
1 Solving forward diffusion SDE

Forward diffusion SDE is given by

dXt =
1

2
Σ−1(µ−Xt)βtdt+
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βtdWt, t ∈ [0, T ]

where Xt is n-dimensional stochastic process, Wt is standard n-dimensional Brownian motion, µ = (µ1...µn)T is n-dimensional
vector, Σ is n×n diagonal matrix with positive diagonal elements {σ2

ii}n1 and noise schedule βt is non-negative function [0, T ]→ R+.
Consider change of variables Yt = Xt − µ. Then we can rewrite forward diffusion SDE as
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Exponential of a diagonal matrix is just element-wise exponential, so we can rewrite it in multidimensional form as
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or writing this down in terms of Xt
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where I is n× n identity matrix.

2 Derivation of conditional distribution of Xt
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βudu. It is a diagonal matrix and its i-th diagonal element aii(s) equals
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aii(s) ∈ L2[0, T ] for each i. Itô’s integral

∫ t
0
aii(s)dW

i
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where the first equality in distribution holds due to the properties of Brownian motion and the fact that aii(sk) are determinis-
tic (implying that aii(sk)∆W i

sk
= aii(sk)(W i

sk+1
− W i

sk
) are independent normal random variables with mean 0 and variance

a2
ii(sk)(sk+1− sk) = a2

ii(sk)∆sk) and the second equality in distribution follows from Lévy’s continuity theorem (it’s easy to check
that the sequence of characteristic functions of random variables on the left-hand side converges point-wise to the characteristic
function of the random variable on the right-hand side). Then, simple integration gives∫ t
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It implies that in multidimensional case we have∫ t
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and it follows from (1) that
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3 Reverse dynamics
The result by Anderson (1982) implies that if n-dimensional process of the diffusion type Xt satisfies

dXt = f(Xt, t)dt+ g(t)dWt, t ∈ [0, T ] (3)

where g(t) is a function [0, T ]→ R then its reverse-time dynamics is given by

dXt = (f(Xt, t)− g2(t)∇ log pt(Xt))dt+ g(t)dW̃t, t ∈ [0, T ] (4)

where pt(·) is the probability density function of random variable Xt and W̃t is a reverse-time standard Brownian motion such that
Xt is independent of its past increments W̃s − W̃t for s < t. Reverse-time dynamics means that all the integrals associated with
reverse-time differentials have t as their lower limit (e.g. dXt relates to

∫ T
t
dXs = XT −Xt). Anderson’s result is obtained under

the assumption that Kolmogorov equations (for probability density functions) associated with all considered processes have unique
smooth solutions. On the other hand, Song et al. (2021) argued that SDE (3) has the same forward Kolmogorov equation as the
following ODE:

dXt = (f(Xt, t)−
1

2
g2(t)∇ log pt(Xt))dt, t ∈ [0, T ] (5)

which means that processes following (3) and (5) are equal in distribution if they start from the same initial distribution Law(X0).
In our case f(Xt, t) = 1

2Σ−1(Xt − µ)βt and g(t) =
√
βt, so we have two equivalent reverse diffusion dynamics:
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where both differential equations are to be solved backwards.

4 Score estimation
If X0 is known then (2) implies that

log p0t(Xt|X0) = −n
2

log (2π)− 1

2
detλ(Σ, t)− 1

2
(Xt − ρ(X0,Σ, µ, t))

Tλ(Σ, t)−1(Xt − ρ(X0,Σ, µ, t)) =⇒

∇ log p0t(Xt|X0) = −λ(Σ, t)−1(Xt − ρ(X0,Σ, µ, t))

where p0t(·|X0) is the probability density function of conditional distribution Law(Xt|X0). So if we sample Xt by the formula
Xt = ρ(X0,Σ, µ, t) + εt where εt ∼ N (0, λ(Σ, t)) then ∇ log p0t(Xt|X0) = −λ(Σ, t)−1εt. In the simplified case when Σ = I we
have λ(I, t) = λtI where λt = 1−e−

∫ t
0
βsds. In this case gradient of noisy data log-density reduces to∇ log p0t(Xt|X0) = −εt/λt.

If εt =
√
λtξt, then we have

Xt = ρ(X0, I, µ, t) +
√
λtξt, ξt ∼ N (0, I), ∇ log p0t(Xt|X0) = −ξt/

√
λt
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