)

4. Recurrence of FoReL
This section generalizes the results of (Mertikopoulos et al.,
2018) to Follow the Regularized Leader in monotone Im-
perfect Information Games when the reward is policy-
independent (all the zero-sum two-player games imple-
mented in OpenSpiel (Lanctot et al., 2019) have this prop-
erty) and when the equilibrium has a full support. This
requires two steps, first we will prove that an equivalent
learning dynamic is Divergence-free (or preserves volume).
Then we will use lemma 3.1 to show that all trajectories of
this new dynamical system are bounded. This is enough to
prove that the trajectories of FoReL are Poincaré recurrent.
Intuitively this means that all trajectories will go back to a
neighborhood of their starting point arbitrarily often. The
Poincaré recurrence theorem (Piliouras & Shamma, 2014;
Mertikopoulos et al., 2018; Poincaré, 1890) states:
Theorem 4.1. If a flow preserves volume (is Divergence-
free) and has only bounded orbits then for each open set
there exist orbits that intersect the set infinitely often.

Instead of studying the original dynamical system, we will
fix an action ax for all x and consider the dynamical system
(as this system keeps w bounded):

ẇit(x, a) = ρπ
−i
t (x)[Qiπt(x, a)−Qiπt(x, ax)] (1)

πit(.|x) = arg max
p∈∆A

Λi(p, wit(x, .)) (2)

Divergence-free. In order to get qualitative results on
FoReL, we will prove that the FoReL dynamic is
Divergence-free (a generalization of a result from Mer-
tikopoulos et al. (2018)).
Lemma 4.1. The system defined above (equation (1)
and (2)) is autonomous (can be written as ẇt = ξ(wt)),
Divergence-free, and the dynamic of the policy πt is equiv-
alent to the one defined in section 3.2 when the reward is
policy-independent. (Proof in appendix B)

This property is critical as it implies that the dynamical
system has no attractor (Weibull, 1997, p.252, prop 6.6).
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Remark. This does not mean that the policy will not con-
verge. If the w diverges, the policy might converge to a
deterministic strategy. However, if the Nash is of full sup-
port, it will not be an attractor of the dynamical system.

We now know that Nash equilibria cannot be attractors of
FoReL as the system is Divergence-free. In order to prove
the Poincaré recurrence, we need to prove an additional
property. We need the trajectory wt to remain bounded if
the equilibrium π∗ is interior.

Lemma 4.2. If the equilibrium is interior, then
N∑
i=1

[V i
πit,π

∗−i − V iπ∗ ] = 0.

(Proof in appendix E)

Corollary 4.1. In a monotone game with a policy-
independent reward and an interior equilibrium, if yt is de-
fined as following the FoReL algorithm we have: d

dtJ(y) ≤
0

Corolary 4.1 implies that the trajectories of the dynamics
equation (1) and (2) are bounded. This can be proven by
directly using arguments from (Mertikopoulos et al., 2018,
Lemma D.2.).

Poincaré recurrence. As we have seen in the two pre-
vious paragraphs, the flow of FoReL is Divergence-free
and all trajectories are bounded in the case of monotone
games with an interior Nash equilibrium. Thus all orbits are
Poincaré recurrent.

5. Reward Transformation and Convergence
in IIG

In section 4 we have seen that a policy-independent reward
signal can lead to recurrent behavior. The idea we study here
is to slightly modify the reward signal such that the Nash
equilibrium of this new game is an attractor. We will show
two reward transformations that guarantee convergence to
a Nash equilibrium (with Lyapunov arguments). The first
reward transformation applies generally to monotone games
and the second one applies specifically to zero-sum games.
But first we briefly recall the Lyapunov method.

Lyapunov method. The idea of the Lyapunov method
to study the ordinary differential equation d

dtyt = ξ(yt)
is to look at the variations of a quantity F(y) ≥ 0 (and
F(y∗) = 0). The function F is said to be a strict Lyapunov
function if:

∀y 6= y∗,
d

dt
F(yt) < 0

In that case, the yt will converge to a minimum of F if ξ is
locally Lipschitz and if F is a continuously differentiable
function. The function F is said to be a strong Lyapunov

function if:
d

dt
F(yt) ≤ −βF(yt), β > 0

In this case, the yt will converge to a minimum of F at an
exponentially fast rate F(yt) ≤ F(y0) exp(−βt).

Monotone games. In the general case of monotone
games, the reward that for any µ preserves the monotonicity
is: (see proof in section F)

riπ(h, a) = ri(h, a)−
η1i=τ(h)

ρπ−i(h)
log

π(a|x(h))

µ(a|x(h))

An immediate corollary of lemma 3.1 is:
Corollary 5.1. In monotone games, the reward transforma-
tion riπ(h, a) = ri(h, a)− η1i=τ(h)

ρπ−i (h)
log π(a|x(h))

µ(a|x(h)) considered
above implies that J will be decreasing:

d
dtJ(y) ≤ −η

N∑
i=1

∑
h∈Hi

ρπ
∗i

(h)KL(π∗(.|x(h)), πt(.|x(h)))

Finally, if the regularizer φi is the en-
tropy, we can show that the Ξ(π∗, πt) =
N∑
i=1

∑
h∈Hi

ρπ
∗i

(h)KL(π∗(.|x(h)), πt(.|x(h))) is a strong

Lyapunov function:
Theorem 5.1. If the regularizer φi is the entropy:

d

dt
Ξ(π∗, πt) ≤ −ηΞ(π∗, πt)

it implies: Ξ(π∗, πt) ≤ Ξ(π∗, π0) exp(−ηt) (proof in ap-
pendix C)

This method thus introduces a trade-off between the speed
of convergence of the algorithm and the transformation we
make to the reward (which has an impact on the equilibrium
of the transformed game).

Zero-sum two-player games. Whilst the above approach
can be applied to all monotone games, the following reward
can be applied specifically to zero-sum games. For any µ,
this reward keeps the zero-sum property (see appendix F)
and is more prone to sample based methods as the 1

ρπ−i (h)

is not involved (with x being x(h) and δh,i = 1i=τ(h)),

riπ(h, a) = ri(h, a) + η(1− 2δh,i) log
π(a|x)

µ(a|x)

And in that case:
Corollary 5.2. We have:

d

dt
J(y) ≤

− η
N∑
i=1

∑
h∈Hi

ρπ
∗i

(h)ρπt
−i

(h)KL(π∗(.|x(h)), πt(.|x(h)))
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And here, if the regularizer φi is the en-
tropy, we can show that the Ξ(π∗, πt) =
N∑
i=1

∑
h∈Hi

ρπ
∗i

(h)KL(π∗(.|x(h)), πt(.|x(h))) is a strict

Lyapunov function:
Theorem 5.2. If the regularizer φi is the entropy:

d

dt
Ξ(π∗, πt) ≤ −ηζΞ(π∗, πt)

with ζ = min
x∈X

min
π=arg maxp Λ(p,y) and J(y)≤J(y0)

∑
h∈x

ρπ
−i

(h)

This imply that: Ξ(π∗, πt) ≤ Ξ(π∗, π0) exp(−ζηt)

Proof. The proof follows by combining corollary 5.2 and
the result in appendix C.

In summary, we saw in this section that exponential conver-
gence rates can be achieved in continuous time in imperfect
information games using reward transformation.
Remark. Corrolary 5.1 and 5.2 are valid for all Nash of the
transformed game. This means that for all η, the Nash eq. of
the transformed game is unique. This uniqueness property
is necessary to define the process of the next section.

6. Convergence to an Exact Equilibrium
The previous section introduced a reward transformation
(by adding a policy dependent term riπ(h, a) = ri(h, a)−
η1i=τ(h)

ρπ−i (h)
log π(a|x(h))

µ(a|x(h)) ) to ensure exponential convergence in
games. However this method does not ensure convergence
to the equilibrium of the game defined on ri(h, a). In this
section, we study the sequence of policies starting from
π0, being the uniform policy, and πk the solution of the
game with the reward transformation riπ(h, a) = ri(h, a)−
η1i=τ(h)

ρπ−i (h)
log π(a|x(h))

πk−1(a|x(h)) . Intuitively, this approach entails
that the policy πk will be searched close to the previous
iterate πk−1 (we write πk = F (πk−1)).
Lemma 6.1. Then for any Nash equilibrium of the game
π∗, we have the following identity for the sequence of policy
πk:

Ξ(π∗, πk)−Ξ(π∗, πk−1) = −Ξ(πk, πk−1)+
1

η

N∑
i=1

(mi
k+δik+κi

k)

Where:

Ξ(µ, π) =

N∑
i=1

∑
h∈Hi

ρµ
i

(h)KL(µ(.|x(h)), π(.|x(h)))

Where:

κik =
∑
x∈X i

ρπ
∗i

(x)ρπ
−i
k (x)×

∑
a∈A

[
π∗i(a|x(h))− πk(a|x(h))

]
kQiπk(x, a) ≤ 0

Figure 2. The left plots illustrate the monotone reward transform
whilst the right plot illustrate the direct convergence method shown
in section 6 where we change the reward every 40000 steps (rf is
the value of the parameter η and lr is the time discretization).

Where: δik = V i
πik,π

∗−i(hinit)− V iπ∗(hinit) ≤ 0

And where:

mi
k = V iπk(hinit)− V iπ∗i,π−ik (hinit)− V iπik,π∗−i(hinit)

+ V iπ∗(hinit)

And where
N∑
i=1

mi
k ≤ 0 if the game is monotone (proof in

appendix D).

Theorem 6.1. In a monotone game with all Nash equilib-
rium being interior, the sequence of policy {πk}k≥0 (or
{F k(π0)}k≥0) converges to a Nash equilibrium of the game
(proof in appendix H).

Remark. We were only able to prove this result for interior
Nash but we conjecture that it is still true for non interior
Nash equilibrium.

7. Empirical evaluation
It has already been empirically noted that regularization
helps convergence in games (Omidshafiei et al., 2019). Ear-
lier work (Srinivasan et al., 2018) also provides experiments
where the current policy converges in Leduc Poker, whilst
the paper only proves convergence analysis of the average
policy. Our work sheds a new light on those results as
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the convergence may have been the result of high regular-
ization (the entropy cost added in (Srinivasan et al., 2018)
appendix G was 0.1). The experiments will show how re-
ward transform can be used to improve the state of the art
of reinforcement Learning in Imperfect Information Games.
To keep our implementation as close as possible to FoReL,
we use the NeuRD policy update (Omidshafiei et al., 2019),
a retrace update to estimate the Q-function. In order to keep
our estimate of the return unbiased, we use that learned
Q-function as a control variate as in (Schmid et al., 2019).
The details of the algorithm are in appendix J. We present
results on four games: Kuhn & Leduc Poker, Goofspiel
and Liars Dice, which have respectively 12, 936, 162 and
24,576 information states. We evaluate all our policies us-
ing the NashConv metric (Lanctot et al., 2017) defined as
NashConv(π) =

∑N
i=1 maxπ′i V

i
π′i,π−i

(hinit)−V iπ(hinit).

In this section, we highlight two results with function ap-
proximation and illustrate the theory with tabular experi-
ments on Kuhn Poker (figure 2). A more complete empirical
evaluation and the precise description of the setting is avail-
able in appendix K.

7.1. Experiment with a Decaying Regularization

We found that decaying the regularization η exponentially
from an initial value ηmax = 1 to a target value (we looked
at values {1.0, 0.5, 0.2, 0.05, 0.01, 0.0}) is an effective em-
pirical method. In figure 3 (top plot), we represent the
NashConv as a function of the number of steps. We achieve
our best performance for η = 0.05 with a NashConv of 0.10.
This outperforms the results of NFSP (Heinrich & Silver,
2016), which has a best result of 0.12 in NashConv (0.06 of
exploitability reported in the paper) and the state of the art
algorithms implemented in Openspiel, which are no better
than 0.2 in NashConv (this difference can be explaines by
the fact that the implementation of Leduc Poker in the NFSP
paper uses card isomorphism while in this paper we don’t).
However, for low choices of η the algorithm might diverge.

7.2. Iteration over the Regularization

As we have seen in section 6, the convergence to an
exact equilibrium can be achieved by iteratively adapt-
ing the the reward. In the experiment (Fig. 3 bottom
plot), we change the reward periodically every N -steps
between steps [kN, kN + N

2 ] we linearly interpolate be-
tween riπ(h, a) = ri(h, a) − η1i=τ(h)

ρπ−i (h)
log π(a|x(h))

πkN (a|x(h)) and

riπ(h, a) = ri(h, a) − η1i=τ(h)

ρπ−i (h)
log π(a|x(h))

π(k−1)N (a|x(h)) and in

interval [kN+ N
2 , (k+1)N ] we use the transformed reward

riπ(h, a) = ri(h, a) − η1i=τ(h)

ρπ−i (h)
log π(a|x(h))

πkN (a|x(h)) . As shown
in Fig. 3 (bottom plot), this technique allows convergence
for very high η. This is quite an advantage as the method

Figure 3. The precise setup used is described in appendix J. The
top plot shows results on Leduc poker improving over the NFSP
results using a decay of the regularization η. The bottom plot uses
a fixed regularization and adapts the reward every 7.5e4 steps as
described in section 7.2.

Leduc Kuhn Liars Dice GoofSpie(4)
NFSP 0.16 0.02 0.25 0.14

Deep CFR 0.23 0.009 0.19 0.25
Q-learning 2.44 0.33 0.94 2.0

PSRO 0.17 0.002 0.28 0.23
NeuRD 0.10 0.02 0.25 0.22

Figure 4. Comparison of the best NashConv obtained for the best
set of parameters between regularized NeuRD, NFSP, Deep CFR,
Q-learning and PSRO. The sweep used is described in Appendix.L

will be more robust to the choice of that hyper-parameter.

8. Conclusion
We generalize the Poincaré recurrence result for FoReL
from 2-player normal-form zero-sum games to sequential
imperfect information games with a monotonicity condition.
Although this is a generalization of a negative convergence
result, we show that several reward transformations can
guarantee convergence to a slightly modified equilibrium.
We also show how to recover the original equilibrium of
the game (when it is interior). Finally, based on these tech-
niques we improve the state-of-the-art in model-free deep
reinforcement learning in imperfect information games.

Since this work only focuses on FoReL, we aim to analyze
the behavior of other dynamics in the sequential case from
a dynamical systems perspective in future work. Fictitious
play or softmax Q-learning have been theoretically consid-
ered in normal form games and their analysis with Lyapunov
methods remains to be done in the IIG case. Furthermore,
the role of regularization for convergence in games needs
to be studied more systematically in other settings. Ideas
like regularization could also be studied in for example
Generative Adversarial Networks.
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