
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Material for ‘Dense for the Price of Sparse: Improved
Performance of Sparsely Initialized Networks via a Subspace Offset’

A. Additional Experiments
A.1. Tiny Imagenet

Figure A.1 compares the performance of DCTpS with
SynFlow and FORCE1 on Tiny Imagenet with ResNet18.
DCTpS obtains higher validation accuracy than both
FORCE and SynFlow for all densities less than or equal
to 1%, and by 0.1% density DCTpS is outperforming them
by approximately 10% accuracy. This confirms that the
superior accuracy of DCTpS networks at low densities is
maintained when the difficulty of the problem is scaled up.

Figure A.1. Comparing DCTpS with FORCE and SynFlow on
Tiny Imagenet with ResNet18.

A.2. Equal-per-filter (EPF) Support Distribution

All DCTpS experiments in Section 5 used the EPL heuristic
to distribute trainable parameters between layers. Another
naive heuristic which achieves the basic goal of maintaining
some trainablility throughout the network is an ‘Equal per
Filter’ (EPF) approach: given a specified sparsity, the total
number of trainable parameters for the whole network is
calculated, and divided equally between all convolutional
filters (or rows in the case of linear layers). Within each
filter, the locations of those trainable parameters is chosen
uniformly at random.

1We note that FORCE was particularly unstable in these exper-
iments, failing to prune the network to the required density in at
least one of its three runs, at every density less than 0.5%. In these
cases, accuracy is averaged over only those runs in which FORCE
succeeded. At 0.01% density, FORCE failed on all three runs.

Figure A.2. The total number of trainable parameters per prunable
layer determined by EPL and EPF heuristics, on ResNet50 and
VGG19 with 10 output classes.

Figure A.2 highlights that the EPL and EPF heuristics result
in substantially and qualitatively different layer-wise param-
eter allocations. Nevertheless, Figure A.3 shows that both
methods achieve very similar accuracy across all tested den-
sities, though EPF consistently performs marginally worse.
This observation lends further support to the hypothesis that,
provided a suitable offset d is used, there is a large class of
subspace embeddings from which it suffices to draw U ran-
domly to achieve high accuracy, and in particular that this
class includes k-sparse disjoint U with a variety of support
distributions.

A.3. Training with SGD as Opposed to Adam

The best test accuracy for large networks like ResNet and
VGG is typically obtained by using SGD with momentum
and a specified learning rate schedule, rather than adap-
tive methods like Adam. However, the results obtained
with SGD are sensitive to hyperparameters like the initial
learning rate and the learning rate schedule. Adam, though
it tends to achieve lower final accuracy, is less sensitive to
these hyperparameters. This makes Adam a sensible training
algorithm for experiments in which the goal is to compare
the relative drop in accuracy caused by one or other prun-
ing method, as opposed to a goal of achieving maximum
possible accuracy overall. Thus Adam is used, with default

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Dense for the Price of Sparse (Supp. Mat.)

Figure A.3. Comparative accuracy of EPF and EPL heuristics for DCTpS networks.

settings, as the training algorithm for the experiments pre-
sented in Section 5. In order to preserve comparison with
prior work, and to illustrate that our results are not unique to
Adam, additional experiments using SGD with momentum
on ResNet50, VGG19, MobileNetV2 and FixUpResNet110
are included here. A single, course sweep of base learning
rates [0.1, 0.07, 0.05, 0.03, 0.01] was done with a DCTpS
ResNet50 applied to CIFAR100, at 1% density, to select a
base learning rate of 0.03, which was then used to train all
DCTpS architectures, at all densities, without further fine-
tuning. For PaI on standard architectures, a base learning
rate of 0.1 was used as done in prior work (de Jorge et al.,
2021).

Test accuracy is shown in Figure A.4 for ResNet50 and
VGG19, and Figure A.5 for MobileNetV2 and FixupRes-
Net1102. The results exhibit qualitatively similar trends
to those observed in Section 5’s Figures 2 and 3, though
with slightly higher overall accuracy, in particular at higher
densities, as expected.

A.4. Fixed α

In Figure A.6 we explore the impact of allowing α to be
trainable, as compared with being fixed at α = 1. The
latter case corresponds exactly to subspace training, since

2SynFlow was not able to be included in these additional supple-
mentary experiments having only recently been published (Tanaka
et al., 2020).

the offset d and embedding U are then fixed during training.
We can see that even with a fixed α, the same general trends
are observed. However, we consistently achieve a 2%-3%
increase in accuracy by allowing α to be trainable. We
conjecture that with the appropriate initialisation of α, this
gap would disappear, and α would not need to be trained.

A.5. Comparing Layer-wise Parameter Allocation
Heuristics

In Figure A.7 we compare different heuristics for distribut-
ing trainable parameters between network layers – in partic-
ular, uniform density per layer (uniform), equal number of
parameters per layer (EPL), equal number of parameters per
filter (EPF) and the ERK distribution used in (Evci et al.,
2020). Though no heuristic performs best in all cases at
all densities, EPL performs best in the majority of network-
density-dataset combinations - suggesting it could be a use-
ful heuristic for future works to try in methods with fixed
layer-wise sparsity distributions, and should certainly be in-
cluded as an alternative baseline to uniform random pruning
in future works.

B. DCTpS Implementation
In the code used to run the experiments in this paper, the
DCT components of DCTpS layers have been implemented
by setting the tensor W to be the DCT matrix (matrix of
DCT basis vectors), as opposed to implementing them via

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Dense for the Price of Sparse (Supp. Mat.)

Figure A.4. Experiments training ResNet50 and VGG19 with SGD (with momentum), on CIFAR10 and CIFAR100.

Figure A.5. Experiments training MobileNetV2 (left) and FixupResnet110 (right) with SGD (with momentum), on CIFAR10.

fast transforms. This is because deep learning libraries, as
currently implemented, are optimised for the former rather
than the latter.

Linear Layers: To be precise, in Linear layers with input
∈ Rn and output ∈ Rm, with q = max(m,n), the DCT
matrix W ∈ Rq×q is formed and then truncated to size
m × n by removing the surplus right-most columns (if
m > n) or bottom-most rows (if m < n). Multiplication by
this matrix is equivalent to a DCT, with a zero-padded input
if m > n, or a truncated output if m < n.

Convolutional Layers:. In a convolutional layer, with m
(k × k × n) filters, q = max(k2n,m), the DCT matrix

W ∈ Rq×q is formed and truncated to size k2n ×m and
reshape appropriately. In the accompanying code, a simple
test script is provided to confirm that our implementation
indeed computes the DCT of each patch.

Figure B.8 provides a simple visualisation of how this is
compatible with the efficiency of DCTpS layers, if imple-
mented correctly. In the forward pass, each step of the
convolution involves taking a patch of the image, and - for
each filter - computing the sum of the elementwise product
of the patch and the filter. Flattening (commonly known as
‘lowering’) the filters and the input patch, this is equivalent
to a matrix-vector product (and indeed convolutional lay-
ers are commonly implemented with this ‘lower→ matrix

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Dense for the Price of Sparse (Supp. Mat.)

Figure A.6. Comparison of letting α be a trainable parameter with fixing α = 1 throughout training in DCTpS networks.

Figure A.7. Comparison of different heuristics for distributing trainable parameters between network layers.

multiply→ lift’ approach (Hadjis et al., 2015)). The DCT
part of DCTpS convolutional layers set this flattened matrix
of filters to be the DCT matrix, and is thus equivalent to

computing the DCT of each patch.

This applies equally for the backward-pass, since backprop-
agation through convolutional layers involves convolutions

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Dense for the Price of Sparse (Supp. Mat.)

as well. Let h be the layer input, y be the output of a layer
with a single 2×2 filter F , and let L be the loss. Calculating
∂L
∂h involves calculating ∂L

∂y ∗ Rot180(F). Again, each step
in this convolution is equivalent to an inner product between
the original filter, and a flattened, permuted patch of ∂L

∂y , see
Figure B.9. This generalises for larger filters (Boué, 2018).

Figure B.8. Illustration of the matrix-vector product involved in
each step of a 2D convolutional layer. Computing the DCT of each
patch is equivalent to taking W to be a DCT matrix.

Figure B.9. Back-propagation involves inner products with a
layer’s filters. In this figure, d represents a patch of ∂L

∂y
, and

F is one of the layers convolutional filters.

C. Parameter Allocation by SynFlow
It was noted in Section 6 that when applied to ResNet50
for CIFAR10 at modest sparsities, SynFlow pruned fully
those residual connections which were prunable (those im-
plemented as trainable, 1× 1 convolutions), and in the re-
maining layers it appeared to approximate the EPL heuristic.
Figure C.10 shows that this observation also applies to other
architectures with different numbers of output classes. It is
particularly striking the extent to which SynFlow applied to
VGG19 leaves unpruned an approximately equal number of
parameters per layer. On ResNet18, the pruning is observed
to have the same structure per layer as on ResNet50 - a
roughly equal number of trainable parameters per layer, ex-
cept for the prunable shortcut connections, which are pruned
completely. This behaviour is also present to some extent
on MobileNetV2, though with larger oscillations around a
central value, and a breakdown of this behaviour at lower
densities, at which point multiple layers begin to be pruned
in their entirety.

Figure C.10. Total number of trainable parameters per layer, after
pruning at initialization with SynFlow.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Dense for the Price of Sparse (Supp. Mat.)

D. Cases where SynFlow and FORCE cannot
be applied

D.1. Extreme Sparsities (FORCE)

In some cases FORCE is unable to successfully prune past
a certain sparsity. In particular, at some point in the pruning
schedule, FORCE begins to assign all parameters a saliency
score of 0, thus providing no basis for pruning, with the
consequence being that the algorithm simply returns a dense
network. This happens, for example, at the most extreme
sparsities in VGG19, ResNet18, and MobileNetV2. In these
cases, the test accuracy for FORCE is reported as equal to
that of random guessing, since the algorithm cannot pro-
vide a trainable network at the given sparsity, but this is
denoted with a dashed lined to indicate that no network of
the specified sparsity was actually tested.

We conjecture that this phenomenon is a result of through-
put collapse3 - that is, once the algorithm fully prunes all
branches of communication at some point in the network,
though we did not investigate this further. We note that
in investigating these collapses, we also tried doubling the
number of pruning steps from 60 to 120, but this did not
avoid the problem.

D.2. Fixup ResNet

Neither FORCE nor SynFlow can be applied without modi-
fication to FixupResNet110. As above, this failure is due to
the fact that both algorithms assign a saliency score of 0 to
all parameters and consequently have no basis on which to
prune.

In particular, at initialization, the only non-zero gradients
of both the training loss L and SynFlow’s objective func-
tionR, are in the network’s final layer, where the weights
themselves are initialized as 0. The saliency scores in both
FORCE and SynFlow are obtained via the elementwise mul-
tiplication of the parameter matrices with their gradients,
and thus are 0 in all cases.

E. Experimental Details
E.1. Code and Implementation

We implemented Force4 and SynFlow 5 using the code pub-
lished by the respective authors, adapted to include any
additional architectures used in our experiments. For RigL,
we adapted its PyTorch Implementation6.

The code used to run experiments with DCTpS networks is

3This is equivalent to layer collapse when there is only a single
feedforward connection at each layer.

4https://github.com/naver/force
5https://github.com/ganguli-lab/Synaptic-Flow
6https://pypi.org/project/rigl-torch/

available at github.com/IlanPrice/DCTpS.

E.2. Model Architectures

Standard implementations of network architectures used
here are taken from the following sources:

• ResNet50, ResNet18 and VGG19, as implemented in
(de Jorge et al., 2021). See the FORCE Github Repo

• MobileNetV2 from the authors’ published code here.
• FixupResNet110 from the authors’ published code

here.

E.3. Parameter Breakdown by Architecture

See Table E.1 for a breakdown of the prunable/non-prunable
parameter totals in each of the architectures used in our
experiments.

Table E.1. Division of total parameters between weights (pruned)
and bias and/or batchnorm (BN) parameters (not pruned) in the
architectures used in our experiments, with 10 output classes.

Weights Bias & BN Total

ResNet50 23467712 53130 23520842

VGG19 20024000 11018 20035018

MobileNetV2 2261824 35098 2296922

FixupResNet110 1719856 282 1720138

ResNet18 11164352 9610 11173962

E.4. Pruning hyperparameters

See Table E.2 for the hyperparameters used when applying
FORCE and SynFlow. RigL is tested with Tend set as 75%
of total iterations, the RigL α parameter set to 0.3, with all
convolutional and linear layers sparsified, according to the
ERK distribution. When RigL is combined with DCTpS
networks, EPL is used instead of ERK.

Table E.2. Pruning hyperparameters for FORCE and SynFlow.
C10, C100, and TI stand for CIFAR10, CIFAR100, and Tiny
Imagenet respectively.

FORCE SynFlow

Prune Steps 60 100

Batches 1 (C10), 10 (C100), 20 (TI) N/A

Schedule exp exp

https://github.com/naver/force
https://github.com/ganguli-lab/Synaptic-Flow
https://pypi.org/project/rigl-torch/
https://github.com/IlanPrice/DCTpS
https://github.com/naver/force/blob/master/experiments/models.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/mobilenetv2.py
https://github.com/hongyi-zhang/Fixup

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Dense for the Price of Sparse (Supp. Mat.)

E.5. Training Details

See Table E.3 for the training hyperparameters used in our
experiments in Section 5 and Appendix A. On CIFAR10 and
CIFAR100 (Krizhevsky et al., 2009), 10% of the training
data is withheld as a validation set. The model with the
maximum validation accuracy is selected as our final model,
to be evaluated on the test set. In the case of Tiny Imagenet
(Wu et al., 2017), where there are no labels for the test set,
the maximum validation accuracy obtained during training
is reported. All experiments were run using Adam, except
for those in Appendix A.3 in which SGD with momentum
was used.

Table E.3. Training hyperparameters used for experiments in Sec-
tion 5 and Appendix A. Note that for training DCTpS networks
with SGD, a base learning rate of 0.03 was used instead of 0.1.
For experiments with Lenet-5 (only performed with Adam on
CIFAR10) batch size was 64 and total epochs was 160.

Adam SGD

Epochs 200 200

Batch Size 128 128

Learning Rate (LR) 0.001 0.1

Momentum N/A 0.9

LR Decay Epochs N/A 120, 160

LR Drop factor N/A 0.1

Weight Decay 5× 10−4 5 ×10−4

References
Boué, L. Deep learning for pedestrians: backpropagation in

cnns. arXiv preprint arXiv:1811.11987, 2018.

de Jorge, P., Sanyal, A., Behl, H., Torr, P., Rogez, G.,
and Dokania, P. K. Progressive skeletonization: Trim-
ming more fat from a network at initialization. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=9GsFOUyUPi.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pp. 2943–
2952. PMLR, 2020.

Hadjis, S., Abuzaid, F., Zhang, C., and Ré, C. Caffe con troll:
Shallow ideas to speed up deep learning. In Proceedings
of the Fourth Workshop on Data analytics in the Cloud,
pp. 1–4, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. Advances in Neural Information
Processing Systems, 33, 2020.

Wu, J., Zhang, Q., and Xu, G. Tiny imagenet challenge,
2017.

https://openreview.net/forum?id=9GsFOUyUPi
https://openreview.net/forum?id=9GsFOUyUPi

