
Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

am+1 am+j a2ma1 aj am

am+1 am+j a2m

a1 aj amak+1=a1
′

am
′

am+1 a2mam+k+1 a2m
′

u1 uj um

ℓ1 ℓj ℓm

≤ ≤

u1 uj umuk

≤

ℓ1 ℓj ℓmℓk

≤

(a) (b) (c) (d)

Figure 6: Bitonic merge turns a bitonic input sequence into two bitonic output sequences, with all elements in the one

(upper, ui) sequence larger than all elements in the other (lower, ℓi) sequence. The diagrams show the vertical alignment of

elements to compare (a) and the invariance to cyclic permutations (b). Depending on the values in (a), no exchanges (c) or

exchanges (d) are executed.

A. The Bitonic Sorting Network

In the following, we detail the bitonic sorting network and

sketch a proof of why the bitonic sorting networks sorts:

A bitonic sequence is sorted by several bitonic merge

blocks, shown in orange and green in Figure 2. Each block

takes a bitonic input sequence a1a2 . . . a2m of length 2m
and turns it into two bitonic output sequences ℓ1ℓ2 . . . ℓm
and u1u2 . . . um of length m that satisfy maxmi=1 li ≤
minmi=1 ui. These subsequences are recursively processed

by bitonic merge blocks, until the output sequences are of

length 1. At this point, the initial bitonic sequence has been

turned into a monotonic sequence due to the minimum/max-

imum conditions that hold between the output sequences

(and thus elements).

A bitonic merge block computes its output as ℓi =
min(ai, am+i) and ui = max(ai, am+i). This is depicted

in Figure 2 by the arrows pointing from the minimum to

the maximum. To demonstrate that bitonic merge works,

we show that this operation indeed produces two bitonic

output sequences for which the relationship maxmi=1 li ≤
minmi=1 ui holds.

Note that neither a cyclic permutation of the sequence (a′i =
a(i+k−1 mod 2m)+1 for some k, Figure 6b), nor a reversal,

change the bitonic character of the sequence. As can be

seen in Figure 6b, even under cyclic permutation still the

same pairs of elements are considered for a potential swap.

Thus, as a cyclic permutation or a reversal only causes the

output sequences to be analogously cyclically permuted or

reversed, this changes neither the bitonic character of these

sequences nor the relationship between them. Therefore,

it suffices to consider the special case shown in Figure 6a,

with a monotonically increasing sequence (orange) followed

by a monotonically decreasing sequence (green) and the

maximum element aj (gray) in the first half. Note that in

this case ∀i; j ≤ i ≤ m : ai ≥ am+i∧ui = ai∧ℓi = am+i.

For this case, we have to distinguish two sub-cases:

a1 ≥ am+1 and a1 < am+1.

If, on one hand, a1 ≥ am+1, we have the situation shown

in Figure 6c: the output sequence u1u2 . . . um is simply the

first half of the sequence, the output sequence ℓ1ℓ2 . . . ℓm
is the second half. Thus, both output sequences are bitonic

(since they are subsequences of a bitonic input sequence)

and minmi=1 ui = min(u1, um) ≥ ℓ1 = maxmi=1 ℓi.

If, on the other hand, a1 < am+1, we can infer ∃k; 1 ≤
k < j : ak > am+k ∧ ak+1 ≤ am+k+1. This situation is

depicted in Figure 6d. Thus, ∀i; 1 ≤ i ≤ k : ui = am+i ∧
ℓi = ai and ∀i; k < i≤m : ui = ai ∧ ℓi = am+i. Since

uk = am+k > ak = ℓk, uk = am+k ≥ am+k+1 = ℓk+1,

uk+1 = ak+1 ≥ am+k+1 = ℓk+1, uk+1 = ak+1 ≥ ak = ℓk,

we obtain maxmi=1 li ≤ minmi=1 ui. Figure 6d shows that

the two output sequences are bitonic and that all elements

of the upper output sequence are greater than or equal to all

elements of the lower output sequence.

B. Implementation Details

B.1. MNIST

For the MNIST based task, we use the same convolutional

neural network architecture as in previous works (Grover

et al., 2019; Cuturi et al., 2019). That is, two convolutional

layers with a kernel size of 5×5, 32 and 64 channels respec-

tively, each followed by a ReLU and MaxPool layer; after

flattening, this is followed by a fully connected layer with a

size of 64, a ReLU layer, and a fully connected output layer

mapping to a scalar.

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

B.2. SVHN

For the SVHN task, we use a network with four convolu-

tional layers with a kernel size of 5×5 and (32, 64, 128, 256)

filters, each followed by a ReLU and a max-pooling layer

with stride 2× 2; followed by a fully connected layer with

size 64, a ReLU, and a layer with output size 1.

B.3. Fast Sort & Rank

To evaluate the fast sorting and ranking method by Blondel

et al. (2020), we used the mean-squared-error loss between

predicted and ground truth ranks as this method does not

produce differentiable permutation matrices.

B.4. Top-k Supervision

For top-k supervision, we use ResNet18 as well as a Vanilla

CNN with 4 convolutional and 2 fully connected lay-

ers. The vanilla CNN is has the following architecture:

C16-BN-R-C32-BN-R-Max2-C64-BN-R-C128-BN

-R-Max2-F256-Fc where Ck denotes a convolutional

layer with k output channels, a 3× 3 kernel, and padding

of 1, BN denotes BatchNorm (Ioffe & Szegedy, 2015), R

denotes ReLU, Max2 denotes MaxPool with a 2× 2 kernel,

and Fk denotes a fully connected layer with k outputs. This

vanilla CNN is inspired from Blondel et al. (2020). We

train each model using Adam (Kingma & Ba, 2015) for 500
epochs at a learning rate of 10−3.

C. Standard Deviations of the Results
Tables 7, 8, 9, 10, and 11 display the standard deviations for

the results in this work.

Table 7: Same as Table 1 but with additional standard deviations.

MNIST n = 3 n = 5 n = 7 n = 8 n = 15

Fast Sort & Rank 90.6 | 93.5 | 73.5 71.5 | 87.2 | 71.5 49.7 | 81.3 | 70.5 29.0 | 75.2 | 69.2 2.8 | 60.9 | 67.4
±0.4 | ± 0.3 | ± 0.8 ±0.9 | ± 0.4 | ± 0.9 ±0.6 | ± 0.3 | ± 0.4 ±1.1 | ± 0.6 | ± 0.7 ±0.2 | ± 0.4 | ± 0.6

Odd-Even 95.2 | 96.7 | 86.1 86.3 | 93.8 | 86.3 75.4 | 91.2 | 86.4 64.3 | 89.0 | 86.7 35.4 | 83.7 | 87.6
±0.3 | ± 0.2 | ± 0.6 ±0.9 | ± 0.4 | ± 0.9 ±1.8 | ± 0.6 | ± 0.9 ±1.8 | ± 0.6 | ± 1.1 ±1.8 | ± 0.5 | ± 0.5

MNIST n = 2 n = 4 n = 8 n = 16 n = 32

Odd-Even 98.1 | 98.1 | 84.3 90.5 | 94.9 | 85.5 63.6 | 87.9 | 83.6 31.7 | 82.8 | 87.3 1.7 | 69.1 | 86.7
±0.3 | ± 0.3 | ± 0.9 ±1.2 | ± 0.6 | ± 1.5 ±11.6 | ± 4.2 | ± 6.1 ±1.5 | ± 0.5 | ± 0.5 ±0.5 | ± 1.5 | ± 1.0

Bitonic 98.1 | 98.1 | 84.0 91.4 | 95.3 | 86.7 70.6 | 90.3 | 86.9 30.5 | 81.7 | 86.6 2.7 | 67.3 | 85.4
±0.2 | ± 0.2 | ± 1.2 ±0.6 | ± 0.3 | ± 0.4 ±4.4 | ± 1.3 | ± 1.8 ±1.8 | ± 1.2 | ± 0.9 ±1.3 | ± 2.7 | ± 1.7

Table 8: Same as Table 2 but with additional standard deviations.

SVHN n = 2 n = 4 n = 8 n = 16 n = 32

Det. NeuralSort 90.1 | 90.1 | 39.9 61.4 | 78.1 | 45.4 15.7 | 62.3 | 48.5 0.1 | 45.7 | 51.0 0.0 | 29.9 | 52.7
±0.7 | ± 0.7 | ± 1.7 ±0.8 | ± 0.3 | ± 1.2 ±1.6 | ± 1.2 | ± 1.6 ±0.1 | ± 0.6 | ± 1.2 ±0.0 | ± 1.4 | ± 1.5

Optimal Transport 85.5 | 85.5 | 25.9 57.6 | 75.6 | 41.6 19.9 | 64.5 | 51.7 0.3 | 47.7 | 53.8 0.0 | 29.4 | 53.3
±0.0 | ± 0.0 | ± 0.0 ±1.1 | ± 0.8 | ± 1.8 ±1.9 | ± 1.1 | ± 1.2 ±0.2 | ± 1.7 | ± 1.4 ±0.0 | ± 1.0 | ± 1.9

Fast Sort & Rank 93.4 | 93.4 | 57.6 58.0 | 75.8 | 41.5 8.6 | 52.7 | 34.4 0.3 | 36.5 | 41.6 0.0 | 14.0 | 27.5
±0.7 | ± 0.7 | ± 3.7 ±1.1 | ± 0.7 | ± 1.0 ±1.0 | ± 0.6 | ± 0.3 ±0.2 | ± 1.4 | ± 1.8 ±0.0 | ± 3.1 | ± 9.1

Odd-Even 93.4 | 93.4 | 58.0 74.8 | 85.5 | 62.6 35.2 | 73.5 | 63.9 1.8 | 54.4 | 62.3 0.0 | 36.6 | 62.6
±0.4 | ± 0.4 | ± 2.0 ±1.2 | ± 0.7 | ± 1.1 ±1.2 | ± 0.5 | ± 1.1 ±0.8 | ± 1.6 | ± 1.6 ±0.0 | ± 1.5 | ± 0.8

Bitonic 93.8 | 93.8 | 58.6 74.4 | 85.3 | 62.1 38.3 | 75.1 | 66.8 3.9 | 59.6 | 66.8 0.0 | 42.4 | 67.7
±0.3 | ± 0.3 | ± 0.8 ±0.7 | ± 0.3 | ± 1.1 ±2.4 | ± 1.1 | ± 1.4 ±0.3 | ± 0.8 | ± 1.4 ±0.0 | ± 3.5 | ± 3.6

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Table 9: Same as Table 3 but with additional standard deviations.

λ 0.25 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

n 32 32 64 128 256 512 1024 32 64 128 256 512 1024

batch size 128 128 64 32 16 8 4 4 4 4 4 4 4

s = 30 78.20 79.89 81.25 82.50 82.05 82.50 82.80 71.08 75.88 79.43 81.46 82.98 82.80

±2.35 ±1.97 ±1.93 ±1.09 ±2.62 ±1.75 ±2.27 ±1.67 ±2.30 ±2.35 ±1.47 ±2.02 ±2.27

s = 32.5 76.98 79.62 81.66 80.15 81.87 82.64 81.63 72.31 75.59 79.71 81.36 82.99 81.63

±0.86 ±3.62 ±2.42 ±3.84 ±2.19 ±1.60 ±6.22 ±2.04 ±2.05 ±1.57 ±1.98 ±1.67 ±6.22

s = 35 77.45 80.93 81.26 80.72 81.42 81.51 81.15 71.15 75.73 78.81 79.32 82.30 81.15

±1.64 ±2.75 ±2.41 ±3.89 ±2.09 ±2.12 ±3.12 ±1.69 ±2.46 ±1.36 ±4.85 ±1.22 ±3.12

s = 37.5 76.40 80.02 80.05 81.50 80.05 82.67 80.07 70.69 75.80 79.11 80.64 82.70 80.07

±3.90 ±1.74 ±1.93 ±2.03 ±3.94 ±2.21 ±3.67 ±2.26 ±1.22 ±1.88 ±2.18 ±1.66 ±3.67

s = 40 77.69 80.97 80.23 81.55 79.75 81.89 81.15 70.20 74.67 78.14 80.06 81.39 81.15

±1.54 ±2.03 ±3.51 ±1.97 ±5.41 ±2.51 ±3.31 ±2.06 ±2.45 ±2.49 ±1.93 ±1.67 ±3.31

mean 77.35 80.29 80.89 81.28 81.03 82.24 81.36 71.09 75.53 79.04 80.57 82.47 81.36

±2.06 ±2.48 ±2.48 ±2.80 ±3.48 ±2.03 ±3.97 ±2.00 ±2.10 ±1.97 ±2.77 ±1.71 ±3.97

best s 78.20 80.97 81.66 82.50 82.05 82.67 82.80 72.31 75.88 79.71 81.46 82.99 82.80

±3.90 ±3.62 ±3.51 ±3.89 ±5.41 ±2.51 ±6.22 ±2.26 ±2.46 ±2.49 ±4.85 ±2.02 ±6.22

worst s 76.40 79.62 80.05 80.15 79.75 81.51 80.07 70.20 74.67 78.14 79.32 81.39 80.07

±0.86 ±1.74 ±1.93 ±1.09 ±2.09 ±1.60 ±2.27 ±1.67 ±1.22 ±1.36 ±1.47 ±1.22 ±2.27

Table 10: Same as Table 5 but with additional standard deviations.

n = 4 n = 32

Setting / λ 0 0.25 0 0.25

Odd-Even (MNIST) 94.5± 0.3 94.9± 0.6 61.5± 1.9 69.1± 1.5

Bitonic (MNIST) 93.6± 1.4 95.3± 0.3 62.8± 15.5 67.3± 2.7

Odd-Even (SVHN) 77.3± 1.0 85.5± 0.7 28.5± 2.7 36.6± 1.5

Bitonic (SVHN) 78.1± 0.2 85.3± 0.3 35.0± 0.8 42.4± 3.5

Table 11: Same as Table 6 but with additional standard deviations.

Setting Softmax CE Diff. Top-k

CIFAR-10, Vanilla CNN 87.2%± 0.2% 88.0%± 0.4%

CIFAR-10, ResNet18 91.0%± 0.3% 90.9%± 0.2%

CIFAR-100, Vanilla CNN 58.2%± 0.3% 56.3%± 0.5%

CIFAR-100, ResNet18 61.9%± 0.4% 63.3%± 0.6%

