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Notations and conventions. We denote by B(R?) the Borel o-field of R?, M[(R?) the set of all Borel measurable functions
fonRL | fll.. = supyepra |f(x)| and|-|| the Euclidean norm on R¢. For 4 a probability measure on (R?, B(R?)) and
f € M(R?) a p-integrable function, denote by u(f) the integral of f with respect to (w.r.t.) u. Let y and v be two
sigma-finite measures on (R%, B(R%)). Denote by 1 < v if 41 is absolutely continuous w.r.t. v and dy/dv the associated
density. Let p, v be two probability measures on (R¢, B(R?)). Define the Kullback-Leibler (KL) divergence of y from v by

fra 360 10g () dvx) , ifp <

400 otherwise.

KL(ulv) =
In addition, define the Pearson x2-divergence of y from v by

2
luly) = Jga (%(x) - 1) dv(x), ifpu<v

+o0 otherwise.

We say that ( is a transference plan of  and v if it is a probability measure on (R? x R? B(R¢ x R%)) such that for all
measurable set A of R, ((A x R%) = u(A) and ((R? x A) = v(A). We denote by T (i, /) the set of transference plans of
w and v. Tn addition, we say that a couple of R%-random variables (X, Y") is a coupling of 1 and v if there exists ¢ € T (1, v)
such that (X, Y") are distributed according to (. Let M be a d x d symmetric positive definite matrix. Denote (, ), the scalar
product corresponding to M, defined for any x,y € R? by (x,y)nm = x ' My. Denote || - || the corresponding norm. We
denote by P (R?) the set of probability measures with finite 2-moment: for all 1 € P2(R%), [o, [|Ix]|? du(x) < co. We
define the Wasserstein distance of order 2 associated with || - ||nr for any probability measures p, v € Pa(R?) by

Warn) = _inf [ - ylRaddiey).
CET (1,v) JRd xRd

In the case when M = I;, we will denote the Wasserstein distance of order 2 by W5. By Villani (2008, Theorem 4.1), for all
4, v probability measures on R, there exists a transference plan (* € T (u, ) such that for any coupling (X, Y) distributed
according to ¢*, W (u, v) = E[||x — y||3,]'/2. This kind of transference plan (respectively coupling) will be called an
optimal transference plan (respectively optimal coupling) associated with Wys. By Villani (2008, Theorem 6.16), P2 (R%)
equipped with the Wasserstein distance Wy is a complete separable metric space. The total variation norm between two
probability measures z and v on (R, B(R?)) is defined by

”,U*VHTV = sup
FEM(R) || fl| <1
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For the sake of simplicity, with little abuse, we shall use the same notations for a probability distribution and its associated
probability density function. For a Markov chain with transition kernel P on R? and invariant distribution 7, we define the
e-mixing time associated to a statistical distance D, precision € > 0 and initial distribution v, by

tmix(€; V) = min {t >0 | D(vP', 1) < 5} ,

which stands for the minimum number of steps of the Markov chain such that its distribution is at most at an € D-distance
from the invariant distribution . For n > 1, we refer to the set of integers between 1 and n with the notation [n].
The d-multidimensional Gaussian probability distribution with mean g and covariance matrix X is denoted by N(p, 32).
When p = 04 and X = I, the associated probability density function is denoted by by ¢4. Let F : R? — Rbea
twice continuously differentiable function, denote A the vector Laplacian of F defined, for all z € RY, by AF( ) =

{3 (82Fy)(x)/022}_,. For 0 < i < j, we use the notation u,.; to refer to the vector [u;,--- u/]" built by
stacking j — i + 1 vectors (ug; k € {i,---,j}). For a given matrix M € R?*9 we denote its smallest and largest
eigenvalues by Apin (M) and Apax (M), respectively. Fix b € N* and let My, ..., M, be d-dimensional matrices. We
denote [T)_, My = M ... M, if i < j and with the convention [[;_, M, = I if i > j. Forany b € N*, (d;);ep) € (N*)°
and (M;);c() € ®iepRY*%, we denote diag(My, ..., M,) the unique matrix M € R(X: di)x (2 i) satisfying for any

b .
u=(u,...,u) € R x ... x R% Mu = "/, M;u; which corresponds to
M; 04,4, e 04,.d,
0d2,d1
M =
Odb—hdb
0db7d1 e Odmdba M,

For any v € R?, define the block diagonal matrix
D, = diag (v1 - Ly, ..., v - Ig,) € RP*P (S1)

For any symmetric matrices S1, Sy € RP*P, we note S; < Sy if and only if, for any u € R?, we have uT(Sg —Si)u>0.
Let (X, X) and (Y, )) be two measurable spaces, we say that a transition probability kernel on (Y x X) x ) is a conditional
Markov kernel. One elementary step in most Gibbs samplers corresponds to a conditional Markov kernel.

S1. Proof of Proposition 1

Letb e b—1],p = Z?:b’-H d; and consider

b
By = (AL 1/0y - AL /) € ROV By =BlBy= > {ATAi/p} R (52
i=b'+1

Note that under H1, By is invertible. Indeed, it is a symmetric positive definite matrix since for any 8 € R4, <Bb/0, 0> >

[min; e p; 1]<Zf:b, 1A A;0,0) > 0 using that Z?:b, +1A] A, is invertible. Define the orthogonal projection onto
the range of By and the diagonal matrix:

Pb/ = Bb/BEIBJ s Db/ = diag(Idb,H /pb’+17 N 7Id1,/Pb) . (S3)

S1.1. Technical lemma

Lemma S1. Assume HI. For any (0,zy 11.) € R% x R”, setting z = Zy 11:p, we have

b
> {Hzi—Aie\P/pi}—( D,’z) {1, — Py }(D,’z)

i=b'+1
+(6—B;'B]D,;/*z) By (6 — B, 'B,D,)’z) .
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Proof. Setting b = B;:D '*z and using the fact that By, is symmetric, we have

b

b
S {llz - A0/} =0"Bro—20"b+ 3 il /i

i=b'+1 i=b'+1
b
Y lzill* /i =B, b+ (6 — B, 'b) "By (6 — B, 'b) .
i=b'+1

Using that bTBl;lb = (D;{QZ)TPV (ﬁz{zz) and Py is a projection, P? = Py, completes the proof. O

S1.2. Proof of Proposition 1

Proposition S2. Assume HI. Then, the function ¢ : (0,21.,) — Hszl exp{—U;(z;) — ||z; — A;i0||?/(2p;)} is integrable
on R% x RP, where p = Z?Zl d;

Proof. Using H1 and the Fubini theorem, there exists C; > 0 such that:

b

2
R e 0y el
H “ i dzg - H e Vil%ile 2p; dz; | do
R |3 R R%

j=b'+1

<c lepeel H Uj(3)), —L_A d dz;| do
J .
I/Rd H/]Rd /]RJ %

j=b'+1
b

b/
§01H(27tpi)di/2/ 1T /Rdj e~ Vi) exp (—sz —Ajey|2/(2pj)) dz; | do

i=1 Rd j=b+1
b’ b z—a 0|

=C H(Qﬂpi)diﬂ/ / Ui(=3) / H e TH do| dzy 1 - (54)
=1 Rdb/+1 R

b/+1 j=b'+1
Using Lemma S1 and the fact that I,; — Py is positive definite, we obtain

/ H exp —sz A, 0“ /(2p;) ) do

_b/+1
— exp (—(D;{ZZ)T{IP/ — Py} (D) 2) /2)
y / exp (~(0 — By B D7) "By (6~ By B/ D} 7)/2) a0
Rd
< det (By)~"/* (2m) /2,

Then, the proof is completed by plugging this expression into (S4) and using from HI that zy/ 1., — H?:b/ 41 e Vi) js
integrable. 0
S2. Proof of Proposition 2

This section aims at proving Proposition 2 in the main paper. To ease the understanding, we dissociate the scenarios where
max;cpp IV; = 1 and max;e[p; N; > 1. In addition, in all this section p € (R*.)" is assumed to be fixed.

S2.1. Single local LMC iteration

In this section, we assume that a single LMC step is performed locally on each worker, that is max;c[;; N; = 1. For this,
we introduce the conditional Markov transition kernel defined for any v = (71,...,%), @ € R, z = (21, ,2) €
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R4 x .- x R%, and fori € [b], B; € B(R%), by

b
Qp (z7 By x---x Bb|0) = HRpmi(Zu Bil6) , (85)

where
dz;
(4rey;)4i/2

(56)

1
RPi,%(ZiaBile) :/ exp _4
Bi

)

Recall that p = Z 1 d;. The considered Gibbs sampler in Algorithm 1 defines a homogeneous Markov chain X =
0}, 27 )n>1 where Z,) Al ([ZL T, ,[Z28]T). Indeed, it is easy to show that for any n € N and measurable bounded
(Zn+1 \X fRP 2)Qp ~(Z,,dz|0,,) and therefore (X, )nen is associated with the Markov

function f : RP — R+,
(07,27) € RY x R” and A € B(R?), B € B(R?), by

Lf
kernel defined, for any x "

P,~(x,AxB) = /B Qp~ (2,dz|0) / 11,(d0)z) , (S7)

A

where I1,(-|Z) is defined in (5). Let (§,,),>1 be a sequence of i.i.d. d-dimensional standard Gaussian random variables
independent of the family of independent random variables {(n},),>1 : i € [b]} where forany i € [b] andn > 1,7} isa
d;-dimensional standard Gaussian random variable. We define the stochastic processes (X,,, X, )n>0 on RP x RP? starting

from (X, Xo) = (x,%) = ((87,27)7, (éT, z ")) and following the recursion for n > 0,

Xnt1 = (9;:+1a Zr—errl)T ) XnJrl = (é;rJrl»ZJJrl)T ’ (S8)
where Z,1 = ([Z2 4] (2000 T Zogr = (22447, .., [28.1]T) T are defined, for any i € [b], by
Zh = (L=/pi) Zi + (i) pi) Aib — % VU(Z}) + /29im0 11 (S9)

Ziy= (L =7i/p) Zi + (i) pi) Aibr — viVU(ZL) + /2y 11
and 9n+17 én+1 by
Oni1 =By B Dy Zoi1 + By *¢nsr s 01 =By BDY Zoiy + By P (S10)

where By, B and ]50 are given in (S2) and (S3), respectively. Note that X,, and X,L are distributed according to éxPp ~

and 8z P, ., respectively. Hence, by definition of the Wasserstein distance of order 2, it follows that

Py

- 1/2
Wa(8xPpy, 85Pp) < B [|1X - Xo2] . (S11)

Thus, in this section we focus on upper bounding the squared norm || X,, — X, || from which we get an explicit bound on the
Wasserstein distance thanks to the previous inequality.

S2.1.1. SUPPORTING LEMMATA

Note that HI implies the invertibility of the matrix By defined in (S2) since we have the existence of b’ € [b — 1], such
that Z?:b/ 1 Amin(A{ A;)/p; > 0 and by the semi-positiveness of the symmetric matrices {A A;};cp, we get that
Amin(Bo) = Zl;:l Amin (A A)/pi > Z?:b/-u Amin (A A;)/pi. To prove Proposition 2 in the case max;ep) Ni = 1,
we first upper bound (S83) by building upon the following two technical lemmas.

Lemma S3. Assume HI and consider (X, Xn)neN defined in (S8). Then, for any n € N, it holds almost surely that
1
| Xns1 = X1 |2 < (14 By "By D21 Zns1 = Zoia |
Proof. Letn > 0. By (S10), we have 6,,,1 — én+1 = BalBgﬁE} (Zpsr — Zn+1) which implies that

~ ~ 1/2
HXn—&-l - Xn-H”2 = ||‘9n+1 - 9n,+1H2 + HZn-&-l n+1||2 (1 + ||B 1BTD/ || )HZW-H n+1||2



DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm

Define the contraction factor

Foy = maxiepy) {11 —vimal V[1—~(Mi +1/p;)|} - (512)

Then, the following result holds.

Lemma S4. Assume HI-H2 and let v € (R?.)". Then for anyx = (z", 0T, x= (27,0 )7, with (6,0) € (R))? and
(z,%) € (RP)?, for any n > 1, we have

Py ¥

1/2
- _ ~ max; b]{’Yi}
Wo(8x P2, 85 P2 ) < K 1-<1+ B; "By D"’ a)
2( p-,“/) ( 1B " Bo Dy %) mlnie[b]{%}
x [yllz = 2]l + D5, B0 16 - 1] .

where Dy /5 is defined as in (S1) with ¥/vVP = (Mm /pi/z, . ,%/p;/Q), By, By, P,  and k.~ are given in (S2), (S7),
(S12), respectively.

Proof. Consider (X, X;,)ren defined in (S8). By (S83) and Lemma S3, we need to bound (|| Zx — Zi|)xen. Let n € N*.
For any ¢ € [b], we have by (S9), that

Zhsr = Zhi = (1= %)(zﬁl ~Zi)+ %Ai(ﬂn ~0a) =7 (VUL(Z5) = VUIZL)) - (S13)
Since U; is twice differentiable, we have

1
VUL(ZE) — VUL(ZE) = / VRUL(ZE + (28— Zi))dt - (28— 7).
0

Using 0, — 0, = BalBgf)(I)/z(Zn — Z,), it follows that

. 1 ~ . . ~ . . ~ .
Zi — 7, = ({1 — %}Idi - %/ V2UI(Z), + t(Z;, — Z;))dt) (2, — Z})
? 0

+ L AB'BID*(Z, — Z) -
Pi

Consider the p x p block diagonal matrix defined by

1 1
Dy, = diag <71 / VAULZ) + (2, — Z)))dt, -+ / VQUZ,(Z,’;H(ZZ—ZZ))dt) :
0 0

With the projection matrix P defined in (S3), the difference Z,,+1 — Z,,+1 can be rewritten as

Z7L+1 - Zn+1 - (Ip - DU,n - Diy/zDiY//Qp(Ip - PO)f)(l)/2> (ZTL - Zn) B}

where D/, is defined as in (S1) withv/p = (v1/p1, - ..,/ ps). Since Dy, commutes with Dy and Py is an orthogonal
projection matrix, using H2-(i)-(ii), we get

||Zn+1 - Zn—&-lHD;l

= D5 (DYD; Y~ DDy D3~ DYDY, ~ Po)D:, DY), — 2|

<|t, - Dy — DL}, (L, = Po) DL |1 Z0 = Zullp- -

y/p

Note that H1 and H2 and the fact that P is an orthogonal projector, so 0,, < I, — Py, imply that

diag({1 — 71 (M + 1/p1) YLy, {1 = w(My + 1/pp)}1a,) < I, = Dy = DY (L, = Po) D7

< diag ({1 = v} Loy, {1 = wmp} L, )
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Therefore, we get
1Znt1 = Zntillpzr < el {max(|1 —vimil, |1 = 7 (M; + 1/pi) )} 1 Zn = Zulip:
= Ky || Z0 — ZHHD;I . (S14)
An immediate induction shows, for any n > 1,
1Zn — Zn”D;l = “:_1“21 - ZIHD;l : (S15)

In addition, by (S13), we have for any i € [b],

Zi -~ Zi = (1 . %) (z; — ;) + %Ai(o —0) — 7i(VUj(;) — VU(2,)) .

It follows that Z, — Z, = (I, — D,,, —Du,o)(z—12)+ Dv/pf)al/QBo(H — ). Using the triangle inequality and H2 gives

12y = Z1||p.+ < (miniepp {7:})~*|(Ty = Dyp — Duo)(z — 2) + (D, 5Bo(6 — 0|

< (miniepy (7)) [T, = Dy ~ Duollz — 2 + Dy yBol 0 - ]

< (mingepy {2:}) " [ maxip {11 = 7 (mi + 1/p0], 11 = %(Mi + 1/p0) Hlz — 7

+ID5,/Bol16 - 6

< (mingepy{7:1) " [ 12 = 2] + 1D, /5Boll 0 — 8]
Combining (S15) and the previous inequality and using Lemma S3, we get forn > 1,

max;ep {7}

X _X 9 < [{2(7171) (1+ B—lBT]‘:')l/2 2) _
1 Xn nll” < Y IBo " Bo Dy | mine {7}

~ 12
x |Fyllz = 2] + 1Dy, 5Boll[16 — 6] |

The proof is concluded by (S83). O

S2.1.2. SPECIFIC CASE OF PROPOSITION 2

Based on the previous lemmata, we provide in what follows a specific instance of Proposition 2 in the scenario where
maxie[b] Ni =1.

Proposition S5. Assume HI-H2 and let v € (R%.)" such that, for any i € [b], v; < 2(m; + M; + 1/p;)~". Then, P,
defined in (S7) admits a unique stationary distribution 11, , and for any x = (z", OT)T with @ € R?, z € RP and any
n € N*, we have

25, P TL,-) < (1 — minfym )20 (14 [BABIDYP) . miiel e
Wil o pﬂ)_( fgfﬁhm}) (1+1By" By Do 117) minie[b]{%‘}
~ 2
< [ [ miptamblis 2l + 1D Bol[0 - 1] ATty (5)
Rd xRP i€[b]

where By, Bo, Do, P, are defined in (S2) and (S3).

Proof. Forany i € [b], note that the condition 0 < ~y; < 2(m;+M;+1/p;) " ensures that ., = 1—min;ep{vim:} € (0,1)
and the proof follows from Lemma S4 combined with Douc et al. (2018, Lemma 20.3.2, Theorem 20.3.4).
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S2.2. Multiple local LMC iterations

In this section, we consider the general case max;e|s] N; > 1. For this, we introduce the conditional Markov transition
kernel defined for any v = (y1,...,7), N = (N1,...,Ny),0 € R, z = (z1,- -+ ,2z) € R¥ x -+ x R% fori € [b] and
B; € B(Rd‘), by

Qpy.N (2,B1 x -+ x By|0) HRPL ,.(2:,Bi]0) (S16)

where R, -, is defined by (S6). Then, as in the case max;c[p) INV; = 1 the Gibbs sampler presented in Algorithm 1 defines
a homogeneous Markov chain X,| = (0,},Z,1),>1 where Z, ([Z 1T ... [Zb]T). Indeed, it is easy to show that for
any n € N and measurable function f : R? — R, ]E[f( n+1)] Xn] pr 2)Qp,~,N(Zy, dz|0,,). Therefore, (X, )nen
is associated with the Markov kernel defined, for any x' = (0" ,z" ) and A € B(R%), B € B(R?), by

Py~ n(x,A % B) :/QP,A,,N (z,dzw)/np(dé\z), (S17)
A

where I1,(+|Z) is defined in (5). We now define a coupling between dx ) n and 0z P, n forany n > 1 and x,X €
R? x RP. Let (£,)n>1 be a sequence of i.i.d. d-dimensional standard Gaussian random variables independent of the family
of independent random variables {(n}),>1 : i € [b]} where for any i € [b] and n > 1, nn is a d;-dimensional standard
Gaussian random variable. Define by induction the synchronous coupling (6,,, Z,)n>0, (0,“ Z n)n>0, for any i € [b] starting
from (0o, Zo) = x = (0, 2), (A, Zo) = % = (6, %) and for any n > 0 by

ZrZLJrl ?Zsé’n) ) énJrl = BalBt—l)—f)(lJ/QZnJrl + Bal/2fn+1 ) (S18)
Zyr = st;;n) ; Oni1 =By By Dy Zyir + By P
where By, By, Dy are given by (S2)-(S3) and ?Oi’") =7, YO(2 ) = Z!,and forany k € N
VO =¥ ViV 4 (i) pi) Al + 2m S19)
Y =Y = WV 4 (il i) Aibn + V25
where, for any z; € R%, V; is defined by
Vi(z:) = Ui(z:) + (2p:) |z - (S20)
For any n, k € N consider the p x p matrices defined by
1
H{/) = diag (71 / V2UL((1 - s)Y, " 4 57 ds,
0
..,%/ V2U,((1 - s)Y,"™ 4 Y(b"))d>,
3(k) = diag (L, (k+1) Loy, Ly (k+1) Idb) : (s21)
c” = J(k)(D,), +H)), (S22)
MY, = (@, -Ci) @ -cy)t, withMyY =1, (S23)

Under H2, we have HCkn | < max;ep{vi(M; + 1/p;)}, thus if we suppose that for any i € [b],0 < v; < (M; +1/p;) ",
the matrix (I, — C(")) is invertible. In addition, for any n € N,k > max;ep{Ni}, C,(C”) = 0,xp, hence the sequence

(M( ))keN is stationary and we denote its limit by M(oo) which is equal to ME:B)LX e (N

S2.2.1. TECHNICAL LEMMATA

Similarly to Lemma S3, the following result shows that it is enough to consider the marginal process (Zy,, Z,, )n>0 to control

Wa (8 Ppi.nvs 85Ppiy ) S E [0 = Ko } (S24)
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Lemma S6. Assume HI and let N € (N*)°,v € (R%)’. Then, for any n € N, the random variables X, =
0,27, X,, = (0,217 defined in (S18) satisfy

| Xns1 = Xoia|? < (14 By ' B{ DS D) Znsr — Zoial?
where By, By, f)o are defined in (S2)-(S3).
Proof. The proof is similar to the proof of Lemma S3 and is omitted. O
To ease notation, for any ¢ € [b], we consider all along this section the quantities
m; =m; +1/p; , M; = M; +1/p; . (825)

The following lemma provides an explicit expression for || Z,, 1 — Zy,41]| with respect to || Z,, — Zu||.

Lemma S7. Assume HI-H2 and let N € (N*)°,~ € (R%.)" such that, for any i € [b],; < M™Y. Then, for any n > 1, we
have

- 1 n)1— n 1 1 1 1
1 Zns1 — Zn+1||D;117 < H[Mt(x)] T+ Z[Méo)] 11\/Ii(c+)1*](k/’)]3N/2Day//QPPO]3~y//2,o]31</’2
k=0

x| Zn = Zallpys 5 (S26)

where (Ml(cn)>k€N is defined in (S23), (Zyy, Zyy)ken in (S18), Ny = (v N1, ..., wNy) and v/p = (v1/p1.- -, 1/ b)-

Proof. Letn > 1. By (S19), for any i € [b], k € N, we obtain

. . 1 . ~ -~ .
A <I i [ T ST ) ds) (¥ =y )

+ ('72/p2)A1(9~n —0n)
Consider the process ((?,(C”),Y,(C")) = {?,(j’"), Y](j’n) b_)ken with values in RP x RP defined for any i € [b], k > 0, by

(i,n)  xr(i,mn) (i,n) _ yr(3,m)

Yk - Ymin(k,Ni) ) Yk - Ymin(k,Nz) . (827)
By (S18), we have A; (6, — 0,,) = AiB(TlBJﬁS/Q(Zn —Zy,). Since B] = [AlT/pi/2 e Al;r/p; *land Py = BoB; 'By
is the orthogonal projection matrix defined in (S3), it follows that

Y Y =(L, - M) (Y — YY) + 3(k)D,, sPoDy (Y5 — Y§) (S28)

Since D v, commutes with C{"’ and J (k), multiplying (528) by M), D", yields

n —1 (n n n —1 F(n n
Ml(ch)lDN/yz(Yl(ch)l - Yl(ch)l) = Ml(c )DN'/yQ(Yl(c )~ Yl(c ))

+ MY (DD PoD* (Y - Y§™) . (529)

By definition of the processes in (S18)-(S19) and (S27), we have for k > max;c){Ni}, (i’,(f"), Y](JL)) = (Zn+1,Zn+1)
and J(k) = 0. Therefore summing the previous equality (S29) yields

n —1 ot n fo%S) n —1 1 1 1
M‘()O)DN'<12(ZH+1 - ZnJrl) = [M((J ) + Zk:o Ml(c—‘r)lJ(k)DN/Zny/;pPODq{;pDIGZ]

x D2 (Y5 =y ().

Multiplying this last equality by [M((!.f)]_l and applying the norm || - Hval concludes the proof. O
vy
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The three following lemmata aim at providing an explicit upper bound on (S26). To this end, for n,k € N and ¢ € [b],
consider C,(;’") corresponding to the ¢-th diagonal block of CEC") defined in (S22), i.e.

. 1 . o~y
™ = 1k + Dy {pilldi +/ V2U (1 — s)Y ™ 4 sy, ds} € Réixdi | (S30)
0

where, for any n € Nand ¢ € [b], (Yk(i’"), Yk(i’"))keN is defined in (S19). Thus, using the definition (S23) of M we can
write [M]~2M ™ as a block-diagonal matrix diag(([M%]-*M{™)L, ... (IMZ)]-1M{™)?) where for any i € [b],
([M(")] 1M(")) er( 4 — Cl(i’n)) c Rdixdi,
Lemma S8. Assume HI-H2 and let N € (R*.)®, v € (R%)® such that, for any i € [b], v; < M, ". Then, for any i € [b],
n € Nand k € [N;], we have

[ M) =T, = S0, OF || < exp{(N; = k)yillli} = 1 = (N; = k)l

where M,(Cn), M, are defined in (S23), (S25) respectively, and M) is the limit of the stationnary sequence (Mgl))keN.

Proof. Letn € N, i € [b] and k € [N;]. The approximation error between [[;~, (I, — Cl(i’n)) and its linear approximation
can be upper bounded as

H(Id — C(l n)) — 1 — Z C i,n) H Z Cl(f,n) . Cl(:’n)
= i<t
oo
ST I = TTa 16 -1 - Y i)
m=2 k<l <<l i s
< exp (Z lcl“’")n) —1=Ylcfl,
I=k I=k

where the products and the sums are well defined since for any [ > NV;, we have Cl(i’") = 04,. Finally, the proof is concluded
C™ || < 4 Ml (1 + 1) from H2-(3). O

using that z — exp(z) — 1 — zisi
Forany N = (N1,...,Ny) € (N*)?, v = (1,...,m) € (R%)®, define the p x p block matrices
S1 = diag({1 - Nl’YlMl}Idla s {1 = Ny My g, )
Sz =1, - ZJ — (DND.,)*(I, = Po)(DND,,) 72 (S31)
S; = diag ({1 — Niyima} gy, {1 = Noyymo} 1)

where for any i € [b], M; is defined in (S25) and Py, J(1), Hgll) are defined in (S3), (S86), (S87), respectively.
Lemma S9. Assume HI-H2. Then, for any N € (N*)° v € (R*)’, we have

Sl S SQ S3
As a result, under the additional assumption, for any i € [b], v;N; < 2/(m; + M; + 1/p;), we get

[S2fl <1— m%ﬁ{Ni%mi} : (S32)
1€

Proof. Since Py is an orthogonal projection defined in (S3), we have Py < I, therefore we easily get

0pxp < (DND,/,) (1, — Po)(DnD,/,) "> < DNDs/p
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and H2-(1)-(i1) imply
(oo}
diag(N1yimala,, -+, Novermla,) < ZJ(Z)H% < diag(Nivi Mgy, - -+, NyyoMpla,) -
1=0

Substracting these previous inequalities and adding I,, complete the first part of the proof. The additional condition, for any

€ [b], i Ni < 2/(m; + M; + 1/p;), ensures that S; is definite-positive. Since S; < So, we deduce that S, is symmetric
positive-definite as well. Then, ||Sz|| is equal to the largest eigenvalue of S,. The inequality So < S3 concludes the second
part of the proof. O

Forany N = (Ny,...,N,) € (N*)P v = (v1,...,7) € (R%), define
T~,p,N = max{N;yi/pi} maX{Ni%‘Mi}<1/2 + InaX{Ni'ViMi}> +  dmax{N;v;M;}? , (833)
1€[b] 1€[b] 1€[b] 1€[b]

where M; is defined in (S25).

Lemma S10. Assume HI-H2. Let N € (N*)*, v € (R%)" such that, for any i € [b], Niy; < 2/(m; + M;) and ~; < M; "
Then, for any n € N, we have

M)~ 4+ 520 MW" MY I (k)D D2 PoD: 1/2H<1—m1n{N'ylmZ}+T%p7N,

v/p 'y/p
where Po, D/, J(k), Mgﬁn) and r~ p N are defined in (S3), (S21), (S23) and (S33), respectively.

Proof. Letn € N. For any k € N, define

R =[[@-c")-1,+> ¢, R =[[0s -C"™)—1, +>_CI"™, iel], (S34)
=k =k =k =k

where (C(i’"))leN is defined in (S30) and remark that the products and the sums are well defined since for any [ > N,
we have C(Z ") = 0,4,. By noting, for any k € [max; ey Ny, that M- 1M = [12,.@, - C ), it follows that
M)~ 1M,(€”) =1, -2, ™ + R™. Since forany i € [b],1 > N;, R\"™ = 0,,, thus we have J(k:)Rgfl R,(Jfl.
In addition, using that M§" = I, C{") = J(1)(D,, + H{)). Dy = Y52, J(k). DN C{"” = C{" Dy, we get

P,D/2 DY

Y/p

o0
1 )11 (7 —1/2pyY/2
+> MM I(RD YD)
0

k=
_ N 02 b Y2 DY NS N D 2C" DY PyDY: DY
_IP_ZCl +ZJ( K)DN""Dy ), PoDy,, Dy _Z Z J(k)DN"C Dy PoD, Dy
=0 k=0 k=0l=k+1
o SR o
> n _1 1 1 1
=IP—ZJ<Z>H§J,2—(ZJ(k))DN/2D47p<Ip—PO> 7 DY
=0 k=0
S LoD /2 DY 4 R /o () 1Y /2 DY
—1/2 n 2 1/2 2 n —1/2 n 2 1/2 1/2
=3 (X 30)Dy" "D PyDY; DY —|—ZJ Dy *R{, D2 PD/2 DY
=1 k=0
e} -1
=8~ > (Y 3(k) ) DRIV (DND, ) *Po(Ds oD )
=1 k=0

+ R(()n) + Z :|317\11R1(cn)(DN:Dw/p)WPO(D“//pDN)l/2 ) (S35)
k=1
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where S, is defined in (S31). We now bound the different terms of (S35) separately. First, using (S32), we have
182 <1 — mg]l{Ni’Yimi} : (S36)
ic

By recalling Rg”) defined in (S34), Lemma S8 shows that

IR < max RS = maX{H H —elimy L, - Z clim) } S37)
1=
< max{exp (Z IC ’">||) Z tef ’">||} (S38)
1€ [b]
< malf( {exp{(N; — 1)y M;} — 1 — (Ni — 1) M;} (S39)
ze
< max{((N: - 1)y; M;)2e N7 /9 (S40)
i€[b
< 4max{( — 1)y M) (S41)
7,6

where, in the penultimate line, we used for any ¢ > 0, that exp(t) — 1 — ¢ < t? exp(t)/2. Regarding the second term of
(S35), using that P is an orthogonal projector, we get

o

-1
Z (ZJ(k))DI_\Tlcl(n)(DNDv/ ) 2 Po(DND,/p) i

=1 k=0

Nivi \ | (n)
7 _1 n
< e (N2 Z(ZJ ))DRC

=1

Combining the following upper bound

oo -1
— (n) 1 in
;(’;)J(k))DNlCl <1;Ié?b}]{{NZ; HC ||}

with the fact, for any ¢ € [b], that HCl(i’") I < 'yiMi]l[Ni](l + 1), we get that

Z(ZJ ) 1Cl(n)(DND'y/p)l/zPO(DND'v/p)l/2
=1 k=0

N, N, M;
§max( W)max{fy}. (842)
i€[b] pi i€[b] 2

To upper bound the last term of (S35), we start from the following inequality

S DR < max{ Z IR n>}
k=1 cltl
Lemma S8 shows that for any k£ € [N; — 1] and i € [b)], ||R,(;")|| < exp{(N; — k)y;M;} — 1 — (N; — k)~; M;. Then, for
any i € [b], we have
Ni—1 Ni—1 ) i
= Z IRE < < 3 fexp{ (N — Kl — 1 (N — k)il
K3 1 k=1

Ni'}’iMi)z

- Ni~v; M, -
S (NZ’YZMI)_I / (et — ]. — t) dt S ( 12 (GNV\”]\/I{ =+ ].)
0

< m?gf{(NmMi)Q} , (S43)
1€
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where we have used e? + 1 < 12. Plugging (S43), (S42), (S41) into (S32), we get

Mg+ S IM@) M, 36Dy D, oD, DY
keN

<1 —min{N;y;m;} + 14N »
1€ [b]

where 7 , n is defined in (S33). O
Lemma S11. Assume HI-H2. Let N € (NT*)Z’,')/ € (R%)? such that, for any i € [b], N;yv; < 2/(m; + M;) and v; < M; .
Then, foranyx = (z',0" )T, x=(z",0 )T € R?T% with (0,0) € (RY)?, (z,2) € (R”)? and any n > 1 we have

W3 (85 Py N xPpy N) < (1= ?eli[i]l{Ni'Yimi} +7a,08) 2" 2(1+ [|B B DY 1?)

% maxie[b]{Ni’yi}

Or—1)115 _ Wi ail?
it (Vo) [H[Moo] 1z =zl + O e 1A/ i) 1€ OII] ,

where By, Bo, Do, Ppy v, MY 1, , n are defined in (S2), (S3), (S17), (S23), (S33), respectively.

Proof. Combining Lemma S7 and Lemma S10, we have forn > 1,
12ns1 = Zniallpgy, < (1= mind{Niyimi} + 7y.0,8) 120 = Znllpy -

Thereby, for any n > 1, we obtain by induction

74 3 . . . n_l 7 J—
1Zn = Znllpy < (1—%5]1{Nz%mz}+7‘w,p,zv) 121 = Zillp g - (S44)

Define the process ((\?,io), Y,(CO)) = {?,(f’o), Y,ii’o)}i-’zl)keN with values in R? x RP defined for any i € [b], K > 0 by

(5,0) _ $(:0) (1,0) _ 1/(:0)
Y - len(k N;) Yk Ymm(k N;)

By (S18), it follows that for any i € [b], (23, Z}) = (VA" YA ”) where (Y3 ", Y{"") = (Zi, Z3). We get by (S19) for

k>0,

YO, =Y =@, - )Y — YO + I(k)Ds5Bo(fo — bo) -

Hence, for k£ > 0, we obtain

M(O) D*1/2(Y(0) _Y(O)

0)~—1/2 /<7 (0 0 -1 1 5
o O Y2 =MODL ALY - Y?) + MO I (k)DR* D2 B (6o — 60) -

v/p

Summing the previous equality gives

o
MODRI (YN - YR) = MDA (V6" = Y§") + > M2, 3(k)D "D} Bo(fo — 6o) -
Multiplying by [Mgg)]’1 and using the fact that (6, Y(()O)) = (0,2), (0o, i’éo)) = (0,2), we get
D (2 — 20) =MDz — 2) + > MM J(k)D/*D’ Bo(6 - 6) .
k=0

Plugging the result in (S52) implies for any n > 1,
5 . n— 0)7_ -
120 = Zallpyg < (1= minge{Neimi} +7,p8)" " [IIMP]7)2 ~ 2]

+ MO M, I (k)DR"D ] Bo[[[6 - 6| . (345)
k=0
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By H2-(ii) and the definitions of Cl(o), M;,O) given in (S22), (S23), we have |14, — Cl(i’o) || <1—~;m,;. Asaresultand

since ([Mg)]*lM;O))i = f;ol(ldi - Cl(i’o)), the triangle inequality implies
o] N;
0 —1 1 0
D MM (DD By Z VIINA /) Y1) MDY
k= k=1

N;—

< Z \/’Yi/Ni(HAi”/pz Z 1—’7sz
k=0

i€ [b]
<> Al Novi/pi
i€ [b]

Plugging this result in (S45), we get
12 = Zullog, < (1= mindNevama} + )"~ [IIM] 12 = 2l

= (X IAdVE /)16 -01]
1€[b]
Finally, Lemma S6 gives
maxie[b] {NZ")/Z}
min, ey { Vivi }

Mz - 2l + (3 1A /) 16 - o

i€ [b]

n— n— N /-
1% = Xal[* < (1= min{Niyimi} +13.p.)? 2. (1+|By'By DY)

Plugging this result into (S24) concludes the proof. O

The following result gives a condition on max;c{N;v;} to simplify the contrating term in Lemma S11 to 1 —
min; e { Nivim. }/2. To this end, define

Ay = mz[ig]({M }max{l/pl}/2 +4maX{M}
(S

A = max{M} m?ﬁ{l/pz} .
€

Lemma S12. Assume HI-H2 and let c € R*., N € (N*)*,~ € (R%.)® such that

Inm{Nl'yZ}/max{NZ%} >c,

1€[b] i€ [b]

i i ) (S46)
max{N;v;} < cminiey {m } A .
i€[b] 240 + /2A1cminep{m;}  maxiep{m; + M; +1/p;}

Then, 1 — min;cp { Nivimi} +14,p. N < 1 —mingep{Niyimi}/2 < 1, where v~ p N is defined in (S33).

Proof. The proof is straightforward solving a second order polynomial inequality and using for any a,b € R7, a + 2a Sagh =
Vva? + b2 O

S2.2.2. PROOF OF PROPOSITION 2

The next proposition quantifies the convergence of dx Py ., n towards I, 5 in (P2 (R%), W3), where I1,, ., is the stationnary
distribution derived in Proposition S5. In addition, it generalises and gives a more formal statement than Proposition 2.
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Proposition S13. Assume HI-H2 and let ¢ > 0 and ~v = {y:}t_,, N € (N*) such that (S46) is satisfied, for any i € [b],
Niyi < 2/ max;ep{mi + M; }and v; < M . Then, P, o N defined in (S17) admits a unique invariant probability

measure I, », n. In addition, for any x = (z ,BT)T whith (8,z) € R% x R?, any integer n > 1, we have

max; ey { Vivi}
minge ) {Vivi}

<[ i@re - el + (X ||A7:||//?7:>||90||rde,,7N(5<),

1€[b]

W3 (S Pfv Tpoy) < (1= min{Nooma) /2" - (14 [ B "B DY)

where By, Bo, ME}Q) are defined in (S2), (S23), respectively.
Finally, if N = N(1,...,1) = N1y for N > 1, then I, y v =115 ~ 1,

Proof. Note that under the conditions on « and IN stated in Proposition S13, Lemma S12 ensures that 1 —
min;ep {Niyimi}/2 < 1. Then, from Lemma S11 and Douc et al. (2018, Lemma 20.3.2, Theorem 20.3.4), we de-
duce the existence and unicity of a stationary distribution I,  n for P, , n. The proof is concluded by using the upper
bound given in Lemma S11.

We now show the last statement and assume that N = N1,, for N > 1. By Proposition S5, we have the existence and
unicity of a stationary distribution II, - 1, which is invariant for P, -, defined in (S7). For ease of notation, we simply
denote 11, ~ 1, by II, , We now show that Il - is also invariant for P, o n defined in (S17). Using the fact that P,
defined in (S7) leaves II, , invariant from Proposition S5 and Fubini’s theorem, we get for any A € B(R?) and B € B(RP),

I, ~Pp~.~n(A % B) (547)

— [ 11(06.02) Py ((6.2), (46, da)
AxB JR4d xRP

[ T (@6.02)Qpn (. d2B)L (0012)
AxB JRIxRP

b
_ / / M, (a8, dz) |[] BY:.. (7, d2:18) | T1,(d6]2)
AxB JR4XRP i=1

=

[ [ a0 [ TR, @020) HR (59, dz(8) | T1,(d6]2)
AxB JRd xRP RP

i=1

b

:/ / / Hp”Y(déydi) HRPiﬁi(ii’diEl)lé) Hp(dé(l)liz('l))
AxB JR2xRP R4 xRP

i=1

HRN* (20", dz|) | T1,(d6|z)

:/ / (a0, dz) HRéV? (2", dz;[6") | T1,(d6]z) .
AxB JRIxRP o

Using a straightforward induction, we finally get

/ / I,~(d6,dz) P, n((8,2), (d6,dz)) = / I, ~(d6,dz) ,
AxB JRd xRP AxB

which shows that P, ., n leaves II, ., invariant. Since this stationary distribution is unique, we conclude that I, 4 n =
I, ~. O
Py
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We specify our result to the case where we take a specific initial distribution. To define it, consider
x* = ([6*]",[z*]") ", where 8* = argmin{—logn} and z* = ([A10*]",--- ,[A,0*]7)" . (S48)

We define the probability measure
Hp = 8z @ p(+|2") . (S49)

Note that sampling from /% is straightforward and simply consists in setting zy = z* and 6 = By 'B] D%z, + By /*¢.
where ¢ is a d-dimensional standard Gaussian random variable. We now specify our result when using 4, as an initial
distribution. Define the z-marginal under 11, - by

= /R Mp4(d6.2) (S50)

and the transition kernel of the Markov chain {Z,, },,>, for all z € R? and B € B(R?), by

Phn(2.8) = | Qpon(BIO)TL(0]2). (ss1)

where II,(+|-) and Q .~ are defined in (5) and (S16), respectively.

Proposition S14. Assume HI-H2 and let ¢ > 0 and v = {~;}}_;, N € (N*)° such that (S46) is satisfied, for any i € [b],
Nivi < 2/ max;ep{mi + M;} and v; < M™Y. Then, for any integer n > 1, we have

* pn : n— R— /-
Wl Py v Ty ) < 274(1 = min{ Ny }/2)" (14 B By DY) mane{ Ny}

1/5
2 z 2 z
: {/R a5 w5+ [l —Z*||DN;PpmN<Z*7dzl)} ,
where By, By, Dy are defined in (S2)-(S3).

Proof. Consider for n € N*, X, = (0}, 2])",X,, = (0, ,Z,])" defined in (S18) with X distributed according to 11}
and X, o distributed according to II, . Combining Lemma S7, Lemma S10 and Lemma S12, we have for n > 1,

| Zn41 — ZnJrIHD;\,l_y <(1- %ﬁ{Nz%mz}ﬂ)HZn - ZnHD;,l_Y :
Thereby, for any n > 1, we obtain by induction

12, = Zullog, < (U= min{Neymi} /20" |21 = Zillpy, (552)

Using || Z, — Z, ”1231_\11 <2||Z, - Z*H;J/Q +2||Z1 — z*||]2371/2 combined with the definition of the Wasserstein distance
vy

and Lemma S6 give

N~ N~

~ 1/2
Wapty P o Tlpy) < E [ K0 = X,
) . N 12
< (1+ B3 BY DY) max(Ns) B 12, - |
1€[b] Dy
< 22(1 = min{Noume} /20" (1 + By "By DY 1) maae(Nioy}
i€ S

1/2
<E|12- 21 12021 | (559

N~

Since X, o is distributed according to the stationnary distribution I, - n, X 1 also and therefore 7Z 1 is distributed according

to W;ZW' Finally, by definition Z; has distribution sz,'y, N(z*, ), therefore (S53) completes the proof. O
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S3. Proof of Proposition 3

The proof of Proposition 3 stands for a generalization of Vono et al. (2019, Proposition 6) which only considered the specific
case p; = p? for i € [b]. This section is divided into two parts, the first gathers lemmas which allow us to upper bound
the £ 2—divergence between 7, and 7. Then, in the second subsection, we combine these results to control the Wasserstein
distance Wy (m,, 7) by showing that it is smaller than x?(7,|7). For any 8 € R and p € (R?.)", define

Ul (A;0) = —log </ exp{—Ui(z;) — ||z; — Ai0||2/(2pi)}dzi/(27rpi)d1/2> , (S54)
z; ER4

b

=> pillVU:(A:0)7/2 , (855)
i=1
b

B(©O) = Y {plIVU(AB)|/12(1 + p.M,)] — d;log(1 + piM,) /2 | (356)
i=1

and consider
0)=> Ui(A:f), UP(0) =Y U (A:f).
i€[b] 1€[b]

S3.1. Technical lemmata

We start this subsection by Lemma S15 which allow us to bound the ratio between the integrals defined by
Jraexp{— Dien) Uf*(Ai0)} and [y, exp{— > icp) Ui(Ai0)} d6.

Lemma S15. Assume HI-H2-(i) and let p € (R?.)". Then, we have B(0) < U(0) — U*(0), for any 6 € R. If we assume
in addition that for any i € [b], U; is convex, we have U(0) — UP(8) < B(8), for any 0 € R%.

Proof. The proof follows from the same lines as in Vono et al. (2019, Lemma 14). In what follows, we give it for the sake
of completeness. First, note for any @ € R? and i € [b],
dzl

exp {Ui(A:0) — U (A,0)} = [ e (Ui(AiH) —Uy(z) — ||z — Ai9||2/(2pi))

Using H2-(i), and a second order Taylor expansion, for any 8 € R?, i € [b], z; € R%, we have
UL(ALO) — U,’(Zi) Z VUZ(AZG)T(ALO — Zi) — Mz”AzO — Zi||2/2 .
Hence, using (S57), we have for any 8 € Reand i € 0],

b b
exp (Z Ui(A:0) — U/ ( A0> H (WHVU (A;0)] ) (1+ pi )4/

. _ oon(B(6))

Similarly, under the assumption that for any ¢ € [b], U; is convex, the proof for the upper bound follows from the same lines
using, for any i € [b], 0 € R% and z; € R%, that

U;(A;0) — Ui(z;) < VUi(A:0)T (A0 —z,) .

Lemma S16. Assume HI-H2. Then, U is my-strongly convex with my = )\min(Zle miA;.'—Ai).

Proof. Using by H2-(i) that for any ¢ € [b], U; is twice differentiable and by H2-(ii) the fact that for any i € [b], U; is
m;-strongly convex, we have for any 8 € R?

b b b
VUO) =Y A/ VU;(Ai0)A; = > mA A; = Ain (Z miAZTAZ-)Id =myly.

i=1 i=1 =1
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For any 6 € R, define

2\ 1/2
VUi(A,0) > . (S58)

Lemma S17. Assume H2-(i) and let p € (R.)". Then 3 is a Lipschitz function w.rt. ||-

5(6) - (Z o

=1

, with Lipschitz constant
b 1/2
Lp = Amax (Z piMIA] Ai) : (S59)

i=1

Proof. For any 0,0, € R?, we have using |(30_, a2)"2 — (330, 02)"/2| < (320_, (a; — b;)?)"/2, that

b 1/2 b 1/2
61) = 5(62) < (0 pIVUAB) - TU A1) < (3 pedi?IAen - 0a)1P)

i=1 =1

which completes the proof. O

Suppose H2-(ii) and for any ¢ € [b], denote 8] a minimiser of 8 — U;(A;0).
Lemma S18. Assume HI-H2 and let p € (R%.)°. Then for any s < my /(12L3), where Lg is defined in (S59), we have

logw[es{ﬂ%’r[ﬂm] < 852L?§/m%, + 432{7r[ﬂ]}2L%/mU . (S60)
In addition,
b
m(8%) < 2dL3/mu + 2 piMP|Ai(6* - 6])| . (S61)
i=1

Proof. Using the decomposition
52(6) — {x[B)}> = (8(6) — w[8))? + 2x[B)(B(6) — n[5)
and the Cauchy-Schwarz inequality imply, for any s > 0,
T [68{52*{71'%]}2}] S {ﬂ.[eQS{ﬂ*W[B]}Q] }1/2 . {ﬂ-[e4s‘n’[m{5*7\'[ﬁ]}]}l/2 . (862)

The proof consists in bounding the two terms in the right-hand sided. Since 3 : R? — Riis L p-Lipschitz by Lemma S17,
forany 0 < s < mU/(12L%), using Vono et al. (2019, Lemma 16) and Lemma S16 gives setting 5 = § — «[f], that

mlexp{2s(8% — 7[B])}] < exp(165>Li/mi) - (S63)
In addition, using Bakry et al. (2013, Proposition 5.4.1), Lemma S17 and Lemma S16, we get for any s > 0,
w[etemlBIB-mI8D] < o35 (T} LG /mu
Plugging this result and (S63) into (S62), we get
rles B TP < oxp(sm(82) + 852 L /m¥ + 4s* {n[B]}2 L2 /mv) .

The proof of (S60) follows using 7(5%) = 7(5%) — [r(3)]? and rearranging terms.
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Using the Young inequality, H2-(i),VU;(A;07) = 0, VU (6*) = 0, we have
b
w7 = [ (S oivucan)?)re)ao
R \i=1

b b
<2 [ (S rta2lao - 00 )x(6)d + 23 pas?|As(6" - 07)]
=1

=1

b b
D (Y pMZATAL) [ 16~ 0712(6)a0 + 23" | Ai(0" - 00
i=1 R i=1
b
< 2413 /s + 23 piMZ| A0 — 017

i=1

where we have used 7[||@ — 0*||?] < d/my by Durmus & Moulines (2019, Proposition 1 (ii)) and Lemma S16. O

Proposition 1 shows that (- pr z)dz is well-defined and as such admits a finite normalising constant. These
two quantities are defined by

T, = / exp {— > Ufi(Aia)} de , Tp(-) = exp { > Uri(A } ) ¢/Zn, - (S64)
R ic[b] i€[b]
Finally, note that the following quantity Z is a normalising constant of 7 associated with the potential U, i.e. 7 = e~V /Z,

Ty = / exp {— > U,»(Aie)} de . (S65)
Rd

1€ [b)

Lemma S19. Assume HI-H2 and let p € (Ri)b. Suppose in addition that 6L% < my where Lg is given in (S59). Then,
we have

b
log (Zr,/Zr) < {dL%,/mU +) piM7|Ai(6* - 0;)||2}(1 +2L%/my) + 2L5/mi; .
i=1

Proof. From the definitions (S64) and (S65), we have Z.,/Z, = [.7(6) exp{Zf=1 Ui(A;0) — U (A;0)}d6. By
Lemma S15, we obtain

Zin,|Zr < /Rd 7(0) exp(B(0)) d6 .

Note that B = 3% /2 by (S55)-(S58), hence using that 6L% < my, Lemma S18 applied with s = 1/2 shows that

g [ #(6)exp(B(6))a0) < )2+ 208/, + (al51)°L3
Using Lemma S18-(S61) and 7[3] < 7[3?] concludes the proof. O

S3.2. Proof of Proposition 3

Based on the technical lemmas derived in Section S3.1, we are now ready to bound the Wasserstein distance of order 2
between 7 and 7.

Proof of Proposition Proposition 3. Let p € (R%)" such that max;epypi = p < o0f/12, where o =
|ATA| max;e {M?}/my. Then, by definition of Lg (S59), we get

1203 <my . (S66)
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and Lemma S18 can be applied for s = 1 and Lemma S19 too. By Lemma S16, U = —log 7 is my-strongly convex
therefore 7 satisfies a log-Sobolev inequality with constant my (Ledoux, 2001, Theorem 5.2). Finally, Otto & Villani (2000,
Theorem 1) shows that 7 satisfies for any v € Py(R%):

Wa(v,m) < v/ (2/mu)KL(v|m) </ (2/mu)x?(7mpl|7) , (S67)

where x? is the chi-square divergence and where we have used for the last inequality that KL(7,|7) < x?(,|r) since for
any t > 0, log(t) < t — 1. We now bound x?(m,|7). By (S64) and (S65), for any @ € R<, consider the decomposition
given by

o

Tp(0)/7(0) — 1 = (Z/Zx,) exp (Z —UP(A; 9))) (S68)

i=1

In the sequel, we will both lower and upper bound (S68) in order to upper bound |1 — 7, (8)/m(8)|. Using the fact that for
all z € R,exp(z) — 1 > x, Lemmas S15 and S19 yield

b

7p(0)/m(0) — 1 > log (Zx/Zxr,) + > _ (Ui(AiB) — UL (A:0)) (S69)

i=1

b
s imo + 30 p 02140~ O0)IP 1+ 23 o) — 2L+ B(6) >~

i=1
where

b
Ay = {azs my + 3 pidr?|Ac(0* 07 1+ 223 /)
1=1
+2L% /m¥ + Z (di/2)log(1 + piM;) ,

=1

where we have used in the last inequality that B(6) > — Zle (d1/2)log(1 4 p; M;) by (S55). In addition, by (S64) and
(S65) Zn, [Zr = [pa7(0) exp{zgzl U;(A;0) — U (A;0)}d6., which implies by Lemma S15 and Jensen inequality

ey /2n > [ 7(6)exp(13(6))d6 > exp(xiE))

It follows by (S68) that 7,(8)/7(0) — 1 < exp(B(8) — 7 (B)) — 1. Combining this result and (S69), it follows that the
Pearson 2-divergence between 7 and Tp can be upper bounded as where

X2 (mp|m) < max(A7, Ag) , As = /]Rd (exp(B(0) — 7 (B)) — 1)277(0) de .

We now provide an explicit bound for A,. First by Jensen inequality, we have 7(exp(B)) > exp(n(B)) which implies
that exp (—7(B))7[exp(B)] > [To, (1 + piM;)%/? by (S55). Therefore, using that B = /2 by (S55)-(S58) and
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Lemma S18 with s = 1 since (S66) holds, we get by (S55),

Ay = / (exp (B(6) — 7 (B)) — 1)°7(0) 46
Rd

= exp (727r (ﬁ)) ﬁ[exp (2?)] — 2exp (—W(ﬁ))ﬂ[exp (E)] +1

b
< JI@+ pidg)® - exp(—m{> " (pi/ (1 + piM:)) VUi (As-) |} 7 [exp(8)]
i=1 i=1
b
-2 H(l + PiMi)di/z +1
i=1

b
< [T+ ot -exaf w{z 2M,/(1+ pi M) VU(A)]P))

b
X exp (SLg fmi; +4{2dLY /my + 2> piMP | Ai(0* — 67)||°}L3 /mU> (S70)
i=1
b
—2JJ+pid) /1, (S71)
i=1

where we have used for the last inequality that for & € R?, 3(6)? — Z?Zl(pi/(l + piMy))||[VU;(A;0)]? =
ZZ L2M; /(1 + piM)|IVU; (A40)|%, 7[8]? < =[B?] by the Cauchy-Schwartz inequality and Lemma S18-(S61).
Similarly to the proof of Lemma S18-(S61), by H2-(i), VU;(A,;07) = 0, VU(6*) = 0, Durmus & Moulines (2019,
Proposition 1 (ii)) and Lemma S16, we have

b b
m | (PIMi/(1+ pi M) [VU(A)?| <7 | Y pI M| VUi (As-)|
i=1 1=1
< 2d/\max<z P2 MPAT A, )/mU +2Zp2M5||A —0))?.
=1

Therefore, we get by (S71)
b b b
Ay < Ag = H(l + piM;)% exp (2d/\max (Z p?M?AlTAi)/mU + 2Zp?Mf’||Ai(9* - 0:)2)
i=1 i=1 i=1

b
exp <8Lg/m?] + S[dL%/mU +3 pM2|A (0% - 6))] } /mU) —2 H + M)/ 41 (S72)
i=1

It follows by (S70) and (S67) that

Wa(mp ) < 3/ (2/mp) max(A3, As) | (S73)
where A; and A3 are given by (S69) and (S72) respectively. Using that L2 = O(p) and an expansion of the bound as p — 0
completes the proof. O
S4. Proof of Proposition 4 and Proposition 5

As in Section S2, we assume in all this section that p € (R* ) is fixed. For any v = (v1,...,7) € (R%)?, we establish in
this section explicit bounds on Wy (7, 4, n, 7p) Where 7, is given in (1) and 7, , n is the marginal distribution defined by

Tpy.N(A) =y N(AXRY), Ac B[R,

of the stationary probability measure II, -, n associated with the Markov chain (Z,,, ,,)»>0 defined in Algorithm 1. Note
that in the case N = N(1,...,1), this distribution is independent of N, see Proposition S13. To this purpose, we define an
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“ideal” dynamics from which we cannot sample but which converges geometrically towards II, under appropriate conditions.
The corresponding ideal process will play the same role as the Langevin dynamics for the study of the unadjusted Langevin
algorithm (Durmus & Moulines, 2019). This dynamics is defined as follows. Consider first for any 8 € R4 i e [b], the
stochastic differential equation (SDE) defined by

Ay ? = —vv(v;"®) dt — p;7 A0 + V2dB! (S74)

where (Bti)tzo is a d;-dimensional Brownian motion and V; is defined in (S20). Note that under H2-(i), this SDE admits a
unique strong solution (lgevuz & Yor, 2013, Theorem (2.1) in Chapter IX). Denote for any ¢ € [b], the Markov semi-group
associated to (S74) by (R}, ,)>o defined for any 3§, € R%, ¢ > 0 and B; € B(R%) by

i ~q ~i,0,y8
Rpi,t(y07 BL|9) = P(}/t Yo € B,L) s

where (Yti’e’%)tzo is a solution of (S74) with 1702’9’% = yb. For any bounded measurable function f; : R% — R,

Lemma S20 shows the measurability of the function (6,y5) — E[ fi(f/f’e’%)] on R? x R% and therefore R;lt isa
conditional Markov kernel.

Lemma S20. For any bounded measurable function f; : R% — R, and function f; satisfying H2-(i), the mapping
(B0, ¥2) > E[f;(¥;°%°Y9)] is Borel measurable.

Proof. Consider the following stochastic differential equation

dét == Od 5
dYy = —VVy(V}) dt — p; ' Ai, + V2dB; .

Using Revuz & Yor (2013, Theorem (2.4) in Chapter IX), since U; satisfies H2-(i), there exists a unique solution (f(f‘)tzo =

(6;, Y;)1>0 with initial condition X = (ég ,(¥5)T)T € RP. Then, the proof follows from Revuz & Yor (2013, Theorem
(1.9) in Chapter IX) and the fact that Y}’ is the unique solution of (S74) with 8 = 6. O
Define for any € R%, z = (z{,--- ,z, )" € R?, and fori € [b], B; € B(R%),

b
Qoo (2,81 % -+ x By|0) = [ B, ., (2, B:l0) ,
i=1
and consider the Markov kernel defined, forany x” = (8,27 ) and A € B(R?), B € B(R?), by
P,~(x,AxB)= / Qp (2,dZ|0) / I,(d|z) , (S75)
B A

where T1,(-|2) is defined in (5). Note that P, n can be interpreted as a discretised version of P, ., using the Euler-
Maruyama scheme.

In the sequel, we first derive technical lemmata in Section S4.1 that are used to prove both Proposition 4 and Proposition 5.
Based on these lemmata, we then prove each proposition in a dedicated section, namely Section S4.2 and Section S4.3.

S4.1. Synchronous coupling and a first estimate

The main idea to prove Proposition 4 and Proposition 5 is to define (X, Xn)neN such that for any n € N, (X,,, X,) is a
coupling between éngm n defined in (S17) and 6,~(P;‘77, and satisfies

E [Hxn—fcn

2 .
} < ¢y (x, %)e "2 mimiep{vimil 4 e

where ¢o,¢3 > 0 and « € {1,2} depending if H3 holds or not. Conditioning with respect to (X, XO) with distribution
dx ® 11, using the definition of the Wasserstein distance of order 2 and taking n — oo, we obtain

Wa(mp, Tp~,N) < Wo(llp, Il 4 N) < E37%
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where ¢3 > 0. We now provide the rigourous construction of (X, Xn)neN.

Let {(Bt(i’"))po i € [b],n € N} be independent random variables such that for any 7 € [b], the sequences {(Bt(i’n))tzo :
n € N} are i.i.d. d;-dimensional Brownian motions and let (&,,),, >0 be a sequence of i.i.d. standard d-dimensional Gaussian
random variables independent of {(Bt(l’n))tzo .4 € [b],n € N}. Consider the stochastic process (X, ),>0 on R% x R?

starting from X, distributed according to IT, and defined by the recursion: for n € N, i € [b],

KXnt1 = (9n+1a ~n+1)T ; warl = Yz&i’:j)  Opyr = Bngon)(I)/ZZnH + Bal/zfnﬂ , (S76)

where (ﬁ(i’"))tzo, is a solution of (S74) starting from Z! with parameter @ < @,,. Similarly to the process (X, )nen

defined in Algorithm 1, the process (X' n)neN defines a homogeneous Markov chain. Indeed, it is easy to show that for any
n € N and measurable function f : R? — R, E[f(Zns1)| X0 = Ja f( 2)Qp~(Zy,dz|0,,) and therefore (X, )nen is
associated with (S75).

Proposition S21. Assume HI-H2-(i), and let N € (N*)? ~ € (Rj)b. Then, the Markov kernel ]5‘,77 defined in (S75)
admits 11, as an invariant probability measure.

Proof. By property of the Langevin diffusion defined in (S74), for all 8, € R%, the Markov kernel Qp,,(~|00) admits
I1,(-|60) as invariant measure, see e.g. (Roberts & Tweedie, 1996) or (Kent, 1978). Thus, for any 6, € RiandB e B (RP),
we have

/ ,(z1|00) dz, = / Qp,v(zo, B[60)I1,(2z0|600) dzo - (S77)
B zo ERP
Denote by 78, 7% the marginals under IT,: 78 (A) = II,(A x RP), 7%(B) = II,(R* x B), for A € B(R?) and B € B(RP?),

and consider the Markov chain ()N( )nen defined in (S76). For any measurable function f : R4*P — R, the Fubini-Tonelli
theorem gives

E[f(X1)] = /RHP /}Rd” F(x1)IL,(61|21) d01Qp (20, d21|00) 1, (00, 20) Ao dzo
:/ f(xl)Hp(01|z1)/ U Q,,q(zmdzlwo)np(zowo)dzo]wg(eo)deo de,
R4 JRP R4 RP
= / f(Xl)Hp(01|Z1) |:/ Hp(Z1|00)7Tg(00) d00:| le d01 (578)
Rd JRP 0ocR?
:/ f(Xl)Hp(01|Z1)7Tz(Zl)ledel
Rd JRP

= /R(H—ﬂ f(xl)Hp(Hl,zl) dZ1d01 = E[f(X())] ,

where we have used (S77) in (S78). Therefore, X has distribution II,, and the Markov kernel 15,,,7 admits II, as a stationary
distribution, which completes the proof. O

Define by induction the synchronous coupling (X,, = (61, Z,.))n>0, (Xn = (B, Zn))n>0, starting from (8g, Zo) = (0, 2),
(0o, Zy) distributed according to II,,, for any ¢ € [b] and n > 0, as

Ziy =V Bnir =By BI Dy Zuir + By Pus (579)
Ty = ngfl;l) , On1 = By By Dy* Zui1 + By €01

where we consider for any ¢ € [b],k € N, fort € [kv;, (k+ 1)v;)

. t ~ (e - .
v =y — [ vt A+ (- k) (0) T Al + 2B - BE)
kv (S80)

Y = Y0 (8= k) V™) 4 (= k) (i) Adb +272(BE™ — B

ki
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Let Go = 0(Zy, Zo, 00, 00), for any n € N*, let
Gn = 0{(Z0, Zo,00.00), (B )iz0 i € [b],k < n} (S81)
and for any t > 0, let ’H(") ({(B.gim))sgt i€ [b]}), and

F™ the o-field generated by H\™ and G,,_1 . (S82)

Note that X,, and )N(n are distributed according to HpP" and 03 P;} ~ N

distance of order 2, it follows since II p]-:’;‘ = II, by Proposition S21 that

respectively. Hence, by definition of the Wasserstein

1/2

Wy (Il,, 5xPp o N) < E [ X, — X2 ) (S83)

We start this section by a first estimate on E[|| X,, — X,,||?]'/> and some technical results needed for the proof of Proposition 4

and Proposition 5. The following result holds regarding the process (f’t(i’”))tem . defined, for any 7 € [b] and n € N, in
(S80).

Lemma S22. Assume HI-H2. For i € [b],n € N, denote by 2, , the unique minimiser of z; € R% — Uj(z;) + ||z; —
A0,||/(2p;). Then, for anyi € [b],k € Nandn € N,

B (15" — 20, 1[1%] < difri . (S84)
where m; is defined in (S25).
Proof. Letn € N. By Durmus & Moulines (2019, Proposition 1), for i € [b] and k € N, we have

(n) =~ (s
E V5" — 2

<125 - i, [P 2 4 (dy /g (1 — 2. (585)

By (S80), using Proposition S21 we get that X n has distribution II,,, therefore given én, Zn has distribution IT, (- |0~n). Then,
using (S85), Durmus & Moulines (2019, Proposition 1(ii)) combined with H2, and since (ZL,...,Z") are independent
given 6,,, we get the stated result. O

Lemma S23. Assume HI and let N € (N*)?, v € (R%)" Then, for any n € N, the random variables X, =
0,27, X,, = (0,217 defined in (S79) sastify

1K1 = Xoa I < (U4 By B DI Zuss — Zuwa
where By, By, f)o are defined in (S2)-(S3).
Proof. The proof is similar to the proof of Lemma S3 and is omitted. O
For any k,n € N, s € R, consider the p X p matrices defined by
I(k, 5) = diag (]l[Nl](k 4 DAy (5) Ty Dy (k + 1oy (5) Id,,) , (S86)

1
- diag(71 / VAU ((1 = s)Y,0" + 5,0 ds, (S87)
0

1
N ,’Vb/ V2Uu((1 — )Y, 4 s7,0) ds) :
0

Cy" = J(k,0)(Dsyp + HY) | (588)
M, = (@, -Ci) @ -cy)t, with MY =1, (S89)
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Similarly to (S19), for n, k € N and 7 € [b], consider CS’") corresponding to the i-th diagonal block of C,i") defined in
(S88), i.e.

. 1 . ~ g
C ™ = L (k + D {pzlldi + [ U= av + 750) ds} e o
0

where, for any n € Nand i € [b], (Yk(fy;")’ f/k(f{;")) ke is defined in (S80).

Lemma S24. Assume HI-H2 and let vy € (R*.)" such that, for any i € [b],7; < 1/M;. Then, for any n, k € N, the matrix
I, — Cén)) is invertible and in addition, for any i € [b], we have

L, = CF™ll < 1= ari
where C\"™ is defined in (S90).
Proof. Leti € [b],n,k € N. By H2, we have ||V2U;|| < M; which implies by (S90) that HC](;")H < ~;M;. Since
vi <1/ Mi, the matrix I, — C,(:’”) is invertible and so is I, — C,g"). In addition, following the same lines as the proof of

Lemma S9 implies || Ty, — C\"™|| < max{|1 — y;rii;|, [1 — v M|} = 1 — vir7is. O

Forany n,k € N,i € [b],if v; € (0,1/M;), Lemma S24 shows the invertibility of the matrices T,, — C,g"). Therefore, M)
is invertible and we can define

TV = M@+ 3 MO MY, 3 (k,0)DR* DY PoD DI (S91)
k=0
o0 JrOO 5 ~(n
T =3 {[Mg@rlM,g’le;;f/O Ik DNV (V) - YV (D)) dz} . (S92)
k=0

Using these matrices, we have the following result.
Lemma S25. Assume HI-H2 and let N € (N*)* v € (R*.)® such that, for any i € [b],v; < 1/M,. Then, for any n > 1,

DL (Znsr = Znir) = TSN (Zy — Zo) = TS (S93)

where (Z,, Zn)nEN is defined in (S79) and D N~ = diag(N1y11q,, ..., Nyypla,) € RPXP.

Proof. Leti € [b] and n > 1. Recall that V; is defined in (S20) and for z € RP, denote V' (z) = Z?Zl Vi(z;). For any
k € N, we have

) ) ! 3 r(2,mn (i,m ,mn
VV(TEM) - vy = UO V2Vi((1 - )y + sy ))ds} (Vom —yimy
For k& > 0, it follows from (S80) that

. . 1 i ~(i.n (i,n i,n
Vil — Yokin, = (I — /0 VIV - )Y 4 sV ds) Ve Y5

i (594)
- [ ISR = VVES A i) Al =6,
Consider the process (Yt(n) , Yt(”))teR . valued in RP x R” and defined for any ¢ > 0 by
7(n) _ 3 (n) (n) _ ()
Yo = Yoin(e N Y = Yo v (895)



DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm

The process (S95) is continuous with respect to ¢ and defined so that its component (?,EZ?”), Yt(i’")) equals (Y}, Y}) for
t < N;v; and is constant for ¢ > N;v;. For [ > 0, we write (?£Z)+Z,Yli:)+l) = (?Iglr;:?-l’Yli:?ll)iE[b] € RP x RP. Using
the matrices defined in (S89), for k£ € N, we obtain

Yk = Y, = @ - GV = Y0) = [ 3k, ) [VV (Y

(1)
(k+1)~ — T (k+1)y k~/+l) - VV(Y,W )] dl

+3(k, 00D, 5PoDY* (V) = Y{V), (896)
where Py is defined in (S3). Recall the matrix M\" defined in (S89) with M{"” = I, and for k > 1, M\"™ =
(I, — Cé"))’1 (X, - C,(C"_)l)*l. By multiplying (S96) by M;@TlDI_\,l,{f, we have

M DR V)

=2 () ()
Gy ~ Yiieny) = MDY (YLD = Yi)

k~y
n —1 > (n r(n
MR [T ATV, - SV
n —1 1 - F(n n
+ MY, 3(k,0)DN* D PoD (VY - Y§) .
By (S95) and (S79), we have for t > max;cpp{7: N}, (Zn+1, Znt1) = (\?t,Yt). Therefore, summing the previous
expression over k, we get

MODN (Znir = Znsr) = — Y MUY DR / Ik, HVV (VL) - vV d
k=0
o0
n n 1 1 1 1 1 =
4 [Mg R % (N ({3 O)DN/ZD,Y//QPPOD,Y//Q‘)DJGQ] Dyl (Zo— Z2) -
k=0

By Lemma S24, Mg) is invertible and the proof is concluded by multiplying the previous equality by [M(()g)] -5 O

Based on Lemma S25, we have the following relation between || Z,, 41 — Zn41||? and ||Z,, — Z,,||2.

Lemma S26. Assume HI-H2 and let N € (N*)* v € (R*.)® such that, for any i € [b],~; < 1/M;. Then, for any ¢ > 0
andn > 1, R -
1Zns1 = Zosallfy g < (L4 20T 12120 = Zullf, o + (14 1/{2e) T

where (Z,, Zn)neN is defined in (S79) and D~ = diag(N17114,, ..., Npvela,) € RPXP,

Proof. The proof follows from Lemma S25 and by using the fact that for a,b € RP, ¢ > 0 we have 2(a, b) < 2¢|a]|? +

(1/{2€}) b, O

Similarly to Lemma S10, we have the following result regarding the contracting term.
Lemma S27. Assume HI-H2 and let N € (N*)’,~ € (R%)® such that, for any i € [b], v; < 1/M; and Nyy; <
2/(m; + M;). Then, for any n > 0, we have

||T§n)|| <1l- ?el%l%{Ni’Yimi} + Ty.p,N

where TE") and r~ o N are defined in (S91) and (S33), respectively.
Proof. The proof is similar to the proof of Lemma S10 and therefore is omitted. O

In the next lemma, we upper bound the coefficient 7 , n defined in (S33). For this, we explicit a choice of IN that we
denote N* = (N7 (v1), ..., Ni (7)) € (N*)? defined for any i € [b], any v; > 0, by

Ni (i) = [mq mi[g}l{mi/Mi}Q/(m%Mf mzﬁ{mi/Mﬁ)J ; (S97)
1€ 1€

where Mz = Mi + 1/pz
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Lemma S28. Assume HI-H2 and let v € (R’_’;_)b such that, for any i € [b],

~ 2
o < m; minie[b]{mi/Mi}
"7 40M2 \ maxiepp {mi/Mi} )

Then, for any i € [b], we have N} (~y;) € N* and
Ty, N* < Zr_g%ﬁ{Ni*(’)’i)%mi}/Z ;
where v , N+ is defined in (S33).

Proof. The assumption on -y; combined with the definition (S97) of N;(v;) imply N/ (v;) > 2, using in addition m; < M;,
maxie[b]{N;('yi)fyiMi]lN;(%)M} <1/20 and

1 <minie[b]{mi/Mi} )2 < N7 (yi)vi M? 1 <minie[b]{mi/Mi} >2 M7

20 maxie[b]{mi/]\;[i} mi 20 maxie[b]{mi/Mi} mi
. IVARE
Z 1<m1nz€[b]{ml/ ~1}> . (898)
40 \ max;epy {m;/M;}

Using the definition (S33) of 7y 5 n, Wwe have 7 p N < 5 maXie[b]{Ni*(%)%MﬂlN; (%.)>1}2. Thus, plugging (S98) in the
previous inequality gives

~ N7 ()i M2 in; i/ M}
Ty, N < max{m;/M;}* max GDRI < mittepy {ms/ ~} . (S99)
i€[b] i€[b] m; 80 maxie[b] {mi/Mi}Q

In addition, (S98) also shows that

1 in; o/ MIN? (mi\?

(mm el {mi/M }) (m) < NF(v:)vim . (S100)

40 \max;e ) {m;/M;} M;
Therefore, combining (S99) and (S100) completes the proof. O

S4.2. Proof of Proposition 4

We first give the formal statement of Proposition 4.
Proposition S29. Assume H I-H2 and let v € (R%)®, N € (N*)® such that for any i € [b], v <

m AOMZ (min ey {m;/M;}/ max;epy {m;/M;})? and N; = |m; minepp{mi/M;}?/(207; M? max;epp {mi/M?})].
Then, we have

L i
4(1 + | By ' By Dy?|1?) max;epy {m:/M?}
5min;ep {mi/M; }2 max;epp {m;/M;}?

W22(HpmN,Hp) <
b

X Zdi%mi(l + P MP /12 + 3 M7/ (2m))
i=1

where By, By, Dy are defined in (S2)-(S3), and for any i € [b], M, M; are defined in (S25).

By Lemma S23 and Lemma S26, we can note that the proof of Proposition S29 boils down to derive an upper bound on
| TS™|2 defined in (S92) for n € N. The following lemma provides such a bound.

Lemma S30. Assume HI-H2 and let N € (N*)*, v € (R*.)" such that, for any i € [b], v; < 1/M;. Then, for any n € N,
we have

b
E || TSV17) < 3 diNey? M2 |1+ 92 N2 /12 + 322/ (2|
=1

where m;, Mi, Tén) are defined in (S25) and (S92), respectively.
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Proof. Let n € N. Using (S86), we can write, for any | € Ry and k € N, J(k,l) as a block-diagonal matrix
diag(J'(k,1),...,I°(k,1)) with J¥(k,1) = Ljn,)(k + 1)L 4,1(s) - Ia, for any i € [b]. By (S89) and using for any
k € N, that [M(”)] MUY, = 17250 e, — C7™) s finite by (S88), we have

= o(n 2
||T§")||2:HZ[M<”> MR [ a0 [V gL - eV g

k=0
b [e'e) . 2

:Z 3 H C(’")/ ik, 0) [VV (VM) — V(7™ le . (S101)
i=1 Niyi k=0l=k+1 0

Since for any i € [b], k > N; we have J%(k,0) = Cl(i’") = 04, xd;> (S101) can be rewritten as

)12 =
1T, | ZN%

and the Cauchy-Schwarz inequality gives

S TL o) [ w o oty - svesoal

k=0 I=k+1

b
n 1 i,n) v (i,n i,m 2
IS )HQSZ; Z H H (I, — C!' H H [VViET) - Vv )}C”H . (S102)
i=1 ' I=k+1

Since, for any i € [b], v;M; < 1, we get using Lemma S24,
2

N;—1

H (Idi - Cl(l’n)) < {1 — ’Yiﬁli}2(Ni_k_1) .
I=k+1

By combining (S102) with the previous result and the Jensen inequality, we have

b N;—1 Yi - 2
P <3 Y —%mi}mf’“*”/o va Vam) - va,j;;"))H dl . (S103)
=1 k=0

For i € [b], using Durmus & Moulines (2019, Lemma 21) applied to the potential V;? : y* s U;(y?) + [|y* — A0(1*/(2p:)

yields
/%
k'yl
0

V() = VT2 di = /%Efiiinvv@ (V) = Vv (72 4
k~yi+l W\ ki - 0 i k~yi+l

VNI [di + din NI /12 + (3 /2) T8 z:;,*nz} , (S104)
where z, , = argmin, cga, Vié" (z;).
By (5104), (S84), Lemma S22 and since max;c[5 Vi < 1, we get
N;—1

(1m0 D [TEIVES) - RIS

b
< Z di N2 M2 + A2 M2 /12 + 7 M2/ (2im)] -
Combining this result with (S103) completes the proof. O

We can now combine Lemma S30 and Lemma S27 with Lemma S26 to get the following bound.
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Lemma S31. Assume HI-H2 and let N € (N*)* v € (R*.)® such that, for any i € [b], v; < 1/M;, Niyi < 2/(m; + M;).
Suppose in addition K~ p N = minep{Niyimi} — r4,p.N € (0,1), where 1 , N is defined in (S33). Then, forn > 1,
we have

E|[|Z, — ZnH]lefvl_j S =KypnN+ K’2y,p,N/2)2(n_1)]E 12, — ZlHQD;,{j
2012

b 2
-2 2272 i viM;
+ 2K’Y7PyN ;dZN’L’YZ Mz (1 + T + 2171,) 5

where, for any i € [b], M; and 1n; are defined in (S25).

Proof. Taking expectation in Lemma S26, we get for any n € N, e > 0 that

|

where Tgn) and Tén) are defined in (S91) and (S92), respectively. To ease notation, denote B = Zle d; Ny2 M2 (1 +
Y2 M? /12 + ~; M? /(2;)). Using Lemma S30, we obtain for any n € N, e > 0

2 -l n
E || Zus - zn+1HD1] < 1+ 208 | IT0P12, - 2ol | + 0+ 1/20E [T 1]
N~ B

E [||z~n+1 ~ Zns b ] < (1+20E [|T§n>”2||gn — Znlbs } +(1+1/{2¢)B. (S105)
vy Y

In addition, Lemma S27 implies that ||T§n)||2 < (1 — Ky,p,~)? almost surely. Therefore, taking ¢ = (1 — [1 —
Ky p,N %)/ (4[1 — Ky p,n]?), (S105) yields for any n > 0,

S S e Lo e =)
DL 2 Ny 1—(1—kypn)?
An easy induction implies for any n > 1,
> 2 1+ (1= Kypv)? o 5 2 1+ (1= Kypv)?
E[|Z, - Zn||DI,V17] < ( 5 ) E[||Z — Zl”D&i] + 2(1 . K%va)z)QB : (S106)
Since k2, v = (min;ep { Nivimi} + 7,5, ) and using k2, n < 1, we obtain

1+ (1 =Ky pn)?)/2=1—KypnN+ K?y,p,N/2 )
(1+(1- K'r,p,N)Q)/(l -(1- K%P7N)2)2 < K;i),N :

Combining these inequalities with (S106) and (S105) completes the proof. O

Lemma S32. Assume HI-H2 and let N € (N*),~ € (R*.)® such that, for any i € [b], v; < 1/M;, Nyy; < 2/(m; + M)
and Ky p N = Min;ep {Nivimi} — 14, p.N € (0, 1), where v+, , N is defined in (S33). Then, for any x € R™P gndn > 1,
we have

W3 (5P} no 11,)

< (1 — Ky pN F K'2y,p,N/2)2(”_1)(1 + ||P)61B(—)rf)(l)/2”2> Izréf[l;]({Nz'Yz}E[HZl - Z1||]2);V17]

2(1+ B, !B/ D/?|? max; Niv; b - - -
4 20 B0 Bo B D mssentinsd 57 g n2ia?fs 4 2082 12 + 0082 2]

~¥,p, N i=1

where By, Bo, Dy are defined in (S2)-(S3), P, N is defined in (S17), (Zn, Zn)nen is defined in (S79) and for any i € [b),
M;, m; are defined in (S25).
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Proof. By Lemma S31, we have the following upper bound for n > 1,
E ||Zn - ZnH]zgl—\I{j < (1= KypN + K'2y,p,N/2)2(n71)]E H21 - Zl||]231—vl_y]

b 2 172 WE
~ B B ’y :

2622 N D diNy? M7 ( 1 i Ml 2
+ K’va7 = ’YZ (2 + 12 + le

Using (S79), Lemma S23, combined with the previous inequality, we get for any n > 1,x € R4tP,
W3 (Ip, 8xFp oy N)
< (1+ 1By "By D IE[| 20 — Zu’]
< (1+|B;'BIDy?|? Nivi ]E[ Z — Znl - }
< (1+[/By "B Dy|1?) mac{ N} B I3

IN

(1 — Ky N + K'2y7p,N/2)2(n_1)(1 + HBalB(—)rf)é/QHQ) Ilré?;]({Nl%}E[HZI — Z1H]23;I17}

2(1 + BleTf)lh 2 max; Ni i b ~ QMQ ZMQ
N (1+ By By 0 %) epd V}ZdiNi%QMig(H%uz +72~z>.
Ky.o.N i=1 m;
Hence the stated result. O

Proof of Proposition 4/Proposition S29.
Proof. Since for any i € [b], y; < m;/40M? (minge gy {m:/M;}/ max;e ) {m:/M;})?, setting
N (i) = |mg m%ﬁ{mi/Mi}z/@O%Miz m?g]({mi/Mi}z)J
1€ 1€

implies Ky p, n+ € (0, 1) by Lemma S28. Thereby, letting n tend towards infinity in Lemma S32 and using Proposition S13
conclude the proof. O

S4.3. Proof of Proposition 5

We first give the formal statement of Proposition 5.
Proposition S33. Assume H I-H2-H3 and let v € (R})", N € (N*)° such that for any i € [b], v <
mi/4O]\~4i2(minie[b]{mi/Mi}/maxie[b]{mi/Mi})2 and N; = |m; minie[b]{mi/Mi}Q/(ZO’yiME maxie[b]{mi/MiQ})j.
Then, we have

max; e {mi/M?}

W2(I, - n,I1,) < 4(1 + |B; 'BI D2 — L% (v)
5 (Hp~,n, Hp) < 4( By "By Dy )minie[b]{mi/Mi}2 ()
where setting f; = m;/(20M;),
b —y din W 8
R() = D et MP + = (il 4 2 )+ di (L 4§+ 7)o (5107)
i=1 i g

By, By, Dy are defined in (S2)-(S3), and for any i € [b], m,, M; are defined in (S25).

We provide the proof of Proposition 5 in what follows. Similarly to Lemma S26 for the proof of Proposition 4, we derive an
explicit relation between || Z,,+1 — Zp41]| and || Z,, — Zy,]|-

Lemma S34. Assume HI-H2-H3 and let N € (N*)°,~ € (Ri)b such that for any i € [b], Nyv; < 2/(m; + M;) and
v < 1/]\%. Then, for n > 1, we have

ad 1/ . ol 1 1
E[|Zns1 — Zn_i_leD;]l ] ' < (1- nelﬁ{Ni%mi} + ry,o.N)E[[|Zn — Zﬂ’”%;fl ] /2 + %y, N)*
¥ i ~
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where

M=

b
Ry, N) = d; Ny} (d: L7 + M /in;) +
i=1 i=1

(din? 02 + dN3 N1
(S108)
+Zd N2 M? (14 Ny M;)

(Zn, Zn)nen is defined in (S79), 7+,p, v in (S33) and for any i € [b], m;, M; are defined in (S25).

Proof. Letn € N. For any k € N, recall that M,(Cn) is defined in (S89) and invertible by Lemma S24. Define
wn = DN (Zn — Z2) .

Under this notation, the result given in Lemma S25 can be rewritten as
W41 = T(ln)wn — Tén) ,

(n)

where T and Tg") are defined in (S91) and (S92), respectively. By the Minkowsky inequality and using (S81), we have
g 212 w6 ™. 11217 L mGa () 127
B9 [flwonsa[] 7 < B (1T walP] - + B9 [I TSP (S109)
Since by Lemma S27,
ITEVN < 1= min{ N+ 7 (3110)

it remains to bound E9+ [|| TS™ 2] to complete the proof.

For any i € [b], recall the function V;’* : R% — R defined for any y* € R% by V" (y*) = U;(y") + |ly* — Aibn|1>/(2p:).
For any ¢ € [b], k € N, using the Itd formula, we have for I € [k~;, (k 4+ 1)7;),

kyi+l L
SV TV = [T )TV () 4 AV () du
ky;+l o _
+V2 V2V (v ) dB . (S111)
ki

For any i € [b], k € N, define

(i,n) (7 n) Yi kyi+l 0 i s

ay'y = Ty (k + 1)[ME™ ] My / /k V2 (v M)y wveie (V) dudl
) ) vi kvl o

a7 = Mg (k + 1)[MED] M) / AWV (F6m) dudl

k.

(i,n) (i,n Ryt 0,

agy” = V20 v,k + 1)[MEV] M, 1/ /k V2l (y )y dBE di

With these notation and by (S111), we have

R

1€[b]
< FEi+ FE;+ Es, (S112)

S taf? )+ ol

Nm =

where for any j € [3], E; = 33,1 | St ajlk" 12/(Nsvi). We now bound {E;}e(s).-
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Upper bound on E;. Forany i € [b],k € N, recall that we have [M%™]~ M,(;Jrnl) =12k (Ta, + C!"™) where
Cl(i’") is defined in (S88). In addition, since we suppose for any i € [b], that viM; < 1, Lemma S24 implies

N;—1

- 2
H I1 @ —Cfl’”))H < {1 — g )2 NiRD
I=k-+1

Combining this result with the Cauchy-Schwarz inequality, we obtain

1 Ni— Vi kyi+l 2
= Z Z H/ / V2V (P L)) gy on (7 (m)) dule . (S113)
il k=0 ki

For i € [b], using the definition of 2, , = argming:cgs, V" (y?) € R%, we have VV" (2! ,) = 04,. Therefore, for
€ [b], k € N, conditioning with respect to ]-'lg:) defined in (S82) and using the M;-Lipschitz property of Vf" by H2 gives
BT [ V2V () TV (TE0) 2] < NP [[OV0 (F0) = TV (2, ) )
< NEETS |V — i, 7]
For any i € [b], k € N, combining this result with the Jensen inequality yields
i+l

(n) Vi

k'y,

ki

’C%-i-l
/ / T IRV (T )TV (7m)|12] du di
k.

Yi kyi+l1 ]__(n) )
<%M4/ / | y(im) z,, |I*] dudl . (S114)
ky
By Lemma S22, we have for any ¢ € [b], u € R,
E9~ [ Y i) szHZ] < d;/m; . (S115)

Injecting this result in (S114) yields

¥i ’f%+’
/ /k 7o HY(’”) II}dudz diy; [ (3mi)

Finally, this inequality, (S114) and (S113), we get

b
E[E1] < d;Ny? M /i . (S116)
i=1

Upper bound on E5. Using the Cauchy-Schwarz inequality, we have

vi kil
Z H/ /k R(VVE) (V) dule

By H3, we have for any z; € R%, | A(VV?")(z,)||? < d2L2. Therefore, we obtain

N;—

Z (i)

k=0

L
N

Vi ki +l _, ~ . Vi kit
AWV (V™) dudl <%/ / 1AWV (VEM))? dudl
kv, ki
diriL7/3 .
Thus, we get
E[E,] < Zd2 N3 L? . (S117)

=1
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Upper bound on F3. Foranyi € [b],k € N, define

Vi kryi+1
/ / VQVG (z n))de di .
ki

Using forany i € [b],k € N, [M(Oé’")]‘lM,(;ﬁ) =14 — > 2his Cc!"™ + R™ where R{"™ is defined in (S34), we have,
foranyi € [b],k € N,

Ni—1 Ni—1 N; 4 _ 2
ol =|lv2 Y TT [ra -] Ay
k=0 k=0 l=k+1
N;—1 N;—1
k‘l,k‘zzo k1,ko=0
Ni—1  N; , 4 N; 4 _
2505 Gl 3 etal)
kl,kz_o I=k1+1 I=ko+1
N;—1
Y Z CIAL AL +4 30 (RTTAGT AGE)
k1,ka=0 l=k1+1 k1,k2=0
N;—1 N;
—4 3 ®IVALY, ST efmaly . (S118)
k1,ka=0 I=ko+1

We now control the quantities which appear in (S118). First, by H2, for any i € [b], x*, y* € R%, note that we have
On (i oi YA
V2V (x)y' || < Milly'| -

By the Jensen inequality and the Itd isometry, for any £ € N, we get

Fm) . Fn kryi+l
BT [JAf 2] = B [H/ / V2V (V) aB; i ]
' key

- Vi F(m) kyi+l 2
< %-Mf/ T [H/ B,
k

In addition, since for i € | fo V2V (V™) dBi s is a (F™)yo-martingale, for (ky, ky) € {0,..., N; — 1}2 such
that k1 < ko, we obtain

] dl = div}M?2/2 . (S119)

N imn)1 T " i) T A (im)7] _
E9 [[A;kﬂ A:(sk)} E9 [E Al Ag;kz)” =0.
Therefore,

3 RS (A5, A = diNag2 /2.
k1 ,ka=0

Second, since for any i € [b],] € N, Cl(i’n) € R%*di js symmetric positive semi-definite, we have

N;—1 N; -1 -1
Z < Z Czn)A:(;kTi) A?’Z]:;) < ZCZ ZAB,k17ZA31k2>>O'

k1,ko=0 l=k1+1 k1=0 k1=0

Third, using for any ¢ € [b],1 € N, using ||Cl(i’") | < ~:M; by definition (S88) and H2 and combining the Cauchy-Schwarz
inequality with (S119), for any i € [b], (k1, k2) € {0, ..., N; — 1}2, we get

N;—1
> B Z ci Al Z CiMAf)| < diNiy? Tt/

k1,k2=0 I=k1+1 I=ky+1
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Using (S119) again and Lemma S8, for 7 € [b], we obtain

N;—1 N;—1
> ES[REVAGYREVAN| < @nfarz/y) YD E[IRGTIRE”]
kl»kQZO k}l,kQ 0
2

N;—1 ~ ~
< (@?12/2){ D (expl(Ni = KyilL] = 1 = [(N: = k)3, 311)

k=0

2

B Nivyi M;
< (diy] M} /2) (Mﬂi)_l/ {et —1—t}dt
0

< (e 7’)’1, i 1)
- 288

Similarly, we get Moreover, using the Cauchy-Schwarz inequality, for any i € [b] we get

d; NSATMS .

N;—1 N;—1
> ELALY REVAEM < Y E[IagmIIAgm RG]
k1,k2=0 k1,ko=0
diN;v3 M2
< 274; i (eNm L+1)N372M2
~ Ni"/iAIi + 1
< dNAPpAs T
— 1 71, K 24
In addition, for any ¢ € [b], we have also
= ) A RS alim) A () eNividli 4 1
i,n i,n i,n in 5. 6175
S OE|®REVAGY, D AT | < diNPASM; —r (S120)
k1,k2=0 l=ko+1
For any i € [b], k € N, regrouping the previous results and using that N;y; M; < 2 give
b ) ) b } )
E[Es] <Y {diNi2 M2 + di NPy + 3 diNfyP MP (1 + Ny M) (S121)
i=1 i=1

Combination of our previous results. Injecting the three upper bounds (S116), (S117), (S121) in (S112), we get

E[HT;")H ZdN% (d; L2 + M2 Jin;) +Z{d1%M2+dN‘3 ANy

=1

+ZdN4 SMP(1+ Niv;M;) . (S122)

Using the recursion defined in (S109), and combining the upper bounds derived in (S110) and (S122) completes the
proof. O

Lemma S35. Assume HI-H2-H3 and let N € (N*)°, v € (R%)" such that for any i € [b], Niyi < 2/(m; + M),
v < 1/M1 and Ky p N = min;ep {Nivimi} — 7 p,n € (0,1), where v, , N is defined in (S33). Then, for n > 1, we
have

~ 1/2 ne ~ 1/2 _
Bl Zn+1 = Znsallp | < (0 = k)" TE[IZ =250 1T+ {ken} T 2OGN)
where Z(, N) is given in (S108).

Proof. The proof follows from Lemma S34 combined with a straightforward induction. O
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Proof of Proposition 5/Proposition S33.

Proof of Proposition 5/Proposition S33. For any i € [b], consider
Ni (i) = [m m%a{mi/Mi}Q/ (207; M7 m?;f{mi/Mi}z)J :
ic ic
By Proposition S13 and Lemma S28, P, -, n converges in W5 to 11, . Therefore, using (S83), Lemma S23 and Lemma S35

and taking n — +o00, we obtain

max;e p {2V ()i}
minge p) { V7 (vi)vimi }

W2 (I~ 10,) < 4(1+ | By 'Bg DJ?(1?) (v, N*(7)) . (S123)

By definition of N (v;), we have fyi]\;[iN;‘('yi) <f;= mi/(QOMi) which completes the proof upon using it in (S123). [

SS. Explicit mixing times

This section aims at providing mixing times for DG-LMC with explicit dependencies w.r.t. the dimension d and the
prescribed precision £. We specify our result to the case where for any ¢ € [b], m; = m, M; = M, L; = L, p; = p, vi =7,
N; = N and for the specific initial distribution

Hp = 8z @ p(+|2") , (S124)

where
x* = ([0*]",[z*]") ", where 8* = argmin{—log 7} and z* = ([A10*]",--- ,[A,0*] )T . (5125)

Note that sampling from 4.7, is straightforward and simply consists in setting zo = z* and 6y = By "B Dz + By 7*¢.
where £ is a d-dimensional standard Gaussian random variable. Starting from this initialisation, we consider the marginal
law of 8,, for n > 1 and denote it I'%,. By Proposition S13, since for any i € [b], N; = N, the stationary distribution
associated to P, 4 v is1I, 4 = II, - 1,. We build upon the natural decomposition of the bias:

Wo(Ige,m) < W2(/~‘;P;;L,~/,Na Hpry) + W2(Hprw Hp) + W2(7"p’ ),

where I1,, -, I, and 7, are defined in Proposition 2, (2) and (3), respectively. The following subsections focus on deriving
conditions on n., e, N and p, to satisfy Wo(I'ys, 7) < ¢, where € > 0.

S5.1. Lower bound on the number of iterations .

In this section, we derive a lower bound on n. such that WQ(M;PS’:’ ~o>1p ) < /3 following the result provided in

Proposition S14. Recall that we define the z-marginal under II, - by
= I1,~(0,z)do S126
7Tp,'7 ~/]Rd Pﬂ’( 7Z) 9 ( )
and the transition kernel of the Markov chain {Z,, },,>0, for all z € RP and B € B(R?), by
Py, n(z,B)= /Rd Qp~.N(z,B|0)I1,(0]z)dO , (S127)

where II,(-|z) and @, ~,~ are defined in (5) and (S16), respectively. In the case N = 1;, we simply denote Py ~n by
P2 . We need to bound in Proposition S14 the factor

1/2
2 2
{/ |z1 — z*||D,1 ﬂfw(dzl) +/ llz1 — z*||D,1 PS,V,N(Z*>dZ1)} . (S128)
R4 Ny Rd N~
Our next results provide such bounds.
b Z z o : o z Z — Z VA 7
Lemma S36. Assume HI. Then, the transition kernel Ppﬂ leaves Ty, ~ invariant, that is 7TI,WPP’7 = Tp where T~ IS

defined by (S50).
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Proof. We have for any B € B(R?)

/B % (dz) = /B /R TTp(06,d) = /B % _(dz) /]R Tl (d6).

Therefore, using the fact that P, ., leaves Il -, invariant from Proposition S5 and Fubini’s theorem, we get

[t = [ [ tpni@0an = [ [ [ 0,0(00.8) Py (0.5, (00,02
[ ] ] Tan(@0.02)Qp 2 dafo)(61) d6

= / / M, ~(d6,dz)Q, (7, dz|0) / 11,(0|z)d0 (S129)
B JRIxRP Rd

= /IR 7 (d2)Ps (2.B) .

For any 7 € [b], let 7 a minimiser of @ — U;(A;6), and define
ut = (AL (0" —0]))", - [Au(0" — 67)] )T (S130)

Lemma S37. Assume HI-H2 and let N € (N*)°,~, p € (R%.)® such that, for any i € [b], v; < 2/(m; + M; 4+ 1/p;) and
denote z* = ([A10*]7,--- | [Ay0*]T)T. Then, for any z € RP and ¢ > 0,
/Rp I~ 2 I, Pz d2) < min{N} (20 + 22— 23
b
+ (14 1/(29) mas{ M2} o [+ TH(D, Po) +2 ]
‘ i=1

where the transition kernel Py ., is defined in (S51) with N = 1.

Proof. Lety; <2/(m; + M; +1/p;) forany i € [b]. Let £ be a d-dimensional Gaussian random variable independent of
{n® :i € [b]} where for any i € [b], " is a d;-dimensional Gaussian random variable. Let z € R? and Z be the random
variable distributed according to 4, P ., and defined by

e
=B, 'BJ D’z + B, ¢,
and for any i € [b],
70 = (1= i/pi) 2i — % VUi(z) + %Aia /27

= (1 — fyi/pi) z; — VU (z;) + %AiBO_lBg]jéhz + %Aiﬁglhf + /27!
= (1= 7i/pi) 2i —7i[VUi(2:) — VU (A:0%)] — 7%i[VU;(A;0") — VU;(A;6;)]
+ %AiBnggﬁgﬁz + %Ai]’agl/"‘g + /2y’

Let

1 1
D}, = diag (71 / V32U, (21 + t(A10" —z1))dt, - -- ,'yb/ V2Uy(zp + t(AL0* — 23)) dt) ,
0 0

1 1
D :diag<71/ V2UL(A10" + t(A10} — A10%))dt, - -- ,’Yb/ V2Ub(Ab0*+t(Ab0§—Abé)*))dt) . (S131)
0 0
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Since PoD, Y2k D;l/QZ*, it follows that

—1/2

(I, - Po)D,?| (z — 2z*) - Djju* + DD/’ ¢+ Dy

Z-7 = {IP —-Dp - D1/2D1/2 /P

v/p BB,

With the notation H = I, — D}, — DI/ZD;/ZO(I —Py)D _1/2 , (S14), and using the fact that for any ¢ > 0, a,b € R?,

[(a,b)| < ellal|® + (4¢)~!||b||?, it follows, for any z € RP, that

[ V=2l P (o)

= / /d HH(Z - Z*) - f)*Uu* + Di//QDiY//QpB B /25 _|_ Dl/z,r’HD 1¢)d é) d£d)p('f’) dn
Rr JR
b
* Sk [[2
= |[H(z — z") - Djju HD;l + Tr(D,,,Po) + QZdi
=1
b
* *\ TV 1% S %12
S /‘EngZ —Z “]23;1 — 2<H(Z —Z )aDUu >D;1 -+ HDUH HD:’l +Tr(D'y/pP0) + QZdl

i=1

*(12 1 *
K21+ 2¢) 2 — 2" |pos + (1+ 25)max{'sz2}||u I? + Tr(D.,,Po) +22d

=1

O

Proposition S38. Assume HI-H2 and let N € (N*)*,~, p € (R%)" such that, for any i € [b], v; < 2/(m; + M; + 1/p;).
Then, we have

[l =2l s )

2 1-|—/i2
< min{N;} ! M2} Tr(D.,,Po) +2 ) d;
min{N:} 1_,{%<1_K7mx{v Hiu*|[* + Te(Dsy o) + Z )

with K.~ defined in (S12).

Proof. With the choice ¢ = (1 — x2)/(4x2) in Lemma S37 and using Lemma S36, we have

~ 2+1
/nz—z 3 7 /n 2 — 2"} 7 (d2) +

+Tr(D,,,Po) + 2 Z d; .

i=1

MY |u|?

Rearranging terms concludes the proof. O

Lemma S39. Assume HI-H2 and let N € (N*)?,~,p € (R%)® such that, for any i € b, Nyy; < 2/(m; + M, +
1/pi),viM; < 1 and denote z* = ([A10*]",--- ,[A,0%]") 7. Then, we have

/R”FZ*”IQDIVL 2 n(z*,dz) <2Z’yz (1+Te(Po)/p:) +4Zd
P
1=1

=1

where the transition kernel P;fy,N is defined in (S51).

Proof. Let {(n}.)k>1 : i € [b]} be independent random variables such that for any i € [b], the sequences {(n},)>1} are
i.i.d. d;-dimensional Brownian motions and let £ a d-dimensional standard Gaussian random variable independent of
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{(ni)k>1 : i € [b]}. Consider the stochastic process (Y} )xen initialised for any i € [b] at Y = A;0* and defined, for any
1€ [b],k €N, by
Yigr =Yy =% VVi(Yy) + (vi/pi) Aif + /2%imj41 (S132)

where the potential V; = y* — U, (y?) + ||y*||*/(2p:) and

o =B;'B{D/*z" + B, "¢ . (S133)
In addition, we define the random variable Z = (Z*, ..., Z%), for any i € [b], as
Z'=Y} .

By definition, note that Z is distributed according to P%_ (z*,-). Define the process (Y = {Yi}’ ;)ren valued in

pY,IN
RP x RP? defined for any i € [b], k > 0 by
Yi = riin(k,Ni) :

and consider the following matrices defined, for any k£ € N, by

1
Hy . = diag <71/ V2UL((1 = s)Yy + sz*)ds,
0

1
..,'yb/ VAU ((1 - s)Yy? +sz*)ds> ,
0

3(k) = diag (Lpv,)(k+1) T+ D (k+1) 1o, ) (3134)
Cr =J(k)(D,)p + Hu) , (S135)
M1 =(I,-Co)'...(I, - Cp) ", with Mo =T, . (S136)

Using these notation and (S132), for any k£ € N, we get
Yir1 — 2z =(I, — Cp)(Yx — 2*) + J(k) (DW/\/’;BOQ ~ D, VV(z*) + D;/jnk.ﬂ) .

Multiplying the previous equality by MkHDZ_Vlf, we obtain, for k > 0,

M D_1/2 *\ _1/2 *

k1D (Yipr —27) = MyD 2 (Y — 27)
+ My J (k)DL (D7 /veBob — DL VV (2%) + D;/jnkH) .
Summing the previous equality over k£ € N gives
—1/2 * —1/2 *
MOODN'y (YN — Z ) = MODN'y (Yo — Z )

o0
+5 My J(k)DRL (Dw/ﬁBOG ~ D, VV(z") + D;/jnkH) .
k=0

Multiplying the last equality by [M,] ™! and using the fact that Y, = z*, we get

Dy (2 — )

3 Mo My I (k)DL (Dv/ﬁ,Boa —D,VV(z*) + D;/jnkH) . (S137)
k=0

Recall that Py = BoBj 'B{ . Hence, by (S133) and using oD}, /*z* = D, /*z*, we get

D, sBof - D,VV(z*) = D, BB, ¢ - D,VU(z") .
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Plugging this equality into (S137) yields

M8

D (Z —2) = = > Mo "My 1 I (k)D VU (2*)

0

ByB, "¢

e .

+ 3 Mo "My 1 I (k)D

v/(Np)

b

=0

V2 M) My I (k)D s - (S138)
k=

Recall that [Moo] 7'M 11 = (([Moo] " *Mi11)t, ..o, ([Moo] 7'My 1)) is a block-diagonal matrix where, for any i € [b],
(Mool "Myq1)" = TT;2,41 (Ta, — C}) where Cj is defined in (S135). In addition, since we suppose for any i € [b], that

%-Mi < 1, Lemma S24 implies

N;—1

H (Idi - C;)

l=k+1

2
< (1 — i) PR

We now upper bound separately each term on the right-hand side of (S138). First, using the Cauchy-Schwarz inequality, we
have

2 2
o b 0
D Mo T My J)D || D (00/No) || D0 (Mo ] ™ M) (1)
i=1 k=0
b N;—1 N;—1 2
<> )| > T (1 - i)
=1 k=0 l=k+1
b N;—1|| N;—1 2
<> 2| 11 (1 -ci)
i=1 k=0 ||l=k+1

b N;—1
DD WL
i=1 k=0
b
<D Ny (S139)
i=1

Second, using the same techniques as for the above inequality, we obtain

2

[eS) b
—1/2 N1 7 > — 2

> Mo~ "My 1 3 (D} v, BoB, || <> 77 BoB, ¢ (S140)

k=0 i=1
Finally, the third term can be upper-bounded as

2 b
E \@Z[M Mk+1J(k)DN1/277k+1 <2 Z d; . (S141)
i=1
Combining (S138), (S139), (S140) and (S141), we get
b b

/anz_z*”;;& 2 N (25,d2) <Y iN; (1+Te(Po)/pi) +2) di .

=1 =1
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Given e > 0, we are now ready to provide a condition on the number of iterations . to achieve Wa(u, P%, v, p ) < /3
in the case where for any i € [b], m; = m, M; = M, p; = p,v; = 7 and N; = N. Define

E2 = 9(1 + |By'Bg Dy’|)2Ny 2 Lty Sy M2 |[u|?
0 0 700 N1 —r2)\1-k2

b b
+ (v/p)Tr(Po) + 226&) + 2byN (1+Tr(Po)/p) + 4Zdi .

i=1 =1

Theorem S40. Assume H1-H2 and assume that for any i € [b], m; = m and M; = M. In addition, let N = N1,y =
Y1y, p = ply, p>0,v >0, N > 1, such that v < 1/M, Ny < 2/(m + M), and (S46) is satisfied. Then, for any € > 0,
any

ne > 2log (Eo/e) /(Nym),

we have, Wa (i, Pys, no Ilp~) < €/3.

Proof. By some algebra and using 1/1log(1/(1 —z)) < 1/x for 0 < z < 1, the proof directly follows from Proposition S14
combined with Proposition S38 and Lemma S39. O

S5.2. Upper bound on the tolerance parameter p,
Define

b
Ry =203 (dof + " M| Ai(6" - 07)|°) + 207,

i=1

b b
Ry =do? + > MZ|A(0" —0))| + > diM;/2

=1 i=1

b
Ry =2d mzﬁ)}]({Mi}aQU +23° MP||A(6" — 67)| + 0% + 80F [Qdag
1€
i=1

b
+2 3" MEAo" - 67 -
i=1

Recall that p = max; ¢y {p; }. Then, the following result holds.
Lemma S41. Assume HI-H2. For any £ > 0, let p_ € (R?.)® such that

~Ry + \/ R? 4+ 4Roem)”/(3v/2)

Pe < oR N AU
0 3v2\/ Ra + [Ro/(1203) + X0, di M2
| =X M+ /(T diM)? + 6Rs
1207, 2R; '

Then, Wo(mp_,m) < /3.

Proof. Let e > 0. From (S73), for any p < 1/(120,2]), Wa(mp, m) < ,/miu max(Al,A;/Q) , where Ay, A3 are defined

in (S69) and (S72) respectively. This implies that W(m,, ) < /3 is verified if max(A4, A;/Q) < ey/my/(3v/2). First,
Ay < ey/my/(3v/2) holds if

_Ri+ VB2 + 4Reem!l?/(3v/2) L] (S142)
P> 2R0 120’12] .
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We now focus on As. Using the fact that for any = € R, e” > x + 1, we have 2 H?Zl (14 p;M;)% > 2+ 2?21 d;log(1+
piM;) and therefore

b b
Az < exp (ﬁ232 + Z d;log(1 + pzMz)) -1- Z dilog(1 + piM;) .

i=1 i=1

Since Zle dilog(1+ p;M;) < 52?:1 d; M;, p?Ry + Zﬁ’:l d;log(1 + p;M;) < 3/2 holds for

— Y &M+ \/(Z?:l diM;)? + 6 Ry

n < S143
p= 5R, (S143)

Since for any x < 3/2,e® < 1 + z + 22 and using the fact that p < 1/(1203,), it follows that

Ax < 2R —|—(’2R _~_Zb:d,M4))2<2 B _’_(R2_|_zb:d.M,>2
3> p 2 P 2 Pi:1 14Vig =p 1 120_%] s iiVig
Hence A;/* < ,/my /(3v/2) holds under (S143) and
5 < cVmu . (S144)
3\/5\/32 + (1%“2{] + 21521 diMi)

The proof is concluded by combining (S142), (S143) and (S144). O]

S5.3. Upper bound on the step-size v, and number of local iteration IV,

Based on Proposition S29 or Proposition S33, we now determine an upper bound on -y to ensure Wy (Il,, 11, ) < ¢/3
in the case N = N1p,~v = v1p, p = ply where p > 0,7 > 0, N > 1. The following results hold depending if H3 is
considered. Define

_4MP*(1+|By'B{ D)
- 5m

c, 7 (S145)

b b
Co = (112/2) {M/m+1/6]2di, G =3"di, C=e/(9C,).

i=1

Lemma S42. Assume HI-H2 and assume for any i € [b], m; = m and M; = M. In addition, let p,y. > 0 and N > 1
such that p = ply, v, = v=1p, No = N1y and € > 0 satisfying

< —Cl+\/012+40002/\ m

- — . S146
! 2Co 40M? (3140
Then Wy(I1p, 1, ) < /3.
Proof. Let e > 0. By Proposition $29, note that W3 (I1,, I, ) < €2/9 is satisfied if

Cov2+ C1v. < Oy .
This inequality is satisfied under the choice (S147). O

We now provide a condition on IV and v when H3 is considered.
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Lemma S43. Assume HI-H2 and assume for any i € [b], m; = m, M; = M and L; = L. In addition, let p,~y. > 0 and
N > 1such that p = ply, v, = v:1p, N. = N:1y, and € > 0 satisfying

S m

e < - — A —— (S147)
6b\/5 max;cp {di }C, M2[4 + (max;ey {d;} L2m) /(20014)]  40M
3

A =
6b(5C, max;cpy {d; }m3/M?)

, (S148)

where C, is defined in (S145). Then Wa(Il,, 11, 4 ) < €/3.

Proof. In Proposition S33, we dissociate R*(y) into two contributions and the conditions we impose on -, ensure
~ 2 V&S ~

Wa(Ilp, 1,4 ) < /3. More precisely, we have S°0_, d;v2 M2 + %(dlLf + M0y <222 /9 and 0 divi Mif3 (1 +

fi +§2) < 22/9 where f; < 1 for any i € [b]. O

S5.4. Discussion

Let p. = p-1; such that Wy(7,_,7) < /3. From Lemma S41, p. = O(e/d) when ¢ — 0 and d — oo. Similarly, let
Y. = 71, such that Wo(IT,_, I, ~_ ) < &/3. Under H1-H2, we obtain by Lemma S42 v. = O(¢*/d?). On the other
hand, when H3 is additionally assumed, we get by Lemma S43 5. = O(£2/d?). Finally, to apply Theorem S40 for the
previous choices 7. and p, we obtain for IN. = N.1, the conditions N. = O(d/e?) and N. = O(1) under HI-H2 and H
1-H2-H3, respectively. In both scenarios, Theorem S40 implies n. = O(d? log(d)/(?|1og(e)]). This concludes the results
depicted in Table 1 in the main paper.
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